

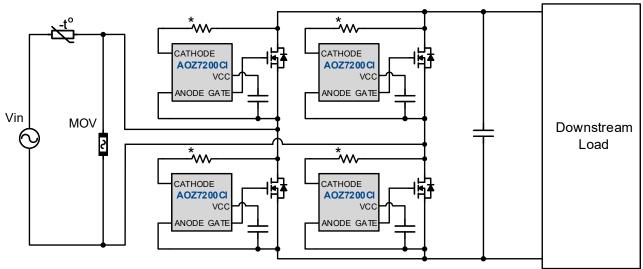
General Description

The AOZ7200CI is a 600V AlphaZBL[™] product that controls the external N-channel MOSFET to replace a diode when used in AC/DC diode-bridge application. The AOZ7200CI can help to reduce power consumption and heat dissipation.

In diode-bridge application, the AOZ7200CI senses the voltage drop and reduces the forward conduction loss to the minimum value. When the forward current is reversed, the AOZ7200CI turns off the external switch and suffers the reverse voltage. In AC/DC application, the AOZ7200CI is self-powered system without extra voltage supply.

The AOZ7200CI is available in a SOT23-5 package and is rated over a -40°C to +125°C ambient temperature range.

Features


- Replaces a power diode in HV bridge rectifier
- Self-powered in AC system
- Low reverse threshold 1mV
- Low quiescent current 5uA

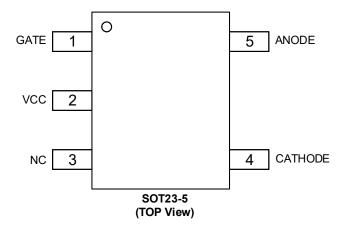
Applications

- AC/DC
- HV bridge rectifier application

Typical Applications

^{*} For detailed information, please refer to the Application Note.

Figure 1. Typical Application Circuit


Ordering Information

Part Number	Ambient Temperature Range	Package	Environmental
AOZ7200CI	-40°C to +125°C	SOT23A-5L	Green Product

AOS Green Products use reduced levels of Halogens, and are also RoHS compliant. Please visit www.aosmd.com/media/AOSGreenPolicy.pdf for additional information.

Pin Configuration

Pin Description

Pin Number	Pin Name	Pin Function
1	GATE	N-MOSFET gate driver output
2	VCC	Power source for controller
3 NC No Connection		No Connection
4 CATHODE Externally connected to the drain of N-MOSFET		Externally connected to the drain of N-MOSFET
5 ANODE Externally connected to the source of N-MOSFET; reference ground of		Externally connected to the source of N-MOSFET; reference ground of controller

Rev. 2.1 June 2022 **www.aosmd.com** Page 2 of 9

Absolute Maximum Ratings

Exceeding the Absolute Maximum Ratings may damage the device.

Parameter	Rating
V _{CC} to ANODE	-0.3V to 24V
CATHODE to ANODE, DC	-1V to 600V
CATHODE to ANODE, Negative Transient ⁽¹⁾	-5V
GATE to ANODE	-0.3V to (VCC+0.3V)
Junction Temperature (T _J)	+150°C
Storage Temperature (T _S)	-65 °C to +150°C
ESD Rating ⁽²⁾	1 kV

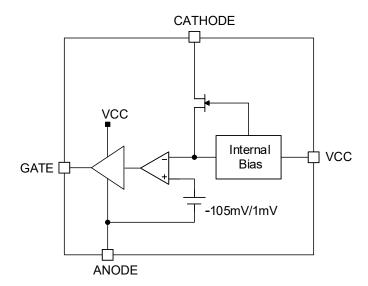
Recommended Operating Ratings

The device is not guaranteed to operate beyond the Recommended Operating Ratings

Parameter	Rating
Supply Voltage (V _{CC})	18V
Ambient Temperature (T _A)	-40°C to +125°C
Package Thermal Resistance SOT23-5(θ_{JA})	191°C/W

Note:

- Peak voltage can be applied for 1ms pulse width, duty cycle 50% max, for 300k cycles.
- 2. Devices are inherently ESD sensitive, handling precautions are required. Human body model rating: $1.5 k\Omega$ in series with 100pF.


Electrical Characteristics

 T_A = 25°C, V_{CC} = 16V, V_{ANODE} = 0V, unless otherwise specified.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V_{RRM}	Repetitive peak reverse voltage	I _{CATHODE} =250µA	600	810	900	V
V _{CC_UP}	V _{CC} UVLO rising	V _{CA} =-0.2V, V _{CC} rising	13.5	15.2	17	V
V _{CC_UVLO}	V _{CC} UVLO falling	V _{CA} =-0.2V, V _{CC} falling	11	12.9	14	V
 Charge	Charging for Vcc	V _{CA} =30V, V _{CC} =10V	1	1.25	1.5	mA
I _{OP}	V _{CC} operation current at on-state	V _{CA} =-0.2V	10	12	25	μA
I _Q	V _{CC} quiescent current at off-state	V _{CA} =0.2V	3	5	8	μA
V _{CA_ON}	Switch turn-on threshold	V _{CA} falling	-80	-105	-140	mV
V_{CA_OFF}	Switch turn-off threshold	V _{CA} rising	0.1	1	1.9	mV
R _{GATE_source}	Gate pull-high resistance	I _G =10mA		18	23	Ω
R _{GATE_sink}	Gate pull-low resistance	I _G =10mA		5.5	11	Ω

Functioning Block Diagram

Rev. 2.1 June 2022 **www.aosmd.com** Page 4 of 9

Typical Performance Characteristics

T_A = 25°C, V_{ANODE} =0 V, Vcc= 16V unless otherwise specified.

