

Si53307

2:2 LOW JITTER UNIVERSAL BUFFER/LEVEL TRANSLATOR

Features

- 2 differential or 4 LVCMOS outputs 2:1 input mux with glitchless input
- Ultra-low additive jitter: 45 fs rms
- Wide frequency range: dc to 725 MHz
- Any-format input with pin selectable
 output formats: LVPECL, low power
 LVPECL, LVDS, CML, HCSL,
 LVCMOS
- Synchronous output enable

Applications

High-speed clock distribution

PCI Express Gen 1/2/3

Optical Transport Network (OTN)

Ethernet switch/router

SONET/SDH

Small size: 16-QFN (3 mm x 3 mm) RoHS compliant, Pb-free

clock switching

1.8/2.5/3.3 V

 Industrial temperature range: -40 to +85 °C

Independent V_{DD} and V_{DDO} :

- Storage/Servers
- Telecom
- Industrial
- SyncE, 1588
- Backplane clock distribution

Description

The Si53307 is an ultra-low jitter two output differential buffer with pin-selectable output clock signal format and 2:1 input clock mux. The Si53307 utilizes Silicon Labs' advanced CMOS technology to fanout clocks from dc to 725 MHz with guaranteed low additive jitter, low skew, and low propagation delay variability. The Si53307 features minimal cross-talk and provides superior supply noise rejection, simplifying low jitter clock distribution in noisy environments. Independent core and output bank supply pins provide integrated level translation without the need for external circuitry.

Functional Block Diagram

Patents pending

TABLE OF CONTENTS

Section

<u>Page</u>

31. Electrical Specifications
2. Functional Description
2.1. Universal, Any-Format Input
2.2. Input Bias Resistors
2.3. Universal, Any-Format Output Buffer 15
2.4. Synchronous Output Enable
2.5. Glitchless Clock Input Switching 16
2.6. Input Mux and Output Enable Logic 17
2.7. Power Supply (V _{DD} and V _{DDO})
2.8. Output Clock Termination Options
2.9. AC Timing Waveforms
2.10. Typical Phase Noise Performance
2.11. Power Supply Noise Rejection
3. Pin Description: 16-Pin QFN
4. Ordering Guide
5. Package Outline
6. PCB Land Pattern
7. Top Marking
7.1. Si53307 Top Marking
7.2. Top Marking Explanation
Document Change List

1. Electrical Specifications

Table 1. Recommended Operating Conditions

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Ambient Operating Temperature	T _A		-40	_	85	°C
Supply Voltage Range*	V _{DD}	LVDS, CML	1.71	1.8	1.89	V
			2.38	2.5	2.63	V
			2.97	3.3	3.63	V
		LVPECL, low power LVPECL,	2.38	2.5	2.63	V
		LVCMOS	2.97	3.3	3.63	V
		HCSL	2.97	3.3	3.63	V
Output Buffer Supply	V _{DDO}	LVDS, CML, LVCMOS	1.71	1.8	1.89	V
Voltage*			2.38	2.5	2.63	V
			2.97	3.3	3.63	V
		LVPECL, low power LVPECL	2.38	2.5	2.63	V
			2.97	3.3	3.63	V
		HCSL	2.97	3.3	3.63	V
*Note: Core supply V _{DD} and	output buffer su	upplies V _{DDO} are independent.	1			

Table 2. Input Clock Specifications

(V_{DD}=1.8 V \pm 5%, 2.5 V \pm 5%, or 3.3 V \pm 10%, T_A= –40 to 85 °C)

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Differential Input Common Mode Voltage	V _{CM}		0.05	-	_	V
Differential Input Swing (peak-to-peak)	V _{IN}		0.2		2.2	V
LVCMOS Input High Volt- age	V _{IH}	V _{DD} = 2.5 V± 5%, 3.3 V± 10%	V _{DD} x 0.7	—		V
LVCMOS Input Low Volt- age	V _{IL}	V _{DD} = 2.5 V± 5%, 3.3 V± 10%	—	—	V _{DD} x 0.3	V
Input Capacitance	C _{IN}	CLK pins with respect to GND	—	5	_	pF

Table 3. DC Common Characteristics

(V_{DD} = V_{DDO} = 1.8 V \pm 5%, 2.5 V \pm 5%, or 3.3 V \pm 10%,T_A = –40 to 85 °C)

