74HC1G66; 74HCT1G66 # Single-pole single-throw analog switch Rev. 5 — 27 January 2022 **Product data sheet** ### 1. General description The 74HC1G66; 74HCT1G66 is a single-pole, single-throw analog switch with two input/output terminals (nY and nZ) and a digital enable input (nE). When nE is LOW, the analog switch is turned off. Inputs include clamp diodes. This enables the use of current limiting resistors to interface inputs to voltages in excess of $V_{\rm CC}$. The HCT device features control inputs with reduced input threshold levels to allow interfacing to TTL logic levels. ### 2. Features and benefits - Wide supply voltage range from 2.0 V to 10.0 V - Very low ON resistance: - 45 Ω (typ.) at V_{CC} = 4.5 V - 30 Ω (typ.) at V_{CC} = 6.0 V - 25 Ω (typ.) at V_{CC} = 9.0 V - · High noise immunity - · CMOS low power dissipation - · Latch-up performance exceeds 100 mA per JESD 78 Class II Level B - Complies with JEDEC standards: - JESD8C (2.7 V to 3.6 V) - JESD7A (2.0 V to 6.0) - ESD protection: - HBM JESD22-A114E exceeds 2000 V - MM JESD22-A115-A exceeds 200 V - Specified from -40 °C to +85 °C and -40 °C to +125 °C # 3. Ordering information ### **Table 1. Ordering information** | Type number | Package | | | | |-------------|-------------------|--------|--|----------| | | Temperature range | Name | Description | Version | | 74HC1G66GW | -40 °C to +125 °C | TSSOP5 | plastic thin shrink small outline package; | SOT353-1 | | 74HCT1G66GW | | | 5 leads; body width 1.25 mm | | | 74HC1G66GV | -40 °C to +125 °C | SC-74A | plastic surface-mounted package; 5 leads | SOT753 | | 74HCT1G66GV | | | | | # 4. Marking ### Table 2. Marking codes | Type number | Marking | |-------------|---------| | 74HC1G66GW | HL | | 74HCT1G66GW | TL | | 74HC1G66GV | H66 | | 74HCT1G66GV | T66 | # 5. Functional diagram # 6. Pinning information ## 6.1. Pinning ### 6.2. Pin description Table 3. Pin description | Symbol | Pin | Description | |-----------------|-----|-----------------------------| | Υ | 1 | independent input or output | | Z | 2 | independent input or output | | GND | 3 | ground (0 V) | | Е | 4 | enable input (active HIGH) | | V _{CC} | 5 | supply voltage | ## 7. Functional description #### **Table 4. Function table** $H = HIGH \ voltage \ level; \ L = LOW \ voltage \ level.$ | Input E | Switch | |---------|--------| | L | OFF | | Н | ON | # 8. Limiting values #### **Table 5. Limiting values** In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V). | Symbol | Parameter | Conditions | | Min | Max | Unit | |------------------|-------------------------|---|-----|------|-------|------| | V _{CC} | supply voltage | | | -0.5 | +11.0 | V | | I _{IK} | input clamping current | $V_{I} < -0.5 \text{ V or } V_{I} > V_{CC} + 0.5 \text{ V}$ | [1] | - | ±20 | mA | | I _{SK} | switch clamping current | $V_{I} < -0.5 \text{ V or } V_{I} > V_{CC} + 0.5 \text{ V}$ | [1] | - | ±20 | mA | | I _{SW} | switch current | $V_{SW} > -0.5 \text{ V or } V_{SW} < V_{CC} + 0.5 \text{ V}$ | | - | ±25 | mA | | I _{CC} | supply current | | | - | 50 | mA | | I _{GND} | ground current | | | -50 | - | mA | | T _{stg} | storage temperature | | | -65 | +150 | °C | | P _{tot} | total power dissipation | T _{amb} = -40 °C to +125 °C | [2] | - | 250 | mW | The input and output voltage ratings may be exceeded if the input and output current ratings are observed. # 9. Recommended operating conditions #### Table 6. Recommended operating conditions Voltages are referenced to GND (ground = 0 V). | Symbol | Parameter | Conditions | 7 | 4HC1G6 | 6 | 74 | 4HCT1G | 66 | Unit | |------------------|---------------------------|--------------------------|-----|--------|-----------------|-----|--------|-----------------|------| | | | | Min | Тур | Max | Min | Тур | Max | | | V _{CC} | supply voltage | | 2.0 | 5.0 | 10.0 | 4.5 | 5.0 | 5.5 | V | | VI | input voltage | | 0 | - | V _{CC} | 0 | - | V _{CC} | V | | V_{SW} | switch voltage | [1] | 0 | - | V _{CC} | 0 | - | V _{CC} | V | | T _{amb} | ambient temperature | | -40 | +25 | +125 | -40 | +25 | +125 | °C | | Δt/ΔV | input transition rise and | V _{CC} = 2.0 V | - | - | 625 | - | - | - | ns/V | | | fall rate | V _{CC} = 4.5 V | - | 1.67 | 139 | - | 1.67 | 139 | ns/V | | | | V _{CC} = 6.0 V | - | - | 83 | - | - | - | ns/V | | | | V _{CC} = 10.0 V | - | - | 35 | - | - | - | ns/V | To avoid drawing V_{CC} current out of pin Z, when switch current flows in pin Y, the voltage drop across the bidirectional switch must not exceed 0.4 V. If the switch current flows into pin Z, no V_{CC} current will flow out of terminal Y. In this case there is no limit for the voltage drop across the switch, but the voltage at pins Y and Z may not exceed V_{CC} or GND. For SOT353-1 (TSSOP5) package: Ptot derates linearly with 3.3 mW/K above 74 °C. For SOT753 (SC-74A) package: Ptot derates linearly with 3.8 mW/K above 85 °C. # 10. Static characteristics ### **Table 7. Static characteristics** Voltages are referenced to GND (ground = 0 V). | Symbol | Parameter | Conditions | -40 | °C to +8 | 5 °C | -40 °C to | +125 °C | Unit | |---------------------|------------------------------|---|------|----------|------|-----------|---------|------| | | | | Min | Typ[1] | Max | Min | Max | | | 74HC1G | 66 | | ' | | | | | | | V_{IH} | HIGH-level | V _{CC} = 2.0 V | 1.5 | 1.2 | - | 1.5 | - | V | | | input voltage | V _{CC} = 4.5 V | 3.15 | 2.4 | - | 3.15 | - | V | | | | V _{CC} = 6.0 V | 4.2 | 3.2 | - | 4.2 | - | V | | | | V _{CC} = 9.0 V | 6.3 | 4.7 | - | 6.3 | - | V | | V _{IL} | | V _{CC} = 2.0 V | - | 0.8 | 0.5 | - | 0.5 | V | | | voltage | V _{CC} = 4.5 V | - | 2.1 | 1.35 | - | 1.35 | V | | | | V _{CC} = 6.0 V | - | 2.8 | 1.8 | - | 1.8 | V | | | | V _{CC} = 9.0 V | - | 4.3 | 2.7 | - | 2.7 | V | | l _l | input leakage | E; V _I = V _{CC} or GND | | | | | | | | | current | V _{CC} = 6.0 V | - | 0.1 | 1.0 | - | 1.0 | μΑ | | | | V _{CC} = 10.0 V | - | 0.2 | 2.0 | - | 2.0 | μΑ | | I _{S(OFF)} | OFF-state
leakage current | Y or Z; V _{CC} = 10 V; see <u>Fig. 4</u> | - | 0.1 | 1.0 | - | 1.0 | μΑ | | I _{S(ON)} | ON-state
leakage current | Y or Z; V _{CC} = 10 V; see <u>Fig. 5</u> | - | 0.1 | 1.0 | - | 1.0 | μΑ | | I _{CC} | supply current | E, Y or Z; $V_I = V_{CC}$ or GND;
$V_{SW} = GND$ or V_{CC} | | | | | | | | | | V _{CC} = 6.0 V | - | 1.0 | 10 | - | 20 | μΑ | | | | V _{CC} = 10.0 V | - | 2.0 | 20 | - | 40 | μΑ | | C _I | input
capacitance | | - | 1.5 | - | - | - | pF | | C _{S(ON)} | ON-state capacitance | | - | 8 | - | - | - | pF | | Symbol | Parameter | Conditions | -40 | °C to +8 | 5 °C | -40 °C to | +125 °C | Unit | |---------------------|-----------------------------|--|-----|----------|------|-----------|---------|------| | | | | Min | Typ[1] | Max | Min | Max | | | 74HCT1 | G66 | | | | | | | | | V _{IH} | HIGH-level input voltage | V _{CC} = 4.5 V to 5.5 V | 2.0 | 1.6 | - | 2.0 | - | V | | V _{IL} | LOW-level input voltage | V _{CC} = 4.5 V to 5.5 V | 0.1 | 1.2 | 8.0 | - | 0.8 | V | | I _I | input leakage
