

1200 V 600 A

CAR600M12HN6

1200 V, 600 A, Silicon Carbide, Half-Bridge Rectifier

Technical Features

- Ultra-Low Loss, High Frequency Operation
- Low Forward Voltage (V_F) Drop with Positive Temperature Coefficient
- Zero Reverse Recovery Current
- Zero Forward Recovery Voltage
- Temperature-Independent Switching Behavior

 V_{R}

Ļ

Applications

- Railway, Traction, and Motor Drives
- EV Chargers
- High-Efficiency Converters / Inverters
- Renewable Energy
- Smart-Grid / Grid-Tied Distributed Generation

System Benefits

- Enables Compact, Lightweight Systems
- Increased System Efficiency, due to Low Switching & Conduction Losses of SiC
- Reduced Thermal Requirements and System Cost

Maximum Parameters (Verified by Design)

Parameter	Symbol	Min.	Тур.	Max.	Unit	Test Conditions	Note
Maximum Reverse Voltage	V _{R-Max}			1200	V		
Continuous Formand Comment			908			T _c = 25°C, T _{VJ} ≤ 175°C	
Continuous Forward Current	IF		642			$T_{c} = 90^{\circ}C, T_{VJ} \le 175^{\circ}C$	
Maximum Pulsed Forward Current	I _{F (Pulsed)}			1200	A	t _{Pmax} limited by T _{VJmax} T _c = 25°C	
Maximum Virtual Junction Temperature	T _{vJ}	-40		175	°C		

Rev. 01, FEBRUARY 2022

Diode Characteristics (Per Position) ($T_{vJ} = 25^{\circ}C$ unless otherwise specified)

Parameter	Symbol	Min.	Тур.	Max.	Unit	Test Conditions Note
Die de Fernuerd Veltere			1.5		v	I _F = 600 A
Diode Forward Voltage	V _F		2.0		V	I _F = 600 A, T _{VJ} = 175°C
Deverse Current			0.16		100 0	V _R = 1200 V, T _{VJ} = 25°C
Reverse Current	IR		0.90		mA V _R = 1200 V, T _{VJ} = 175°C	
Total Capacitive Charge	Qc		3.5		mC	V _R = 800 V
			45.3			V _R = 0 V, f = 100 kHz
Total Capacitance	с		3.2		nF	V _R = 400 V, f = 100 kHz
			2.5			V _R = 800 V, f = 100 kHz
Thermal Resistance, Junction to Case	R _{TH-JC}		0.063			Per position

Note:

¹SiC Schottky diodes are majority carrier devices, so there is no reverse recovery charge.

Rev. 01, FEBRUARY 2022

Module Physical Characteristics

Parameter	Symbol	Min.	Тур.	Max.	Unit	Test Conditions
Package Resistance, M1 (High-Side)	R ₁₋₂		106.5			T _c = 125°C, Note 1
Package Resistance, M2 (Low-Side)	R ₂₋₃		126.3		μΩ	T _c = 125°C, Note 1
Stray Inductance	L _{Stray}		4.9		nH	Between DC- and DC+, f = 10 MHz
Case Temperature	Tc	-40		125	°C	
Mounting Torque	M	3	4.5	5		Baseplate, M6 bolts
Mounting Torque	Ms	0.9	1.1	1.3	N-m	Power Terminals, M4 bolts
Weight	W		167		g	
Case Isolation Voltage	V _{isol}	4			kV	AC, 50 Hz, 1 minute
Comparative Tracking Index	СТІ	600				
		13.07				Terminal to Terminal
Clearance Distance	6.00 Terminal to Heatsink	Terminal to Heatsink				
Conserve and Distance		Terminal to Terminal				
Creepage Distance		12.34				Terminal to Heatsink

NTC Characteristics (T_{NTC} = 25 °C unless otherwise specified)

Parameter	Symbol	Min.	Тур.	Max.	Unit	Notes
Resistance at 25°C	R ₂₅		4700		Ω	
Tolerance of R ₂₅			±1		%	
Beta Value for 25°C to 85°C	B _{25/85}		3435		К	
Beta Value for 0°C to 100°C	B _{0/100}		3399		К	
Tolerance of B _{25/85}			±1		%	
Maximum Power Dissipation	P _{Max}		50		mW	