Parameter	Symbol	Test Condition	Min	Тур	Мах	Unit
Supply Current	I _{DD}		—	65	100	mA
Output Buffer	I _{DDO}	LVPECL (3.3 V)	—	40	_	mA
Supply Current (Per Clock Output)		Low Power LVPECL (3.3 V)*	—	35	_	mA
@100 MHz (diff)		LVDS (3.3 V)	—	20	—	mA
@200 MHz (CMOS)		CML (3.3 V)	—	60	—	mA
		HCSL, 100 MHz, 2 pF load (3.3 V)	_	35		mA
		CMOS (1.8 V, SFOUTx = Open/0), per output, C _L = 5 pF, 200 MHz	_	5	—	mA
		CMOS (2.5 V, SFOUTx = Open/0), per output, C _L = 5 pF, 200 MHz	_	10	—	mA
		CMOS (3.3 V, SFOUTx = 0/1), per output, C _L = 5 pF, 200 MHz	—	20	—	mA
Input High Voltage	V _{IH}	SFOUTx, OE, CLK_SEL	0.8 x VDD	_	—	V
Input Mid Voltage	V _{IM}	SFOUTx, 3-level input pins	0.45 x VDD	0.5 x VDD	0.55 x VDD	V
Input Low Voltage	V _{IL}	SFOUTX, OE, CLK_SEL	—	_	0.2 x VDD	V
Internal Pull-down Resistor	R _{DOWN}	SFOUTx, CLK_SEL	—	25	—	kΩ
Internal Pull-up Resistor	R _{UP}	SFOUTx, OE		25		kΩ
*Note: Low-power LVPE	ECL mode su	upports an output termination scheme t	hat will reduce	overall system	m power.	

Table 4. Output Characteristics (LVPECL)

 $(V_{DD} = V_{DDO} = 2.5 \text{ V} \pm 5\%, \text{ or } 3.3 \text{ V} \pm 10\%, \text{TA} = -40 \text{ to } 85 \text{ °C})$

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Output DC Common Mode Voltage	V _{COM}		V _{DDO} – 1.595	_	V _{DDO} – 1.245	V
Single-Ended Output Swing*	V_{SE}		0.55	0.80	1.050	V
*Note: Unused outputs can be	left floating. Do	o not short unused outp	outs to ground.			

Table 5. Output Characteristics (Low Power LVPECL)

 $(V_{DD} = V_{DDO} = 2.5 V \pm 5\%, \text{ or } 3.3 V \pm 10\%, \text{TA} = -40 \text{ to } 85 \text{ °C})$

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Output DC Common Mode Voltage	V _{COM}	$R_L = 100 \Omega$ across Qn and \overline{Qn}	V _{DDO} – 1.895		V _{DDO} – 1.275	V
Single-Ended Output Swing	V_{SE}	R_L = 100 Ω across Qn and \overline{Qn}	0.25	0.60	0.85	V

Table 6. Output Characteristics—CML

(V_{DD} = V_{DDO} = 1.8 V \pm 5%, 2.5 V \pm 5%, or 3.3 V \pm 10%, T_A = -40 to 85 °C)

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Single-Ended Output Swing	V_{SE}	Terminated as shown in Figure 9 (CML termination).	300	400	550	mV

Table 7. Output Characteristics—LVDS

 $(V_{DD} = V_{DDO} = 1.8 \text{ V} \pm 5\%, 2.5 \text{ V} \pm 5\%, \text{ or } 3.3 \text{ V} \pm 10\%, T_A = -40 \text{ to } 85 \text{ °C})$

V_{SE}	${\sf R}_{\sf L}$ = 100 Ω across ${\sf Q}_{\sf N}$ and $\overline{\sf Q}_{\sf N}$	247	410	490	mV
V _{COM1}	V_{DDO} = 2.38 to 2.63 V, 2.97 to 3.63 V, R _L = 100 Ω across Q _N and Q _N	1.10	1.25	1.35	V
V _{COM2}	$V_{DDO} = 1.71 \text{ to } 1.89 \text{ V}, \text{ R}_{\text{L}} = 100 \Omega$ across Q_{N} and \overline{Q}_{N}	0.85	0.97	1.25	V
V	сом1	$V_{COM1} = \frac{V_{DD0} = 2.38 \text{ to } 2.63 \text{ V}, 2.97 \text{ to}}{3.63 \text{ V}, \text{ R}_{L} = 100 \Omega \text{ across } \text{Q}_{\text{N}}}$ $V_{COM2} = \frac{V_{DD0} = 1.71 \text{ to } 1.89 \text{ V}, \text{ R}_{L} = 100 \Omega \text{ across } \text{Q}_{\text{N}}}{\text{across } \text{Q}_{\text{N}}}$	$V_{COM1} = V_{DD0} = 2.38 \text{ to } 2.63 \text{ V}, 2.97 \text{ to} \\ 3.63 \text{ V}, \text{ R}_{\text{L}} = 100 \Omega \text{ across } \text{Q}_{\text{N}} \\ \text{and } \overline{\text{Q}}_{\text{N}} = 100 \Omega \text{ or } 1.10 \\ V_{COM2} = 1.71 \text{ to } 1.89 \text{ V}, \text{ R}_{\text{L}} = 100 \Omega \\ \text{across } \text{Q}_{\text{N}} = 0.85 \\ \text{A}_{\text{N}} = 0.$	$\frac{V_{\text{COM1}}}{V_{\text{COM2}}} = \frac{V_{\text{DDO}} = 2.38 \text{ to } 2.63 \text{ V}, 2.97 \text{ to}}{3.63 \text{ V}, \text{R}_{\text{L}} = 100 \Omega \text{ across } \text{Q}_{\text{N}}} \qquad 1.10 \qquad 1.25$ $\frac{V_{\text{COM2}}}{V_{\text{COM2}}} = \frac{V_{\text{DDO}} = 1.71 \text{ to } 1.89 \text{ V}, \text{R}_{\text{L}} = 100 \Omega}{\text{across } \text{Q}_{\text{N}}} \qquad 0.85 \qquad 0.97$	$\frac{V_{\text{COM1}}}{V_{\text{COM2}}} = \frac{V_{\text{DDO}} = 2.38 \text{ to } 2.63 \text{ V}, 2.97 \text{ to}}{3.63 \text{ V}, \text{R}_{\text{L}} = 100 \Omega \text{ across } \text{Q}_{\text{N}}} = \frac{1.10}{1.25} = \frac{1.35}{1.35}$

