

Please note that Cypress is an Infineon Technologies Company.

The document following this cover page is marked as "Cypress" document as this is the company that originally developed the product. Please note that Infineon will continue to offer the product to new and existing customers as part of the Infineon product portfolio.

Continuity of document content

The fact that Infineon offers the following product as part of the Infineon product portfolio does not lead to any changes to this document. Future revisions will occur when appropriate, and any changes will be set out on the document history page.

Continuity of ordering part numbers

Infineon continues to support existing part numbers. Please continue to use the ordering part numbers listed in the datasheet for ordering.

S6SAL211A94SA1001

4ch 10W LED Driver Board Operation Guide

Document Number: 002-08727 Rev. *B

Cypress Semiconductor 198 Champion Court San Jose, CA 95134-1709 www.cypress.com

© Cypress Semiconductor Corporation, 2015-2019. This document is the property of Cypress Semiconductor Corporation and its subsidiaries ("Cypress"). This document, including any software or firmware included or referenced in this document ("Software"), is owned by Cypress under the intellectual property laws and treaties of the United States and other countries worldwide. Cypress reserves all rights under such laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use of the Software, then Cypress hereby grants you a personal, non-exclusive, nontransferable license (without the right to sublicense) (1) under its copyright rights in the Software (a) for Software provided in source code form, to modify and reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form externally to end users (either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under these claims of Cypress's patents that are infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for use with Cypress hardware products. Any other use, reproduction, modification, translation, or compilation of the Software is prohibited.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. No computing device can be absolutely secure. Therefore, despite security measures implemented in Cypress hardware or software products, Cypress shall have no liability arising out of any security breach, such as unauthorized access to or use of a Cypress product. CYPRESS DOES NOT REPRESENT, WARRANT, OR GUARANTEE THAT CYPRESS PRODUCTS, OR SYSTEMS CREATED USING CYPRESS PRODUCTS, WILL BE FREE FROM CORRUPTION, ATTACK, VIRUSES, INTERFERENCE, HACKING, DATA LOSS OR THEFT, OR OTHER SECURITY INTRUSION (collectively, "Security Breach"). Cypress disclaims any liability relating to any Security Breach, and you shall and hereby do release Cypress from any claim, damage, or other liability arising from any Security Breach. In addition, the products described in these materials may contain design defects or errors known as errata which may cause the product to deviate from published specifications. To the extent permitted by applicable law, Cypress reserves the right to make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any product or circuit described in this document. Any information provided in this document, including any sample design information or programming code, is provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. "High-Risk Device" means any device or system whose failure could cause personal injury, death, or property damage. Examples of High-Risk Devices are weapons, nuclear installations, surgical implants, and other medical devices. "Critical Component" means any component of a High-Risk Device whose failure to perform can be reasonably expected to cause, directly or indirectly, the failure of the High-Risk Device, or to affect its safety or effectiveness. Cypress is not liable, in whole or in part, and you shall and hereby do release Cypress from any claim, damage, or other liability arising from any use of a Cypress product as a Critical Component in a High-Risk Device. You shall indemnify and hold Cypress, its directors, officers, employees, agents, affiliates, distributors, and assigns harmless from and against all claims, costs, damages, and expenses, arising out of any claim, including claims for product liability, personal injury or death, or property damage arising from any use of a Cypress product as a Critical Component in a High-Risk Device. Cypress products are not intended or authorized for use as a Critical Component in any High-Risk Device except to the limited extent that (i) Cypress's published data sheet for the product explicitly states Cypress has qualified the product for use in a specific High-Risk Device, or (ii) Cypress has given you advance written authorization to use the product as a Critical Component in the specific High-Risk Device and you have signed a separate indemnification agreement.

Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, WICED, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of Cypress in the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners.

This manual explains how to use the evaluation board. Be sure to read this manual before using the product. For this product, please consult with sales representatives or support representatives.

Handling and Use

Preface

Handling and use of this product and notes regarding its safe use are described in the manuals.

Follow the instructions in the manuals to use this product.

Keep this manual at hand so that you can refer to it anytime during use of this product.

Notice on this Document

All information included in this document is current as of the date it is issued. Such information is subject to change without any prior notice.

Please confirm the latest relevant information with the sales representatives.

Cautions

Caution of the Products Described in this Document

The following precautions apply to the product described in this manual.

Indicates a potentially hazardous situation which could result in death or serious injury and/or a fault in the user's system if the product is not used correctly.
Do not look directly at LED. There is a possibility that your eye is hurt.