current | E; $V_I = V_{CC}$ or GND; $V_{CC} = 5.5 \text{ V}$ | - | 0.1 | 1.0 | - | 1.0 | μΑ | | I _{S(OFF)} | OFF-state leakage current | Y or Z; V _{CC} = 5.5 V; see <u>Fig. 4</u> | - | 0.1 | 1.0 | - | 1.0 | μA | | I _{S(ON)} | ON-state
leakage current | Y or Z; V _{CC} = 5.5 V; see <u>Fig. 5</u> | - | 0.1 | 1.0 | - | 1.0 | μA | | I _{CC} | supply current | E, Y or Z; $V_1 = V_{CC}$ or GND;
$V_{SW} = GND$ or V_{CC} ; $V_{CC} = 4.5$ V to 5.5 V | - | 1 | 10 | - | 20 | μA | | ΔI _{CC} | additional supply current | $V_I = V_{CC} - 2.1 \text{ V}; V_{CC} = 4.5 \text{ V to } 5.5 \text{ V};$
$I_O = 0 \text{ A}$ | - | - | 500 | - | 850 | μA | | Cı | input
capacitance | | - | 1.5 | - | - | - | pF | | C _{S(ON)} | ON-state capacitance | | - | 8 | - | - | - | pF | ^[1] Typical values are measured at T_{amb} = 25 °C. ### 10.1. Test circuits ### 10.2. ON resistance **Table 8. ON resistance** At recommended operating conditions; voltages are referenced to GND (ground 0 V); for graph see Fig. 7. | Symbol | Parameter | Conditions | -40 | °C to +8 | 5 °C | -40 °C t | o +125 °C | Unit | |-----------------------|----------------------|--|----------|----------|------|----------|-----------|------| | | | | Min | Typ[1] | Max | Min | Max | | | 74HC1G6 | 6 [2] | | <u> </u> | <u> </u> | | | | | | R _{ON(peak)} | ON resistance | $V_I = GND \text{ to } V_{CC}; \text{ see } \underline{\text{Fig. 6}}$ | | | | | | | | | (peak) | I _{SW} = 0.1 mA; V _{CC} = 2.0 V | - | - | - | - | - | Ω | | | | I _{SW} = 1 mA; V _{CC} = 4.5 V | - | 42 | 118 | - | 142 | Ω | | | | I _{SW} = 1 mA; V _{CC} = 6.0 V | - | 31 | 105 | - | 126 | Ω | | | | I _{SW} = 1 mA; V _{CC} = 9.0 V | - | 23 | 88 | - | 105 | Ω | | R _{ON(rail)} | ON resistance (rail) | V _I = GND; see <u>Fig. 6</u> | | | | | | | | | | I _{SW} = 0.1 mA; V _{CC} = 2.0 V | - | 75 | - | - | - | Ω | | | | I _{SW} = 1 mA; V _{CC} = 4.5 V | - | 29 | 95 | - | 115 | Ω | | | | I _{SW} = 1 mA; V _{CC} = 6.0 V | - | 23 | 82 | - | 100 | Ω | | | | I _{SW} = 1 mA; V _{CC} = 9.0 V | - | 18 | 70 | - | 80 | Ω | | | | V _I = V _{CC} ; see <u>Fig. 6</u> | | | | | | | | | | I _{SW} = 0.1 mA; V _{CC} = 2.0 V | - | 75 | - | - | - | Ω | | | | I _{SW} = 1 mA; V _{CC} = 4.5 V | - | 35 | 106 | - | 128 | Ω | | | | I _{SW} = 1 mA; V _{CC} = 6.0 V | - | 27 | 94 | - | 113 | Ω | | | | I _{SW} = 1 mA; V _{CC} = 9.0 V | - | 21 | 78 | - | 95 | Ω | | 74HCT1G | 666 | | | | | | | | | R _{ON(peak)} | ON resistance | V _I = GND to V _{CC} ; see <u>Fig. 6</u> | | | | | | | | | (peak) | I _{SW} = 1 mA; V _{CC} = 4.5 V | - | 42 | 118 | - | 142 | Ω | | R _{ON(rail)} | ON resistance (rail) | V _I = GND; see <u>Fig. 6</u> | | | | | | | | | | I _{SW} = 1 mA; V _{CC} = 4.5 V | - | 29 | 95 | - | 115 | Ω | | | | V _I = V _{CC} ; see <u>Fig. 6</u> | | | | | | | | | | I _{SW} = 1 mA; V _{CC} = 4.5 V | - | 35 | 106 | - | 128 | Ω | Typical values are measured at T_{amb} = 25 °C. At supply voltages approaching 2 V, the ON resistance becomes extremely non-linear. Therefore it is recommended that these devices be used to transmit digital signals only, when using this supply voltage. # 10.3. ON resistance test circuit and graphs # 11. Dynamic characteristics ### **Table 9. Dynamic characteristics** Voltages are referenced to GND (ground = 0 V); C_L = 50 pF; R_L = 1 k Ω , unless otherwise specified. For test circuit see Fig. 10. | Symbol | Parameter | Conditions | | -40 | °C to +85 | 5 °C | -40 °C t | o +125 °C | Unit | |------------------|-------------------------------|---|-----|-----|-----------|------|----------|-----------|------| | | | | | Min | Typ[1] | Max | Min | Max | 1 | | 74HC1G | 66 | | | | | | | | | | t _{pd} | propagation delay | Y to Z or Z to Y; $R_L = ∞ Ω$; see Fig. 8 | [2] | | | | | | | | | | V _{CC} = 2.0 V | | - | 8 | 75 | - | 90 | ns | | | | V _{CC} = 4.5 V | | - | 3 | 15 | - | 18 | ns | | | | V _{CC} = 6.0 V | | - | 2 | 13 | - | 15 | ns | | | | V _{CC} = 9.0 V | | - | 1 | 10 | - | 12 | ns | | t _{en} | enable time | E to Y or Z; see Fig. 9 | [2] | | | | | | | | | | V _{CC} = 2.0 V | | - | 50 | 125 | - | 150 | ns | | | | V _{CC} = 4.5 V | | - | 16 | 25 | - | 30 | ns | | | | V _{CC} = 5.0 V; C _L = 15 pF | | - | 11 | - | - | - | ns | | | | V _{CC} = 6.0 V | | - | 13 | 21 | - | 26 | ns | | | | V _{CC} = 9.0 V | | - | 9 | 16 | - | 20 | ns | | t _{dis} | disable time | E to Y or Z; see Fig. 9 | [2] | | | | | | | | | | V _{CC} = 2.0 V | | - | 27 | 190 | - | 225 | ns | | | | V _{CC} = 4.5 V | | - | 16 | 38 | - | 45 | ns | | | | V _{CC} = 5.0 V; C _L = 15 pF | | - | 11 | - | - | - | ns | | | | V _{CC} = 6.0 V | | - | 14 | 33 | - | 38 | ns | | | | V _{CC} = 9.0 V | | - | 12 | 16 | - | 20 | ns | | C _{PD} | power dissipation capacitance | V_I = GND to V_{CC} | [3] | - | 9 | - | - | - | pF | | 74HCT1 | G66 | | | | • | | | | | | t _{pd} | propagation delay | Y to Z or Z to Y; $R_L = ∞ Ω$; see Fig. 8 | [2] | | | | | | | | | | V _{CC} = 4.5 V | | - | 3 | 15 | - | 18 | ns | | t _{en} | enable time | E to Y or Z; see Fig. 9 | [2] | | | | | | | | | | V _{CC} = 4.5 V | | - | 15 | 30 | - | 36 | ns | | | | V _{CC} = 5.0 V; C _L = 15 pF | | - | 12 | - | - | - | ns | | t _{dis} | disable time | E to Y or Z; see Fig. 9 | [2] | | | | | | | | | | V _{CC} = 4.5 V | | - | 13 | 44 | - | 53 | ns | | | | V _{CC} = 5.0 V; C _L = 15 pF | | - | 12 | - | - | - | ns | | C _{PD} | power dissipation capacitance | V_I = GND to V_{CC} - 1.5 V | [3] | - | 9 | - | - | - | pF | ^[1] All typical values are measured at T_{amb} = 25 °C. f_i = input frequency in MHz; f_o = output frequency in MHz; C_L = output load capacitance in pF; C_{SW} = maximum switch capacitance in pF (see <u>Table 7</u>); V_{CC} = supply voltage in Volt; $\Sigma((C_L \times C_{SW}) \times V_{CC}^2 \times f_0)$ = sum of outputs. t_{pd} is the same as t_{PLH} and t_{PHL} ; t_{en} is the same as t_{PZL} and t_{PZH} .; t_{dis} is the same as t_{PLZ} and t_{PHZ} . C_{PD} is used to determine the dynamic power dissipation P_D (μ W). $P_D = C_{PD} \times V_{CC}^2 \times f_i + \Sigma((C_L \times C_{SW}) \times V_{CC}^2 \times f_o)$ where: ### 11.1. Waveforms and test circuit Measurement points are given in <u>Table 10</u>. Logic levels: V_{OL} and V_{OH} are typical output voltage levels that occur with the output load. Fig. 8. Input (Y or Z) to output (Z or Y) propagation delays **Table 10. Measurement points** | Туре | Input | Output | | | | | |-----------|--------------------|--------------------|-----------------------|-----------------------|--|--| | | V _M | V _M | V _X | V _Y | | | | 74HC1G66 | 0.5V _{CC} | 0.5V _{CC} | V _{OL} + 10% | V _{OH} - 10% | | | | 74HCT1G66 | 1.3 V | 1.3 V | V _{OL} + 10% | V _{OH} - 10% | | | Test data is given in Table 11. Definitions for test circuit: R_T = Termination resistance should be equal to output impedance Z_o of the pulse generator C_{L} = Load capacitance including jig and probe capacitance R_L = Load resistance S1 = Test selection switch Fig. 10. Test