Table 8. Output Characteristics—LVCMOS

 $(V_{DD} = V_{DDO} = 1.8 \text{ V} \pm 5\%, 2.5 \text{ V} \pm 5\%, \text{ or } 3.3 \text{ V} \pm 10\%, T_A = -40 \text{ to } 85 \text{ °C})$

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit		
Output Voltage High [*]	V _{OH}		0.75 x V _{DDO}			V		
Output Voltage Low*	V _{OL}		—	-	0.25 x V _{DDO}	V		
*Note: I _{OH} and I _{OL} per the Output Signal Format Table for specific V _{DDO} and SFOUTx settings. CMOS outputs are in-phase.								

Table 9. Output Characteristics—HCSL

 $(V_{DD} = V_{DDO} = 3.3 \text{ V} \pm 10\%, \text{ TA} = -40 \text{ to } 85 \text{ °C})$

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Output Voltage High	V _{OH}	R_L = 50 Ω to GND	550	700	850	mV
Output Voltage Low	V _{OL}	R_L = 50 Ω to GND	-150	0	150	mV
Single-Ended Output Swing	V_{SE}	R_L = 50 Ω to GND	550	700	850	mV
Crossing Voltage	V _C	$R_L = 50 \Omega$ to GND	250	350	550	mV

Table 10. AC Characteristics

 $(V_{DD} = V_{DDO} = 1.8 \text{ V} \pm 5\%, 2.5 \text{ V} \pm 5\%, \text{ or } 3.3 \text{ V} \pm 10\%, T_A = -40 \text{ to } 85 \text{ }^{\circ}\text{C})^1$

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Frequency	F	LVPECL, low power LVPECL, LVDS, CML, HCSL	dc	-	725	MHz
		LVCMOS	dc	_	200	MHz
Duty Cycle Note: 50% input duty cycle.	D _C	200 MHz, 20/80% T _R /T _F <10% of period (LVCMOS) (12 mA drive)	40	50	60	%
		20/80% T _R /T _F <10% of period (Differential)	48	50	52	%
Minimum Input Clock Slew Rate	SR	Required to meet prop delay and additive jitter specifications (20–80%)	0.75	—	_	V/ns

Notes:

- 1. See Output Characteristics tables for operating voltage specifications for various outputs formats.
- **2.** HCSL measurements were made with receiver termination. See Figure 9 on page 19.
- 3. Output to Output skew specified for outputs with an identical configuration.
- 4. Defined as skew between any output on different devices operating at the same supply voltages, temperatures, and equal load conditions. Using the same type of inputs on each device, the outputs are measured at the differential cross points.
- 5. Measured for 156.25 MHz carrier frequency. Sine-wave noise added to V_{DDO} (3.3 V = 100 mV_{PP}) and noise spur amplitude measured. See application note, "AN491: Power Supply Rejection for Low Jitter Clocks" for further details.