Electric shock,	Before performing any operation described in this manual, turn off all the power supplies to the system.
Damage	Performing such an operation with the power on may cause an electric shock or device fault.
Electric shock,	Once the product has been turned on, do not touch any metal part of it.
Damage	Doing so may cause an electric shock or device fault.
	Indicates the presence of a hazard that may cause a minor or moderate injury, damages to this product or

	Indicates the presence of a hazard that may cause a minor or moderate injury, damages to this product or devices connected to it, or may cause to loose software resources and other properties such as data, if the device is not used appropriately.
--	--

Cuts, Damage	Before moving the product, be sure to turn off all the power supplies and unplug the cables. Watch your step when carrying the product. Do not use the product in an unstable location such as a place exposed to strong vibration or a sloping surface. Doing so may cause the product to fall, resulting in an injury or fault.
CutsThe product contains sharp edges that are left unavoidably exposed, such as jumper plugs. Handle the product with due care not to get injured with such pointed parts.	
Damage	Do not place anything on the product or expose the product to physical shocks. Do not carry the product after the power has been turned on. Doing so may cause a malfunction due to overloading or shock.
Damage Since the product contains many electronic components, keep it away from direct sunlight, and high humidity to prevent condensation. Do not use or store the product where it is experience or a strong magnetic or electric field for an extended period of time. Inappropriate operating environments may cause a fault.	
Damage	Use the product within the ranges given in the specifications. Operation over the specified ranges may cause a fault.
Damage	To prevent electrostatic breakdown, do not let your finger or other object come into contact with the metal parts of any of the connectors. Before handling the product, touch a metal object (such as a door knob) to discharge any static electricity from your body.
Damage	When turning the power on or off, follow the relevant procedure as described in this document. Before turning the power on, in particular, be sure to finish making all the required connections. Furthermore, be sure to configure and use the product by following the instructions given in this document. Using the product incorrectly or inappropriately may cause a fault.
Damage	Because the product has no casing, it is recommended that it be stored in the original packaging. Transporting the product may cause a damage or fault. Therefore, keep the packaging materials and use them when reshipping the product.

Contents

1.	Description		
2.	Evaluation Board Specification		
3.	Pin Descriptions	8	
	3.1 Input/Output Connecter Descriptions3.2 Switch Descriptions		
4.	Setup and Verification		
	4.1 Contents in a Package	9	
	4.2 Evaluation with BLE Communication	9	
	4.3 Function of Application	13	
	4.4 How to Do When LED Lighting can not be Controlled.	17	
5.	Layout	18	
	5.1 Component Layout	18	
	5.2 Wiring Layout	19	
6.	Circuit Schematic		
7.	Component List		
8.	Property Data		
9.	Board Picture		
10.	Ordering Information		
Revi	ision History	31	

1. Description

S6SAL211A94SA1001 is the starter kit tool for BLE (*1) communication.

The tool has one evaluation board, this board implements S6AL211A94, and LED driver controlled by BLE communication. It is necessary to prepare AC power cable, Android terminal (*2), Application software, LED module and connection cable.

*1: BLE: Bluetooth[®] Low Energy

*2: Prepare an Android terminal with Android OS 4.4.2 or 4.4.4.

Figure 1-1 Board Outline

2. Evaluation Board Specification

Item	Symbol	Min.	Тур.	Max.	Unit
Input voltage (with TUHS10F24)	VINAC	85		264	VRMS
Output LED voltage	VLEDout	0	18	24	V
Output LED current	ILEDout(W) ILEDout(R) ILEDout(G) ILEDout(B)	-	-	290 140 180 90	mA
Board size	-	58 × 93	•	•	mm

Figure 2-1 Evaluation Board Specification

3. Pin Descriptions

3.1 Input/Output Connecter Descriptions

Table 3-1	Input/Output Pin Descriptions
-----------	-------------------------------

Connecter Symbol	I/O	Function Description
CN_AC	I	AC power supply terminal
ACDC_OUT	0	24V AC/DC module output
ACDC_GND	-	GND
CN009	I/O	CH1 - CH4 LED , thermistor terminal
MS_3V	0	3V power supply terminal for motion sensor
MS_IN	I	Input terminal for motion sensor
MS_GND	-	GND terminal for motion sensor
LSp	0	3V power supply terminal for Illumination sensor
LSm	1	Input terminal for Illumination sensor
LSg	-	GND terminal for Illumination sensor
CN061	I/O	JTAG terminal for BLE module

