

October 1987 Revised January 2004

CD4015BC Dual 4-Bit Static Shift Register

General Description

The CD4015BC contains two identical, 4-stage, serial-input/parallel-output registers with independent "Data", "Clock," and "Reset" inputs. The logic level present at the input of each stage is transferred to the output of that stage at each positive-going clock transition. A logic high on the "Reset" input resets all four stages covered by that input. All inputs are protected from static discharge by a series resistor and diode clamps to $V_{\rm DD}$ and $V_{\rm SS}$.

Features

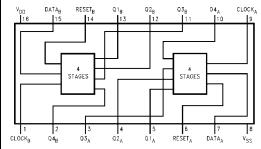
■ Wide supply voltage range: 3.0V to 18V

■ High noise immunity: 0.45 V_{DD} (typ.)

■ Low power TTL: Fan out of 2 driving 74L compatibility: or 1 driving 74LS

■ Medium speed operation: 8 MHz (typ.) clock rate

■ Fully static design: $@V_{DD} - V_{SS} = 10V$

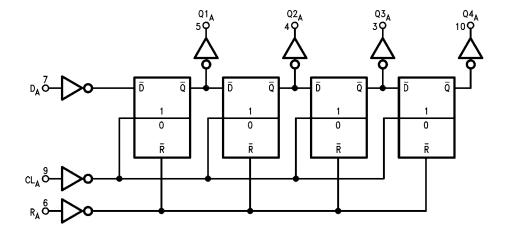

Applications

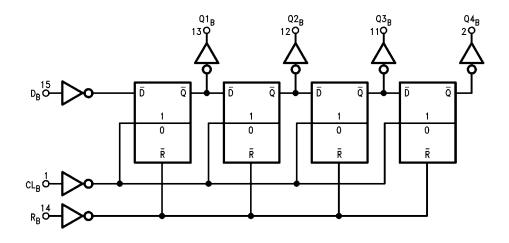
- Serial-input/parallel-output data queueing
- Serial to parallel data conversion
- · General purpose register

Ordering Code:

Order Number	Package Number	Package Description
CD4015BCM	M16A	16-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow
CD4015BCN	N16E	16-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide

Connection Diagram


Truth Table


CL (Note 1)	D	R	Q ₁	Q _n	
\	0	0	0	Q_{n-1}	
~	1	0	1	Q_{n-1}	
7	Χ	0	Q_1	Q_n	(No change)
X	Χ	1	0	0	

X = Don't Care Case

Note 1: Level Change

Logic Diagrams

Terminal No. $16 = V_{DD}$ Terminal No. 8 = GND

Absolute Maximum Ratings(Note 2)

(Note 3)

 $\begin{array}{ll} \text{DC Supply Voltage (V}_{\text{DD}}) & -0.5 \text{ to } +18 \text{ V}_{\text{DC}} \\ \text{Input Voltage (V}_{\text{IN}}) & -0.5 \text{ to V}_{\text{DD}} +0.5 \text{ V}_{\text{DC}} \\ \text{Storage Temperature Range (T}_{\text{S}}) & -65^{\circ}\text{C to } +150^{\circ}\text{C} \end{array}$

Power Dissipation (P_D)

 Dual-In-Line
 700 mW

 Small Outline
 500 mW

Lead Temperature (T_L)

(Soldering, 10 seconds) 260°C

Recommended Operating Conditions

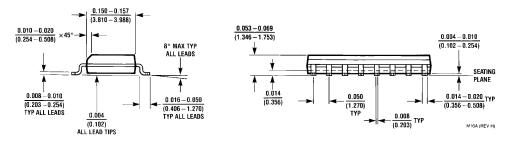
DC Supply Voltage (V_{DD}) +3 to +15 V_{DC} Input Voltage (V_{IN}) 0 to V_{DD} V_{DC} Operating Temperature Range (T_A) -55°C to +125°C

Note 2: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed; they are not meant to imply that the devices should be operated at these limits. The tables of "Recommended Operating Conditions" and "Electrical Characteristics" provide conditions for actual device operation.

Note 3: $V_{SS} = 0V$ unless otherwise specified.