circuit for measuring switching times Table 11. Test data | Туре | Input | | Load | | S1 position | | | |-----------|------------------------|-------------------------------------|----------------|----------------|-------------------------------------|-------------------------------------|-------------------------------------| | | V _I | t _r , t _f [1] | C _L | R _L | t _{PHL} , t _{PLH} | t _{PZH} , t _{PHZ} | t _{PZL} , t _{PLZ} | | 74HC1G66 | GND to V _{CC} | 6 ns | 50 pF, 15 pF | 1 kΩ, ∞ Ω | open | GND | V _{CC} | | 74HCT1G66 | GND to 3 V | 6 ns | 50 pF, 15 pF | 1 kΩ, ∞ Ω | open | GND | V _{CC} | [1] There is no constraint on t_{r} , t_{f} with a 50% duty factor when measuring f_{max} . 10 / 17 ## 11.2. Additional dynamic characteristics Table 12. Additional dynamic characteristics for 74HC1G66 and 74HCT1G66 GND = 0 V; t_r = t_f = 6.0 ns; C_L = 50 pF; unless otherwise specified. All typical values are measured at T_{amb} = 25 °C. | Symbol | Parameter | Conditions | Min | Тур | Max | Unit | |---------------------|------------------------------|--|-----|------|-----|------| | THD | total harmonic
distortion | f_i = 1 kHz; R _L = 10 kΩ; see <u>Fig. 11</u> | | | | % | | | | V _{CC} = 4.5 V; V _I = 4.0 V (p-p) | - | 0.04 | - | % | | | | V _{CC} = 9.0 V; V _I = 8.0 V (p-p) | - | 0.02 | - | % | | | | f_i = 10 kHz; R _L = 10 kΩ; see <u>Fig. 11</u> | | | | | | | | $V_{CC} = 4.5 \text{ V}; V_I = 4.0 \text{ V (p-p)}$ | - | 0.12 | - | % | | | | $V_{CC} = 9.0 \text{ V}; V_I = 8.0 \text{ V (p-p)}$ | - | 0.06 | - | % | | f _(-3dB) | -3 dB frequency response | $R_L = 50 \Omega$; $C_L = 10 pF$; see Fig. 12 and Fig. 13 | | | | | | | | V _{CC} = 4.5 V | - | 180 | - | MHz | | | | V _{CC} = 9.0 V | - | 200 | - | MHz | | a _{iso} | isolation (OFF-state) | $R_L = 600 \Omega$; $f_i = 1 MHz$; see Fig. 14 and Fig. 15 | | | | | | | | V _{CC} = 4.5 V | - | -50 | - | dB | | | | V _{CC} = 9.0 V | - | -50 | - | dB | ### 11.3. Test circuits and graphs Fig. 11. Test circuit for measuring total harmonic distortion With f_i = 1 MHz adjust the switch input voltage for a 0 dBm level at the switch output, (0 dBm = 1 mW into 50 Ω). Then increase the input frequency until the dB meter reads -3 dB Fig. 12. Test circuit for measuring the -3 dB frequency response Test conditions: V_{CC} = 4.5 V; GND = 0 V; R_L = 50 Ω ; R_{SOURCE} = 1 $k\Omega$ Fig. 13. Typical -3 dB frequency response Adjust the switch input voltage for a 0 dBm level (0 dBm = 1 mW into 600 Ω). Fig. 14. Test circuit for measuring isolation (OFF-state) Test conditions: V_{CC} = 4.5 V; GND = 0 V; R_L = 50 Ω ; R_{SOURCE} = 1 $k\Omega$ Fig. 15. Typical isolation (OFF-state) as a function of frequency # 12. Package outline Fig. 16. Package outline SOT353-1 (TSSOP5) Fig. 17. Package outline SOT753 (SC-74A) SOT753 SC-74A 02-04-16 06-03-16 ## 13. Abbreviations ### **Table 13. Abbreviations** | Acronym | Description | |---------|---| | CMOS | Complementary Metal-Oxide Semiconductor | | ESD | ElectroStatic Discharge | | НВМ | Human Body Model | | MM | Machine Model | | TTL | Transistor-Transistor Logic | | DUT | Device Under Test | # 14. Revision history ### **Table 14. Revision history** | Document ID | Release date | Data sheet status | Change notice | Supersedes | | |------------------|--|-----------------------|---------------|------------------|--| | 74HC_HCT1G66 v.5 | 20220127 | Product data sheet | - | 74HC_HCT1G66 v.4 | | | Modifications: | The format of this data sheet has been redesigned to