3.2 Switch Descriptions

Table 3-2 Switch Descriptions

Switch	Description
SW062	Reset push switch for BLE module

4. Setup and Verification

4.1 Contents in a Package

Table 4-1 S	S6SAL211A94SA1001	Contents List
	JUUALZIIAJ	

No. Contents		Description	Quantity	Notes	
1	S6SAL211A94-BLE-SA1	Evaluation board of 4CH 10W with S6AL211A94	1	-	
2	Leaflet	Described startup information	2	English, Japanese	

Figure 4-1 Contents Picture

4.2 Evaluation with BLE Communication

Using Items for Evaluation with I²C Control

Evaluation board	1pic (*1)
AC power cable	1pic (*2)
Android terminal with Android OS 4.4.2 or 4.4.4.	1pic (*2)
Application software	1pic (*3)
LED module(5 series × 4ch)	1set (*2)
Connection cable	1set (*2)

- *1: Included in a package.
- *2: Please prepare. Refer to 4.2.1 Operation
- *3: Please download it from our device home page.

URL: http://www.cypress.com/S6AL211A

S6AL211A94: BLE Application software file

BLExLED.apk in S6AL211_BLExLED.cab

4.2.1 Operation

		Do not look directly at LED. There is a possibility that your eye is hurt.
--	--	--

- 1. Connect CN009 of the evaluation board and LED by connection cable. (*1)
- 2. Set some attributes in the application of Android terminal. (*2)
- 3. Connect AC plug of the evaluation board to AC power supply.
- 4. Connect Android terminal to BLE module by BLE communication. (*2)
- 5. When connection succeeds, it is possible to make them do various movement by application. (*3)
- 6. When ending operation, make the brightness level of the LED "0" and tap "Disconnect" button of "HOME" tab and cut power supply.

Figure 4-2 Board Connection

- *1: Connect LED to all CH from CN009. Refer to 4.2.1.1 Connection of the Evaluation Board and LED.
- *2: Refer to 4.2.1.2 Setup with BLE Communication.
- *3: Refer to 4.3 Function of Application.

4.2.1.1 Connection of the Evaluation Board and LED

Figure 4-3 Connection of the Evaluation Board and LED

*1: Connect LED to CN009.

Driver's output channel and color of LED are fixing by application software. To indicate correct color, connect each channel exactly.

Specification of LED module and resistor: LED (5-series) + resistor

White: $|F \ge 1A$, $VF \approx 3 V$ Red: $|F \ge 1A$, $VF \approx 2.2 V$ Green: $|F \ge 1A$, $VF \approx 3.2 V$ Blue: $|F \ge 1A$, $VF \approx 3.2V$ R: $10\Omega 2W$ Be careful about polarity. Ex: LUW CR7P(OSRAM) Ex: LR CP7P(OSRAM) Ex: LT CP7P(OSRAM) Ex: LB CP7P(OSRAM)

*2: Thermistor (+TH,-TH) is an option. Even if that isn't connected, a board operates.

Ex: NTCG104EF104FT1 (TDK)

4.2.1.2 Setup with BLE Communication

- Start "BLExLED" by tapping icon in android tablet. (In advance, set on Bluetooth in Android OS) Set some attributes in the application. (Device Name #0)
- 2. Connect AC plug to AC power supply.
- 3. Tap "Connect" button in "HOME" tab. If connection succeeds, "BLE Connection SUCCESS!" is indicated in the display.
- 4. Refer to 4.3 Function of Application and operate.

4.3 Function of Application

4.3.1 "SEEKBER" Tab

* •				🛛 🗶 🗢 🗎 9:57
Sterrer BLEXLE	D			
номе	SEEKBAR	TABLE	SCENE	SENSOR
White: 0				
• Red : 0				
•				
Green: 0				
Blue : 0				
•				
	Û	\Box	Ū	

It is possible to change the brightness of each LED by swiping level of seek bar. When releasing a finger, brightness of LED changes.

Maximum supply power of AC/DC module is 10.8W.Total maximum Output power is over 10W.

When lighting White LED, make the lighting level of RGB LED "0". When lighting RGB LED, make the lighting level of White LED "0".

4.3.2 "TABLE" Tab

- It's possible to change the brightness of the White LED by swiping level of White Seek bar.
- It's possible to change color brightness of the RGB LED by swiping level of Strength Seek bar.
- It's possible to change the color of LED by tapping color table.
- When Strength Seek bar level is "0", RGB LED goes out.