Table 10. AC Characteristics (Continued)

 $(V_{DD} = V_{DDO} = 1.8 \text{ V} \pm 5\%, 2.5 \text{ V} \pm 5\%, \text{ or } 3.3 \text{ V} \pm 10\%, T_A = -40 \text{ to } 85 \text{ }^{\circ}\text{C})^1$

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Output Rise/Fall Time	T _R /T _F	LVPECL, LVDS, CML, HCSL ² , Low- Power LVPECL 20/80%	_	_	350	ps
		200 MHz, 20/80%, 2 pF load (LVCMOS), 12 mA	_	_	750	ps
Minimum Input Pulse Width	T _W		500		—	ps
Additive Jitter (Differential Clock Input)	J	V _{DD} = V _{DDO} = 2.5/3.3 V, LVPECL/ LVDS, F = 725 MHz, 0.75 V/ns input slew rate	_	50	65	fs
Propagation Delay	T _{PLH,}	LVPECL	675	875	1075	ps
	T _{PHL}	LVDS	675	875	1075	ps
Output Enable Time	T _{EN}	F = 1 MHz		1500	_	ns
		F = 100 MHz		20	_	ns
		F = 725 MHz		5	_	ns
Output Disable Time	T _{DIS}	F = 1 MHz		2000		ns
		F = 100 MHz		35		ns
		F = 725 MHz	_	5	_	ns
Output to Output Skew ³	Т _{SK}	LVCMOS, drive 12 mA to 2 pF	_	50	120	ps
		LVPECL	_	30	75	ps
		LVDS	_	40	85	ps
Part to Part Skew ⁴	T _{PS}	Differential			150	ps
Power Supply Noise	PSRR	10 kHz sinusoidal noise		-72.5	—	dBc
Rejection ⁵		100 kHz sinusoidal noise	_	-70	_	dBc
		500 kHz sinusoidal noise		-67.5	—	dBc
		1 MHz sinusoidal noise	—	-62.5	—	dBc

Notes:

1. See Output Characteristics tables for operating voltage specifications for various outputs formats.

2. HCSL measurements were made with receiver termination. See Figure 9 on page 19.

3. Output to Output skew specified for outputs with an identical configuration.

4. Defined as skew between any output on different devices operating at the same supply voltages, temperatures, and equal load conditions. Using the same type of inputs on each device, the outputs are measured at the differential cross points.

 Measured for 156.25 MHz carrier frequency. Sine-wave noise added to V_{DDO} (3.3 V = 100 mV_{PP}) and noise spur amplitude measured. See application note, "AN491: Power Supply Rejection for Low Jitter Clocks" for further details.

V _{DD}			Output	Additive Jitter (fs rms, 12 kHz to 20 MHz) ³			
	Freq (MHz)	Clock Format	Amplitude V _{IN} (Single-Ended, Peak-to-Peak)	Differential 20%–80% Slew Rate (V/ ns)	Clock Format	Тур	Мах
3.3	725	Differential	0.15	0.637	LVPECL	45	65
3.3	725	Differential	0.15	0.637	LVDS	50	65
3.3	156.25	Differential	0.5	0.458	LVPECL	160	185
3.3	156.25	Differential	0.5	0.458	LVDS	150	200
2.5	725	Differential	0.15	0.637	LVPECL	45	65
2.5	725	Differential	0.15	0.637	LVDS	50	65
2.5	156.25	Differential	0.5	0.458	LVPECL	145	185
2.5	156.25	Differential	0.5	0.458	LVDS	145	195

Table 11. Additive Jitter, Differential Clock Input

Notes:

1. For best additive jitter results, use the fastest slew rate possible. See application note, "AN766: Understanding and Optimizing Clock Buffer's Additive Jitter Performance" for more information.

2. AC-coupled differential inputs.

3. Measured differentially using a balun at the phase noise analyzer input. See Figure 1.

V _{DD}			nput ^{1,2}	Output	Additive Jitter (fs rms, 12 kHz to 20 MHz) ³		
	Freq (MHz)	Clock Format	Amplitude V _{IN} (single-ended, peak to peak)	SE 20%-80% Slew Rate (V/ns)	Clock Format	Тур	Max
3.3	200	Single-ended	1.70	1	LVCMOS ⁴	120	160
3.3	156.25	Single-ended	2.18	1	LVPECL	160	185
3.3	156.25	Single-ended	2.18	1	LVDS	150	200
3.3	156.25	Single-ended	2.18	1	LVCMOS ⁴	130	180
2.5	200	Single-ended	1.70	1	LVCMOS ⁵	120	160
2.5	156.25	Single-ended	2.18	1	LVPECL	145	185
2.5	156.25	Single-ended	2.18	1	LVDS	145	195
2.5	156.25	Single-ended	2.18	1	LVCMOS ⁵	140	180

Table 12. Additive Jitter, Single-Ended Clock Input

Notes:

1. For best additive jitter results, use the fastest slew rate possible. See "AN766: Understanding and Optimizing Clock Buffer's Additive Jitter Performance" for more information.

- 2. DC-coupled single-ended inputs.
- **3.** Measured differentially using a balun at the phase noise analyzer input (see Figure 1). LVCMOS jitter is measured single-ended.
- **4.** Drive Strength: 12 mA, 3.3 V (SFOUT = 11).
- 5. Drive Strength: 9 mA, 2.5 V (SFOUT = 11).