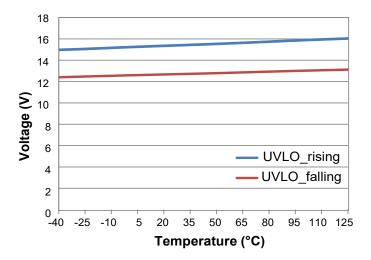


Figure 2. UVLO vs. Temperature

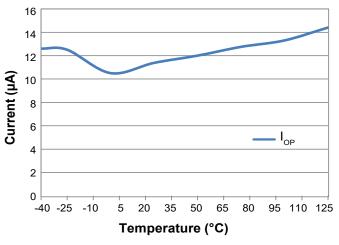


Figure 4. Operation Current vs. Temperature

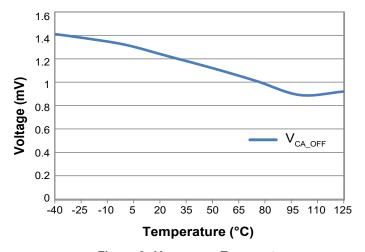


Figure 6. V_{CA OFF} vs. Temperature

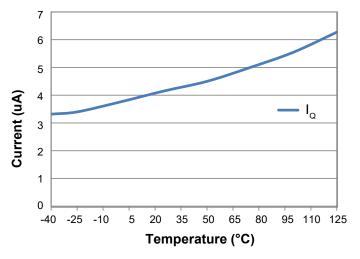


Figure 3. Quiescent Current vs. Temperature

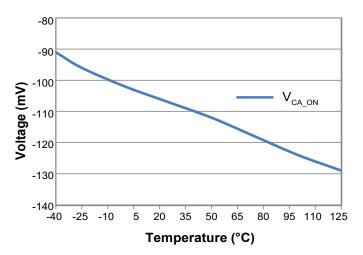


Figure 5. V_{CA_ON} vs. Temperature

Detailed Description

The AOZ7200 with a low-voltage capacitor can drive the N-MOSFET to replace each diode in high-voltage bridge rectifier application. In normal operation, after Vcc is charged to UVLO rising level, AOZ7200Cl senses the voltage between CATHODE and ANODE. If this voltage is less than -105mV, the GATE turns on the external N-MOSFET and the conduction loss is reduced. When the N-MOSFET is on, controller keeps monitoring the voltage between CATHODE and ANODE. If this voltage is larger than 1mV, the controller turns off the N-MOSFET.

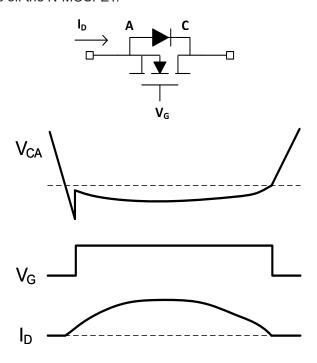
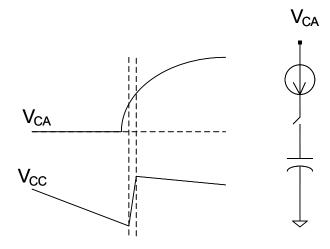
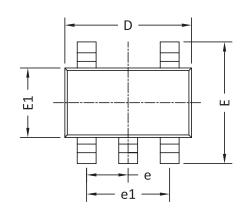
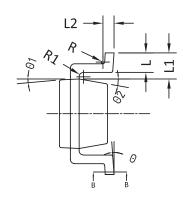
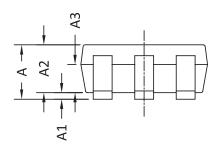
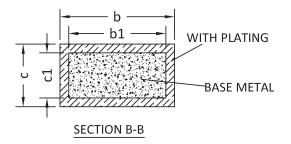


Figure 7. V_{CA} vs. Switch Gate

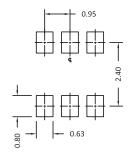
There is a high voltage depletion MOSFET that could help to charge the Vcc capacitor. In normal operation, the charging procedure happens at lower voltage drop and it helps to reduce the quiescent power. The value of Vcc capacitor is recommended not smaller than $1\mu F/25V$ for typical application.