Maximum supply power of AC/DC module is 10.8W.Total maximum Output power is over 10W.

When lighting White LED, make the lighting level of RGB LED "0". When lighting RGB LED, make the lighting level of White LED "0".

4.3.3 "SCENE" Tab

Setup and Verification

"Preset Lighting" is operated by this table. Reading: Bright white lighting Dinner: Warm white lighting CYPRESS: Cypress blue color ALERT: Switching white and red (Sequence per second) Wakeup: gradually brighter (5 seconds sequence) Rainbow: Automatic color control

Stop: Stop sequence of "ALERT", "Wake up" and "Rainbow".

4.3.4 "SENSOR" Tab

*4: Refer to 4.3.4.3. BLE Module Control Command

4.3.4.1 Example of Sensor Use

When using the sensor function of the application, prepare the outside sensor parts.

The recommended parts are as follows.

Figure 4-4 Example of Sensor Use

4.3.4.2 S6Al211A94 Control Command

QUERYS: "1st argument: read address" is input, and "Send" button is pushed. Data or "TRUE" or "FALSE" of memory is indicated.

MEMSET: "1st argument: write address" and "2nd argument: write data" is input, and "Send" button is pushed. "OK" is indicated.

Note: Refer to hardware manual of S6AL211A94 for details of the address and write data.

4.3.4.3 BLE Module Control Command

Table	4-2 BI	FGFT	Command
i abic	ᆓᄼᅭ		Commana

Command	1st Argument Address	2nd Argument Data	Function	Response	Initial Value
	00		Turning on the lights threshold reading of illumination sensor	HH LL <cr><lf></lf></cr>	00 02
00 BLEGET	00	01	Turning off the lights threshold reading of illumination sensor	(*1)	00 08
	01	-	Reply interval time reading of illumination sensor	HH LL <cr><lf> (*2)</lf></cr>	00 05

Table 4-3 BLESET Command

1st Argument Address	2nd Argument Address/Dat a	3rd4thArgumentArgumentDataData		Function	Response
00	00	1111 (*1)	11 (*1)	Turning on the lights threshold writing of illumination sensor	OK <cr><lf< td=""></lf<></cr>
00	01	пп (т)	LL (1)	Turning off the lights threshold writing of illumination sensor	>
01	HH (*2)	LL (*2)	-	Reply interval time writing of illumination	OK <cr><lf< td=""></lf<></cr>
	Argument Address 00	1st Argument AddressArgument Address/DatAddressa00000101	1st Argument 3rd Argument Address/Dat Argument Address a Data 00 00 HH (*1)	1st Argument Address Argument Address/Dat a 3rd Argument Data 4th Argument Data 00 00 HH (*1) LL (*1)	1st Argument Address Argument Address/Dat a 3rd Argument Data 4th Argument Data Function 00 00 HH (*1) LL (*1) Turning on the lights threshold writing of illumination sensor 00 01 HH (*1) LL (*1) Turning off the lights threshold writing of illumination sensor

*1: Threshold (hexadecimal number). HH: Upper 2bit data, LL: Lower 8bit data

Only lower rank 2bit is effective for HH data.

Set Turning on the lights threshold smaller than Turning off the lights threshold.

*2: Reply interval time (hexadecimal number). HH: Upper 2bit data, LL: Lower 8bit data Unit: 0.1 ms, Setting area: 0.1 ms to 6553.5 ms

17

4.4 How to Do When LED Lighting can not be Controlled.

- 1. Pull out AC plug
- 2. Exit "BLExLED" application
- 3. Turn off Bluetooth indicator in Android OS.
- 4. Turn on Bluetooth indicator in Android OS.
- 5. Connect AC plug to electrical outlet.
- 6. Start "BLExLED". (Continue as above-mentioned)