Steinhart & Hart Coefficients for NTC Resistance & NTC Temperature Computation (T in K)

1	$\operatorname{n}\left(\frac{R}{R_{25}}\right) = A$	$+ \frac{B}{T} + \frac{C}{T^2} + \frac{D}{T}$	3	$\frac{1}{T} = A_1 + B_1$	$\ln\left(\frac{R}{R_{25}}\right) + C$	$C_1 \ln^2\left(\frac{R}{R_{25}}\right) +$	$-D_1 \ln^3\left(\frac{R}{R_{25}}\right)$
А	В	С	D	A_1	B ₁	C ₁	D ₁
-1.289E+01	4.245E+03	-8.749E+04	-9.588E+06	3.354E-03	3.001E-04	5.085E-06	2.188E-07

Rev. 01, FEBRUARY 2022

Typical Performance

Figure 1. Typical Forward Characteristics

Figure 3. Typical Capacitance vs. Reverse Voltage

Figure 2. Typical Reverse Characteristics

Figure 4. Typical Capacitive Charge vs. Reverse Voltage

Figure 6. NTC Resistance vs. NTC Temperature

Rev. 01, FEBRUARY 2022

4600 Silicon Drive | Durham, NC 27703 | Tel: +1.919.313.5300 | wolfspeed.com/power

Schematic and Pin Out

T SCHEME
LABEL
V+
Mid
V-
NTC1
NTC2

Package Dimension (mm)

Rev. 01, FEBRUARY 2022

Supporting Links & Tools

Evaluation Tools & Support

- CAR600M12HN6 PLECS Model
- SpeedFit 2.0 Design Simulator™
- Technical Support Forum

Application Notes

- CPWR-AN35: 62mm Thermal Interface Material Application Note
- CPWR-AN39: KIT-CRD-CIL12N-HM User Guide

Rev. 01, FEBRUARY 2022

Notes & Disclaimer

This document and the information contained herein are subject to change without notice. Any such change shall be evidenced by the publication of an updated version of this document by Cree. No communication from any employee or agent of Cree or any third party shall effect an amendment or modification of this document. No responsibility is assumed by Cree for any infringement of patents or other rights of third parties which may result from use of the information contained herein. No license is granted by implication or otherwise under any patent or patent rights of Cree.

Notwithstanding any application-specific information, guidance, assistance, or support that Cree may provide, the buyer of this product is solely responsible for determining the suitability of this product for the buyer's purposes, including without limitation for use in the applications identified in the next bullet point, and for the compliance of the buyers' products, including those that incorporate this product, with all applicable legal, regulatory, and safety-related requirements.

This product has not been designed or tested for use in, and is not intended for use in, applications in which failure of the product would reasonably be expected to cause death, personal injury, or property damage, including but not limited to equipment implanted into the human body, life-support machines, cardiac defibrillators, and similar emergency medical equipment, aircraft navigation, communication, and control systems, aircraft power and propulsion systems, air traffic control systems, and equipment used in the planning, construction, maintenance, or operation of nuclear facilities.

RoHS Compliance

The levels of RoHS restricted materials in this product are below the maximum concentration values (also referred to as the threshold limits) permitted for such substances, or are used in an exempted application, in accordance with EU Directive 2011/65/EC (RoHS2), as implemented January 2, 2013. RoHS Declarations for this product can be obtained from your Cree representative or from the Product Documentation sections of www.cree.com.

REACh Compliance

REACh substances of high concern (SVHCs) information is available for this product. Since the European Chemical Agency (ECHA) has published notice of their intent to frequently revise the SVHC listing for the foreseeable future, please contact your Cree representative to ensure you get the most up-to-date REACh SVHC Declaration. REACh banned substance information (REACh Article 67) is also available upon request.

Contact info:

4600 Silicon Drive Durham, NC 27703 USA Tel: +1.919.313.5300 www.wolfspeed.com/power