Figure 1. Differential Measurement Method Using a Balun

Table 13. Thermal Conditions

Parameter	Symbol	Test Condition	Value	Unit
Thermal Resistance, Junction to Ambient	θ_{JA}	Still air	57.6	°C/W
Thermal Resistance, Junction to Case	θ_{JC}	Still air	41.5	°C/W

Table 14. Absolute Maximum Ratings

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit	
Storage Temperature	Τ _S		-55	_	150	°C	
Supply Voltage	V _{DD}		-0.5	—	3.8	V	
Input Voltage	V _{IN}		-0.5	—	V _{DD} + 0.3	V	
Output Voltage	V _{OUT}		_	—	V _{DD} + 0.3	V	
ESD Sensitivity	HBM	100 pF, 1.5 kΩ	_	_	2000	V	
ESD Sensitivity	CDM		_	—	500	V	
Peak Soldering Reflow Temperature	T _{PEAK}	Pb-Free; Solder reflow profile per JEDEC J-STD-020	_	—	260	°C	
Maximum Junction Temperature	Т _Ј		_	—	125	°C	
Note: Stresses beyond those listed in this table may cause permanent damage to the device. Functional operation specification compliance is not implied at these conditions. Exposure to maximum rating conditions for extended periods may affect device reliability.							

2. Functional Description

The Si53307 is a low jitter, low skew 2:2 differential buffer with an integrated 2:1 input clock mux. The device has a universal input that accepts most common differential or LVCMOS input signals. A clock select pin is used to select the active input clock. The Si53307 features control pins for synchronous output enable, output signal format selection and LVCMOS drive strength.

Figure 2. Functional Block Diagram

2.1. Universal, Any-Format Input

The Si53307 has a universal input stage that enables simple interfacing to a wide variety of clock formats, including LVPECL, low-power LVPECL, LVCMOS, LVDS, HCSL, and CML. Tables 15 and 16 summarize the various ac- and dc-coupling options supported by the device. Figures 3, 4, and 5 show the recommended input clock termination options. For the best high-speed performance, the use of differential formats is recommended. For both single-ended and differential input clocks, the fastest possible slew rate is recommended since low slew rates can increase the noise floor and degrade jitter performance. Though not required, a minimum slew rate of 0.75 V/ns is recommended for differential formats and 1.0 V/ns for single-ended formats. For more information, see application note, "AN766: Understanding and Optimizing Clock Buffer Additive Jitter Performance".

	LVPECL		LVCMOS		LVDS	
	AC-Couple	DC-Couple	AC-Couple	DC-Couple	AC-Couple	DC-Couple
1.8 V	N/A	N/A	No	No	Yes	No
2.5/3.3 V	Yes	Yes	No	Yes	Yes	Yes

Table 16. HCSL and CML

DC-Couple

No

Yes (3.3 V)

CML

DC-Couple

No

No

AC-Couple

Yes

Yes

HCSL

AC-Couple

No

Yes (3.3 V)

1.8 V

2.5/3.3 V

Table 15. LVPECL, LVCMOS, and LVDS

Figure 3. Differential HCSL, LVPECL, Low-Power LVPECL, LVDS, CML AC-coupled Input Termination

Figure 4. LVCMOS DC-coupled Input Termination

2.2. Input Bias Resistors

Internal bias resistors ensure a differential output low condition in the event that the clock inputs are not connected. The noninverting input is biased with a 18.75 k Ω pulldown to GND and a 75 k Ω pullup to V_{DD}. The inverting input is biased with a 75 k Ω pullup to V_{DD}.

Figure 6. Input Bias Resistors

2.3. Universal, Any-Format Output Buffer

The Si53307 has highly flexible output drivers that support a wide range of clock signal formats, including LVPECL, low power LVPECL, LVDS, CML, HCSL, and LVCMOS. SFOUT1 and SFOUT0 are 3-level inputs that can be pinstrapped to select the output clock signal formats. This feature enables the device to be used for format translation in addition to clock distribution, minimizing the number of unique buffer part numbers required in a typical application and simplifying design reuse. For EMI reduction applications, four LVCMOS drive strength options are available for each V_{DDO} setting.

SFOUT1	SFOUT0	V _{DDO} = 3.3 V	V _{DDO} = 2.5 V	V _{DDO} = 1.8 V		
Open*	Open*	LVPECL	LVPECL	N/A		
0	0	LVDS	LVDS	LVDS		
0	1	LVCMOS, 24 mA drive	LVCMOS, 18 mA drive	LVCMOS, 12 mA drive		
1	0	LVCMOS, 18 mA drive	LVCMOS, 12 mA drive	LVCMOS, 9 mA drive		
1	1	LVCMOS, 12 mA drive	LVCMOS, 9 mA drive	LVCMOS, 6 mA drive		
Open*	0	LVCMOS, 6 mA drive	LVCMOS, 4 mA drive	LVCMOS, 2 mA drive		
Open*	1	LVPECL low power	LVPECL low power	N/A		
0	Open*	CML	CML	CML		
1	Open*	HCSL	N/A	N/A		
*Note: SFOUTx are 3-level input pins. Tie low for "0" setting. Tie high for "1" setting. When left open, the pin floats to V _{DD} /2.						