comply with the identity guidelines of Nexperia. Legal texts have been adapted to the new company name where appropriate. Section 1 and Section 2 updated. Table 5: Derating values for P_{tot} total power dissipation updated. Fig. 16: Package outline drawing for SOT353-1 (TSSOP5) has changed | | | | | | 74HC_HCT1G66 v.4 | 20081219 | Product data sheet | - | 74HC_HCT1G66 v.3 | | | Modifications: | The format of this data sheet has been redesigned to comply with the new identity guidelines of NXP Semiconductors. Legal texts have been adapted to the new company name where appropriate. Package SOT353 changed to SOT353-1 in <u>Table 1</u> and <u>Fig. 16</u>. Quick Reference Data and Soldering sections removed. <u>Section 2</u> updated. | | | | | | 74HC_HCT1G66 v.2 | 20020515 | Product specification | - | 74HC_HCT1G66_2 | | | 74HC_HCT1G66_2 | 20010302 | Product specification | - | 74HC_HCT1G66_1 | | | 74HC_HCT1G66_1 | 19980803 | Product specification | - | - | | ### 15. Legal information #### **Data sheet status** | Document status [1][2] | Product
status [3] | Definition | |--------------------------------|-----------------------|---| | Objective [short] data sheet | Development | This document contains data from the objective specification for product development. | | Preliminary [short] data sheet | Qualification | This document contains data from the preliminary specification. | | Product [short]
data sheet | Production | This document contains the product specification. | - Please consult the most recently issued document before initiating or completing a design. - [2] The term 'short data sheet' is explained in section "Definitions". - The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the internet at https://www.nexperia.com. #### **Definitions** **Draft** — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. Nexperia does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information. Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local Nexperia sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail. Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between Nexperia and its customer, unless Nexperia and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the Nexperia product is deemed to offer functions and qualities beyond those described in the Product data sheet. #### **Disclaimers** Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, Nexperia does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. Nexperia takes no responsibility for the content in this document if provided by an information source outside of Nexperia. In no event shall Nexperia be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory. Notwithstanding any damages that customer might incur for any reason whatsoever, Nexperia's aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the Terms and conditions of commercial sale of Nexperia. Right to make changes — Nexperia reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof. Suitability for use — Nexperia products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an Nexperia product can reasonably be expected to result in personal injury, death or severe property or environmental damage. Nexperia and its suppliers accept no liability for inclusion and/or use of Nexperia products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk. **Quick reference data** — The Quick reference data is an extract of the product data given in the Limiting values and Characteristics