5.1 Component Layout

5. Layout

Figure 5-1 Evaluation Board Component Layout

5.2 Wiring Layout

Figure 5-2 Evaluation Board Wiring Layout

6. Circuit Schematic

Figure 6-1 Evaluation Board Circuit Schematic

Circuit Schematic

Figure 6-2 Evaluation Board Circuit Schematic

Circuit Schematic

22

7. Component List

No.	Component	Parts Number	Vendor	Value	Rated Voltage(V)	Rated Current(A)	Remarks
1	C001	C2012X5R1V106K125AC	TDK	10 µF	35	-	-
2	C002	C1608X5R1V475K	TDK	4.7 μF	35	-	-
3	C003	C1608X5R1H104K080AA	TDK	0.1 µF	50	-	-
4	C004	C1608X5R1V475K	TDK	4.7 μF	35	-	-
5	C005	C1608X5R1V475K	TDK	4.7 μF	35	-	-
6	C006	C1608CH1H101J	TDK	100 pF	50	-	-
7	C007	C1608CH1H101J	TDK	100 pF	50	-	-
8	C009	EKMG350ELL471MJ16S	NIPPON-CHEMI-CON	470 µF	35	-	-
9	C061	C1608X5R1H104K080AA	TDK	0.1 µF	50	-	-
10	C065	C1608X5R1H104K080AA	TDK	0.1 µF	50	-	NMT
11	C067	C1608X5R1H104K080AA	TDK	0.1 µF	50	-	-
12	C068	C1608CH1H010C	TDK	1 pF	50	-	-
13	C069	C1608CH1H010C	TDK	1 pF	50	-	-
14	C101-1	C3216X5R1V475K160AB	TDK	4.7 μF	35	-	-
15	C102-1	C3225X5R1H106K	TDK	10 µF	50	-	-
16	C102-3	C1608CH1H102J	TDK	0.001 µF	50	-	NMT
17	C120	C1608X5R1H104K080AA	TDK	0.1 µF	50	-	NMT
18	C201-1	C3216X5R1V475K160AB	TDK	4.7 μF	35	-	-
19	C202-1	C3225X5R1H106K	TDK	10 µF	50	-	-
20	C202-3	C1608CH1H102J	TDK	0.001 µF	50	-	NMT
21	C220	C1608X5R1H104K080AA	TDK	0.1 µF	50	-	NMT
22	C301-1	C3216X5R1V475K160AB	TDK	4.7 μF	35	-	-
23	C302-1	C3225X5R1H106K	TDK	10 µF	50	-	-
24	C302-3	C1608CH1H102J	TDK	0.001 µF	50	-	NMT
25	C320	C1608X5R1H104K080AA	TDK	0.1 µF	50	-	NMT
26	C401-1	C3216X5R1V475K160AB	TDK	4.7 μF	35	-	-
27	C402-1	C3225X5R1H106K	TDK	10 µF	50	-	-
28	C402-3	C1608CH1H102J	TDK	0.001 µF	50	-	NMT
29	C420	C1608X5R1H104K080AA	TDK	0.1 µF	50	-	NMT
30	CN009	M20-9981045	Harwin Inc	2×10 pin	-	3	-

Table 7-1 Evaluation Board Component List

No.	Component	Parts Number	Vendor	Value	Rated Voltage(V)	Rated Current(A)	Remarks
31	CN061	TSW-104-14-L-S	Samtec	-	550	7.6	-
32	CN062	FTSH-105-01-F-D-K-ND	Samtec	-	-	-	NMT
33	CN_AC	ML-2100-2P	SATOPARTS	-	300	7	-
34	D101	SS23	FAIRCHILD	-	30	2	-
35	D201	SS23	FAIRCHILD	-	30	2	-
36	D301	SS23	FAIRCHILD	-	30	2	-
37	D401	SS23	FAIRCHILD	-	30	2	-
38	F001	RK73Z1J	KOA	0Ω	-	1	-
39	L101	CLF10040T-221M	TDK	220 µH	-	700 m	-
40	L201	CLF10040T-221M	TDK	220 µH	-	700 m	-
41	L301	CLF10040T-221M	TDK	220 µH	-	700 m	-
42	L401	CLF10040T-221M	TDK	220 µH	-	700 m	-
43	LED001	OSHR1608C1A	OptoSupply	-	-	30 m	NMT
44	M001	S6AL211A94	Cypress	-	-	-	-
45	M011	TUHS10F24	COSEL	24 V	-	-	-
46	M061	MBH7BTZ02	FUJITSU	-	-	-	-
47	Q101	FDC658AP	FAIRCHILD	-	30	4	-
48	Q102	FDC8886	FAIRCHILD	-	30	6.5	-
49	Q201	FDC658AP	FAIRCHILD	-	30	4	-
50	Q202	FDC8886	FAIRCHILD	-	30	6.5	-
51	Q301	FDC658AP	FAIRCHILD	-	30	4	-
52	Q302	FDC8886	FAIRCHILD	-	30	6.5	-
53	Q401	FDC658AP	FAIRCHILD	-	30	4	-
54	Q402	FDC8886	FAIRCHILD	-	30	6.5	-
55	R003	RR0816P-104-D	SSM	100 kΩ	-	-	-
56	R004	RR0816P-123-D	SSM	12 kΩ	-	-	NMT
57	R072	RR0816P-101-D	SSM	100Ω	-	-	-
58	R076	RR0816P-274-D	SSM	270 kΩ	-	-	-
59	R101	RK73H1JTTD2R20F	КОА	2.2Ω	-	-	-
60	R102	RK73H1JTTD1R00F	KOA	1Ω	-	-	-
61	R103	RK73Z1J	KOA	0Ω	-	1	-
62	R104	RK73H1JTTD1004F	KOA	1 MΩ	-	-	NMT
63	R106	RK73H1JTTD1004F	KOA	1 MΩ	-	-	NMT
64	R107	RK73Z1J	КОА	0Ω	-	1	-
65	R120	RR0816P-752-D	SSM	7.5 kΩ	-	-	-
66	R201	RK73H1JTTD2R20F	KOA	2.2Ω	-	-	-
67	R202	RK73H1JTTD3R90F	KOA	3.9Ω	-	-	-
68	R203	RK73Z1J	КОА	0Ω	-	1	-
69	R204	RK73H1JTTD1004F	КОА	1 MΩ	-	-	NMT
70	R206	RK73H1JTTD1004F	КОА	1 MΩ	-	-	NMT
71	R207	RK73Z1J	КОА	0Ω	-	1	-
72	R220	RR0816P-752-D	SSM	7.5 kΩ	-	-	-
73	R301	RK73H1JTTD2R20F	КОА	2.2Ω	-	-	-
74	R302	RK73H1JTTD2R20F	KOA	2.2Ω	-	-	-