 Table 17. Output Signal Format Selection

2.4. Synchronous Output Enable

The Si53307 features a synchronous output enable (disable) feature for input frequencies between 1 MHz and 725 MHz. Output enable is sampled and synchronized on the falling edge of the input clock. This feature prevents runt pulses from being generated when the outputs are enabled or disabled.

When OE is low, Q is held low and \overline{Q} is held high for differential output formats. For LVCMOS output format options, both Q and \overline{Q} are held low when OE is set low. The device outputs are enabled when the output enable pin is unconnected. See Table 10 for output enable and output disable times.

2.5. Glitchless Clock Input Switching

The Si53307 features glitchless switching between two valid input clocks fin \ge 1 MHz and \le 725 MHz. Figure 7 illustrates that switching between input clocks does not generate runt pulses or glitches at the output.

2. Q_n is disabled low for 2-3 falling edges of CLK

3. Q_n starts on the first rising edge after 1 + 2.

The Si53307 supports glitchless switching between clocks at the same frequency fin \geq 1 MHz and \leq 725 MHz. In addition, the device supports glitchless switching between two input clocks that are up to 10x different in frequency. When a switchover to a new clock is made, the output will disable low after two or three clock cycles of the previously-selected input clock. The outputs will remain low for up to three clock cycles of the newly-selected clock, after which the outputs will start from the newly-selected input. In the case a switchover to an absent clock is made, the output will glitchlessly stop low and wait for edges of the newly selected clock. A switchover from an absent clock to a live clock will also be glitchless. Note that the CLK_SEL input should not be toggled faster than 1/250th the frequency of the slower input clock.

2.6. Input Mux and Output Enable Logic

The Si53307 provides two clock inputs for applications that need to select between one of two clock sources. The CLK SEL pin selects the active clock input. Table 18 summarizes the input and output clock based on the input mux and output enable pin settings.

CLK_SEL	CLK0	CLK1	OE ¹	Q ²		
L	L	Х	Н	L		
L	Н	Х	Н	Н		
Н	Х	L	Н	L		
Н	Х	Н	Н	Н		
Х	Х	Х	L	L ³		
 Notes: 1. Output enable active high 2. On the next negative transition of CLK0 or CLK1. 3. Single-end: Q = low, Q = low 						

Table 18. Input Mux and Output Enable Logic

Differential: Q = low, $\overline{Q} = high$

2.7. Power Supply (V_{DD} and V_{DDO})

The device includes separate core (V_{DD}) and output driver supplies (V_{DDO}). This feature allows the core to operate at a lower voltage than V_{DDO}, reducing current consumption in mixed supply applications. The core V_{DD} supports 3.3 V, 2.5 V, or 1.8 V. The outputs have their own supply, V_{DDO}, supporting 3.3 V, 2.5 V, or 1.8 V.

2.8. Output Clock Termination Options

The recommended output clock termination options are shown below. Unused outputs can be left floating. Do not short unused outputs to ground.

Figure 8. LVPECL Output Termination

DC-coupled LVDS and Low-Power LVPECL Termination

AC-coupled LVDS and Low-Power LVPECL Termination

AC-coupled CML Termination

DC-coupled HCSL Receiver Termination

DC-coupled HCSL Optimized Source Termination

Figure 9. LVDS, CML, HCSL, and Low-Power LVPECL Output Termination

Figure 10. LVCMOS Output Termination

SFOUT1	SFOUT0	R _S (Ω)			
		3.3 V	2.5 V	1.8 V	
0	1	33	33	33	
1	0	33	33	33	
1	1	33	33	0	
Open	0	0	0	0	

Table 19. Recommended LVCMOS R_S Series Termination

2.8.1. LVCMOS Output Termination to Support 1.5 V and 1.2 V

LVCMOS clock outputs are natively supported at 1.8, 2.5, and 3.3 V. However, 1.2 V and 1.5 V LVCMOS clock outputs can be supported via a simple resistor divider network that will translate the buffer's 1.8 V output to a lower voltage, as shown in Figure 11 below.

1.5 V LVCMOS: R_1 = 43 ohms, R_2 = 300 ohms, I_{OUT} = 12mA 1.2 V LVCMOS: R_1 = 58 ohms, R_2 = 150 ohms, I_{OUT} = 12mA

2.9. AC Timing Waveforms

Propagation Delay

Rise/Fall Time

2.10. Typical Phase Noise Performance

Each of the following three figures shows three phase noise plots superimposed on the same diagram.