sections of this document, and as such is not complete, exhaustive or legally binding. **Applications** — Applications that are described herein for any of these products are for illustrative purposes only. Nexperia makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification. Customers are responsible for the design and operation of their applications and products using Nexperia products, and Nexperia accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the Nexperia product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products. Nexperia does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using Nexperia products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). Nexperia does not accept any liability in this respect. Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device. Terms and conditions of commercial sale — Nexperia products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nexperia.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. Nexperia hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of Nexperia products by sustained. No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights. **Export control** — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities. Non-automotive qualified products — Unless this data sheet expressly states that this specific Nexperia product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in accordance with automotive testing or application requirements. Nexperia accepts no liability for inclusion and/or use of non-automotive qualified products in automotive equipment or applications. In the event that customer uses the product for design-in and use in automotive applications to automotive specifications and standards, customer (a) shall use the product without Nexperia's warranty of the product for such automotive applications, use and specifications, and (b) whenever customer uses the product for automotive applications beyond Nexperia's specifications such use shall be solely at customer's own risk, and (c) customer fully indemnifies Nexperia for any liability, damages or failed product claims resulting from customer design and use of the product for automotive applications beyond Nexperia's standard warranty and Nexperia's product specifications. **Translations** — A non-English (translated) version of a document is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions. ### **Trademarks** Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners. ## **Contents** | 1. General description | 1 | |---|----| | 2. Features and benefits | 1 | | 3. Ordering information | 1 | | 4. Marking | 2 | | 5. Functional diagram | 2 | | 6. Pinning information | 2 | | 6.1. Pinning | 2 | | 6.2. Pin description | 2 | | 7. Functional description | 3 | | 8. Limiting values | 3 | | 9. Recommended operating conditions | 3 | | 10. Static characteristics | 4 | | 10.1. Test circuits | 5 | | 10.2. ON resistance | 6 | | 10.3. ON resistance test circuit and graphs | 7 | | 11. Dynamic characteristics | 8 | | 11.1. Waveforms and test circuit | 9 | | 11.2. Additional dynamic characteristics | 11 | | 11.3. Test circuits and graphs | 11 | | 12. Package outline | 13 | | 13. Abbreviations | 15 | | 14. Revision history | 15 | | 15. Legal information | 16 | | | | For more information, please visit: http://www.nexperia.com For sales office addresses, please send an email to: salesaddresses@nexperia.com Date of release: 27 January 2022 [©] Nexperia B.V. 2022. All rights reserved