No.	Component	Parts Number	Vendor	Value	Rated Voltage(V)	Rated Current(A)	Remarks
75	R303	RK73Z1J	KOA	0Ω	-	1	-
76	R304	RK73H1JTTD1004F	KOA	1 MΩ	-	-	NMT
77	R306	RK73H1JTTD1004F	КОА	1 MΩ	-	-	NMT
78	R307	RK73Z1J	KOA	0Ω	-	1	-
79	R320	RR0816P-752-D	SSM	7.5 kΩ	-	-	-
80	R401	RK73H1JTTD2R20F	КОА	2.2Ω	-	-	-
81	R402	RK73H1JTTD2R20F	КОА	2.2Ω	-	-	NMT
82	R403	RK73Z1J	КОА	0Ω	-	1	-
83	R404	RK73H1JTTD1004F	КОА	1 MΩ	-	-	NMT
84	R406	RK73H1JTTD1004F	КОА	1 MΩ	-	-	NMT
85	R407	RK73Z1J	КОА	0Ω	-	1	-
86	R420	RR0816P-752-D	SSM	7.5 kΩ	-	-	-
87	R421	RK73Z1J	КОА	0Ω	-	1	-
88	SW062	SKRPACE010	ALPS	-	-	50 m	-
89	X061	ABS10-32r768kHz	ABRACON	32.768 kHz	-	-	-

Harwin Inc:Harwin IncSamtec:Samtec, IrSATOPARTS:SATO PARFAIRCHILD:Fairchild SKOA:KOA CorpSSM:Susumu COptoSupply:OptoSuppCypress:Cypress SCOSEL:COSEL COFUJITSU:FUJITSUALPS:Alps Elect	nemi-Con Corporation c. RTS CO.,LTD Semiconductor International, Inc. oration Co., Ltd Iy Limited Semiconductor Corp
---	---

These components are compliant with RoHS, and please ask each vendor for details if necessary.

8. Property Data

Figure 8-1 Switching Waveform

28

Figure 8-3 Switching Waveform

Figure 9-1 Evaluation Board Picture

10. Ordering Information

30

Table 10-1 Ordering Information

Part Number	EVB Revision	Note
S6SAL211A94SA1001	S6SAL211A94-BLE-SA1 Rev3.0	-

Revision History

31

Document	Document Title: S6SAL211A94SA1001 4ch 10W LED Driver Board Operation Guide					
Document Number: 002-08727						
Revision	Issue Date	Origin of Change	Description of Change			
**	06/12/2015	HSAT	Initial release			
*A	04/25/2016	HSAT	Migrated Spansion Guide from S6SAL211A94SA1001_SS901-00039-1v0-E,to Cypress format			
*В	06/03/2019	ATTS	Udpated template			