Source Jitter: Reference clock phase noise.

Total Jitter (SE): Combined source and clock buffer phase noise measured as a single-ended output to the phase noise analyzer and integrated from 12 kHz to 20 MHz.

Total Jitter (Diff'I): Combined source and clock buffer phase noise measured as a differential output to the phase noise analyzer and integrated from 12 kHz to 20 MHz. The differential measurement as shown in each figure is made using a balun. See Figure 1 on page 10.

Note: To calculate the total RMS phase jitter when adding a buffer to your clock tree, use the root-sum-square (RSS).

The total jitter is a measure of the source plus the buffer's additive phase jitter. The additive jitter (rms) of the buffer can then be calculated (via root-sum-square addition).

Figure 13. Source, Additive, and Total Jitter (156.25 MHz)

Frequency (MHz)	Diff'l Input Slew Rate (V/ns)	Source Jitter (fs)	Total Jitter (SE) (fs)	Additive Jitter (SE) fs)	Total Jitter (Diff) (fs)	Additive Jitter (Diff) (fs)
156.25	1.0	38	148	143	118	112

Figure 14. Source, Additive, and Total Jitter (312.5 MHz)

Frequency (MHz)	Diff'l Input Slew Rate (V/ns)	Source Jitter (fs)	Total Jitter (SE) (fs)	Additive Jitter (SE) fs)	Total Jitter (Diff) (fs)	Additive Jitter (Diff) (fs)
312.5	1.0	33	94	89	84	77

Figure 15. Source, Additive, and Total Jitter (625 MHz)

Table 22. Source,	Additive, and	Total Jitter	(625 MHz)
-------------------	---------------	---------------------	-----------

Frequency (MHz)	Diff'l Input Slew Rate (V/ns)	Source Jitter (fs)	Total Jitter (SE) (fs)	Additive Jitter (SE) fs)	Total Jitter (Diff) (fs)	Additive Jitter (Diff) (fs)
625	1.0	23	57	52	59	54

2.11. Power Supply Noise Rejection

The device supports on-chip supply voltage regulation to reject noise present on the power supply, simplifying low jitter operation in real-world environments. This feature enables robust operation alongside FPGAs, ASICs, and SoCs and may reduce board-level filtering requirements. For more information, see application note, "AN491: Power Supply Rejection for Low Jitter Clocks".

3. Pin Description: 16-Pin QFN

Table 23. Pin Description

Pin	Name	Description
1	VDD	Core voltage supply. Bypass with 1.0 μ F capacitor and place as close to the VDD pin as possible.
2	CLK1	Input clock 1.
3	CLK1	Input clock 1 (complement). When CLK1 is driven by a single-ended input, connect $\overline{\text{CLK1}}$ to VDD/2.
4	GND	Ground.
5	VDDO	Output clock supply voltage. Bypass with 1.0 μF capacitor and place as close to the VDDO pin as possible.
6	CLK0	Input clock 0.
7	CLK0	Input clock 0 (complement). When CLK0 is driven by a single-ended input, connect $\overline{\text{CLK0}}$ to $V_{DD}/2$.
8	SFOUT1	Output signal format control pin 1. Three-level input control. Internally biased at VDD/2. Can be left floating or tied to ground or VDD.
9	Q1	Output clock 1 (complement).

Pin	Name	Description	
10	Q1	Output clock 1.	
11	Q0	Output clock 0 (complement).	
12	Q0	Output clock 0.	
13	SFOUT0	Output signal format control pin 0. Three-level input control. Internally biased at VDD/2. Can be left floating or tied to ground or VDD.	
14	CLK_SEL	Mux input select pin: Clock inputs are switched without the introduction of glitches. When CLK_SEL is high, CLK1 is selected. When CLK_SEL is low, CLK0 is selected. CLK_SEL contains an internal pull-down resistor.	
15	GND	Ground.	
16	OE	Output enable. When OE = high, all outputs are enabled. When OE = low, Q is held low, and \overline{Q} is held high for differential formats. For LVCMOS, both Q and \overline{Q} are held low when OE is set low. OE contains an internal pull-up resistor.	
GND Pad	GND	Ground.	

Table 23. Pin Description (Continued)

4. Ordering Guide

Part Number	Package	Pb-Free, ROHS-6	Temperature
Si53307-B-GM	16-QFN	Yes	–40 to 85 °C
Si53301/4-EVB	NA	Yes	–40 to 85 °C

5. Package Outline

Figure 16 shows the package dimensions for the 3x3 mm 16-pin QFN package. Table 24 lists the values for the dimensions shown in the illustration.