Figure 8. Charging V_{CC}

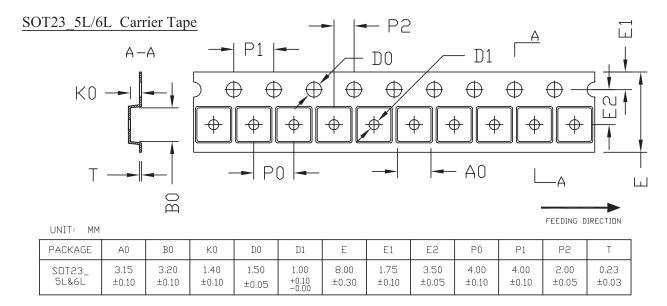


Package Dimensions, SOT23A-5L

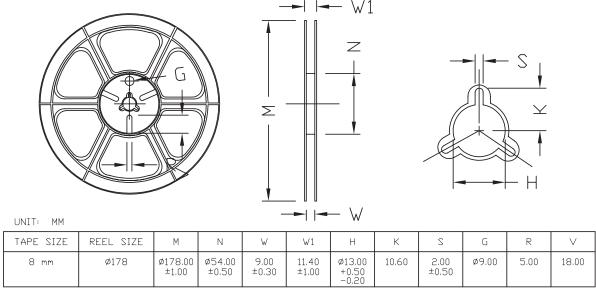


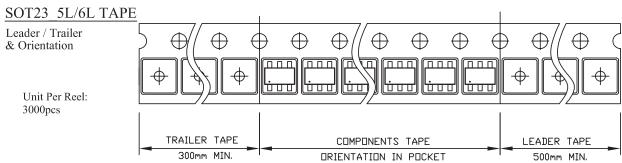
RECOMMENDED LAND PATTERN

UNIT: mm

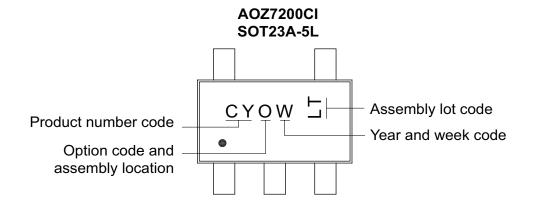

CVAADOLC	DIMENSION IN MM			DIM	ENSION IN INCHES		
SYMBOLS	MIN	NOM	MAX	MIN	NOM	MAX	
Α			1.25			0.049	
A1	0.00		0.15	0.000		0.006	
A2	1.00	1.10	1.20	0.039	0.043	0.047	
A3	0.60	0.65	0.70	0.024	0.026	0.028	
b	0.36		0.50	0.014		0.020	
b1	0.36	0.38	0.45	0.014	0.015	0.018	
С	0.14		0.20	0.006		0.008	
c1	0.14	0.15	0.16	0.006	0.006	0.006	
D	2.826	2.926	3.026	0.111	0.115	0.119	
E	2.60	2.80	3.00	0.102	0.110	0.118	
E1	1.526	1.626	1.726	0.060	0.064	0.068	
e	0.90	0.95	1.00	0.035	0.037	0.039	
e1	1.80	1.90	2.00	0.071	0.075	0.079	
L	0.35	0.45	0.60	0.014 0.018		0.024	
L1	0.59REF			0.023REF			
L2	L2 0.25BSC		0.010BSC				
R	0.05			0.002			
R1	0.05		0.20	0.002		0.008	
θ	0°		8°	0°		8°	
θ1	3°	5°	7°	3°	5°	7°	
θ2	6°		14°	6°		14°	

NOTE


- 1. PACKAGE BODY SIZES EXCLUDE MOLD FLASH AND GATE BURRS.
- MOLD FLASH AT THE NON-LEAD SIDES SHOULD BE LESS THAN 5 MILS EACH.
- 2. DIMENSION "L" IS MEASURED IN GAUGE PLANE.
- 3. TOLERANCE ±0.100 mm(4 mil) UNLESS OTHERWISE SPECIFIED.
- 4. FOLLOWED FROM JEDEC MO-178C & MO-193C.
- 5. CONTROLLING DIMENSIONS IS MILLIMETER. CONVERTED INCH DIMENSIONS ARE NOT NECESSARILY EXACT.



Tape and Reel Dimensions, SOT23A-5L


SOT23 5L/6L REEL

Part Marking

LEGAL DISCLAIMER

Applications or uses as critical components in life support devices or systems are not authorized. Alpha and Omega Semiconductor does not assume any liability arising out of such applications or uses of its products. AOS reserves the right to make changes to product specifications without notice. It is the responsibility of the customer to evaluate suitability of the product for their intended application. Customer shall comply with applicable legal requirements, including all applicable export control rules, regulations and limitations.

AOS' products are provided subject to AOS' terms and conditions of sale which are set forth at: http://www.aosmd.com/terms and conditions of sale

LIFE SUPPORT POLICY

ALPHA AND OMEGA SEMICONDUCTOR PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS.

As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.

2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

Rev. 2.1 June 2022 **www.aosmd.com** Page 9 of 9