Figure 16. Si53307 3x3 mm 16-QFN Package Diagram

Dimension	Min	Nom	Max
А	0.80	0.85	0.90
A1	0.00	0.02	0.05
b	0.18	0.25	0.30
D		3.00 BSC.	
D2	1.65	1.70	1.75
е	0.50 BSC.		
E	3.00 BSC.		
E2	1.65	1.70	1.75
L	0.30	0.40	0.50
aaa		—	0.10
bbb		—	0.10
ccc		—	0.08
ddd		—	0.10
eee		—	0.05
 Notes: 1. All dimensions shown are in millimeters (mm) unless otherwise noted. 2. Dimensioning and Tolerancing per ANSI Y14.5M-1994. 			

Table 24. Package Diagram Dimensions

6. PCB Land Pattern

Figure 17 shows the PCB land pattern dimensions for the 3x3 mm 16-pin QFN package. Table 25 lists the values for the dimensions shown in the illustration.

Figure 17. Si53307 3x3 mm 16-QFN Package Land Pattern

Table 25. PCB Land Pattern Dimensions

Dimension	mm
C1	3.00
C2	3.00
E	0.50
X1	0.30
Y1	0.80
X2	1.75
Y2	1.75

Notes:

General

- **1.** All dimensions shown are in millimeters (mm).
- 2. This Land Pattern Design is based on the IPC-7351 guidelines.
- **3.** All dimensions shown are at Maximum Material Condition (MMC). Least Material Condition (LMC) is calculated based on a Fabrication Allowance of 0.05 mm.

Solder Mask Design

4. All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the metal pad is to be 60 μm minimum, all the way around the pad.

Stencil Design

- 5. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder paste release.
- 6. The stencil thickness should be 0.125 mm (5 mils).
- 7. The ratio of stencil aperture to land pad size should be 1:1 for all perimeter pads.
- **8.** A 2x2 array of 0.65 mm square openings on a 0.90 mm pitch should be used for the center ground pad.

Card Assembly

- **9.** A No-Clean, Type-3 solder paste is recommended.
- **10.** The recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.

7. Top Marking

7.1. Si53307 Top Marking

7.2. Top Marking Explanation

Mark Method:	Laser	
Font Size:	0.635 mm (25 mils) Right-Justified	
Line 1 Marking:	Product ID	3307
Line 2 Marking:	TTTT = Mfg Code	Manufacturing Code from the Assembly Purchase Order form.
Line 3 Marking	Circle = 0.5 mm Diameter (Bottom-Left Justified)	Pin 1 Identifier
	YWW = Date Code	Corresponds to the last digit of the current year (Y) and the workweek (WW) of the mold date.

DOCUMENT CHANGE LIST

Revision 1.0 to Revision 1.1

March 3, 2016

- Updated the wide frequency range in the Features list on page 1.
- Updated the Applications list on page 1.
- Added the CMOS 1.8 V spec to Table 3.
- Updated the test conditions listed in Table 3.
- Updated the Frequency specs in Table 10.
- Updated diagrams in Figure 8 and Figure 9.
- Added 1.8 V column to Table 19, "Recommended LVCMOS R_S Series Termination," on page 20.
- Added Section "2.8.1. LVCMOS Output Termination to Support 1.5 V and 1.2 V".
- Updated Table 23, "Pin Description," on page 25.

Disclaimer

Silicon Laboratories intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software implementers using or intending to use the Silicon Laboratories products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each specific device, and "Typical" parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon Laboratories reserves the right to make changes without further notice and limitation to product information, specifications, and descriptions herein, and does not give warranties as to the accuracy or completeness of the included information. Silicon Laboratories shall have no liability for the consequences of use of the information supplied herein. This document does not imply or express copyright licenses granted hereunder to design or fabricate any integrated circuits. The products are not designed or authorized to be used within any Life Support System without the specific written consent of Silicon Laboratories, A "Life Support System" is any product or system intended to support or sustain life and/or health, which, if it fails, can be reasonably expected to result in significant personal injury or death. Silicon Laboratories shall under no circumstances be used in weapons of mass destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons.

Trademark Information

Silicon Laboratories Inc.®, Silicon Laboratories®, Silicon Labs®, SiLabs® and the Silicon Labs logo®, Bluegiga®, Bluegiga Logo®, Clockbuilder®, CMEMS®, DSPLL®, EFM®, EFM32®, EFR, Ember®, Energy Micro, Energy Micro logo and combinations thereof, "the world's most energy friendly microcontrollers", Ember®, EZLink®, EZRadio®, EZRadio®, Gecko®, ISOmodem®, Precision32®, ProSLIC®, Simplicity Studio®, SiPHY®, Telegesis, the Telegesis Logo®, USBXpress® and others are trademarks or registered trademarks of Silicon Laboratories Inc. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of ARM Holdings. Keil is a registered trademark of ARM Limited. All other products or brand names mentioned herein are trademarks of their respective holders.

Silicon Laboratories Inc. 400 West Cesar Chavez Austin, TX 78701 USA

http://www.silabs.com