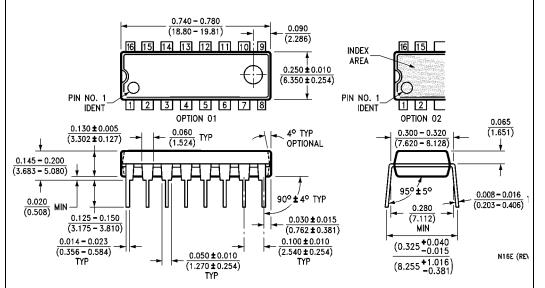
DC Electrical Characteristics (Note 3)

Symbol	Parameter	Conditions	–55°C		+25°C			+125°C		Units
Oymboi	i arameter	Conditions	Min	Max	Min	Тур	Max	Min	Max	Units
I _{DD}	Quiescent Device	$V_{DD} = 5V$, $V_{IN} = V_{DD}$ or V_{SS}		5		0.005	5		150	
	Current	$V_{DD} = 10V$, $V_{IN} = V_{DD}$ or V_{SS}		10		0.010	10		300	μΑ
		$V_{DD} = 15V$, $V_{IN} = V_{DD}$ or V_{SS}		20		0.015	20		600	
V _{OL}	LOW Level	$V_{DD} = 5V$		0.05		0	0.05		0.05	
	Output Voltage	$V_{DD} = 10V$ $ I_O < 1 \mu A$		0.05		0	0.05		0.05	V
		$V_{DD} = 15V$		0.05		0	0.05		0.05	
V _{OH}	HIGH Level	$V_{DD} = 5V$	4.95		4.95	5		4.95		
	Output Voltage	$V_{DD} = 10V$ $ I_O < 1 \mu A$	9.95		9.95	10		9.95		V
		$V_{DD} = 15V$	14.95		14.95	15		14.95		
V _{IL}	LOW Level	$V_{DD} = 5V, V_{O} = 0.5V \text{ or } 4.5V$		1.5		2.25	1.5		1.5	
	Input Voltage	$V_{DD} = 10V, V_{O} = 1.0V \text{ or } 9.0V$		3.0		4.50	3.0		3.0	V
		$V_{DD} = 15V$, $V_{O} = 1.5V$ or $13.5V$		4.0		6.75	4.0		4.0	
V _{IH}	HIGH Level	$V_{DD} = 5V, V_{O} = 0.5V \text{ or } 4.5V$	3.5		3.5	2.75		3.5		
	Input Voltage	$V_{DD} = 10V, V_{O} = 1.0V \text{ or } 9.0V$	7.0		7.0	5.50		7.0		V
		$V_{DD} = 15V$, $V_{O} = 1.5V$ or $13.5V$	11.0		11.0	8.25		11.0		
I _{OL}	LOW Level Output	$V_{DD} = 5V, V_{O} = 0.4V$	0.64		0.51	0.88		0.36		
	Current (Note 4)	$V_{DD} = 10V, V_{O} = 0.5V$	1.6		1.3	2.25		0.9		mA
		$V_{DD} = 15V, V_{O} = 1.5V$	4.2		3.4	8.8		2.4		
I _{OH}	HIGH Level Output	$V_{DD} = 5V, V_{O} = 4.6V$	-0.64		-0.51	-0.88		-0.36		
	Current (Note 4)	$V_{DD} = 10V, V_{O} = 9.5V$	-1.6		-1.3	-2.25		-0.9		mA
		$V_{DD} = 15V, V_{O} = 13.5V$	-4.2		-3.4	-8.8		-2.4		
I _{IN}	Input Current	$V_{DD} = 15V, V_{IN} = 0V$		-0.1		-10 ⁻⁵	-0.1		-1.0	
		$V_{DD}=15V,\ V_{IN}=15V$		0.1		10 ⁻⁵	0.1		1.0	μА


Note 4: I_{OH} and I_{OL} are tested one output at a time.

AC Electrical Characteristics (Note 5) $T_{A}\!=25^{\circ}C,\,C_{L}\!=50$ pF, $R_{L}\!=200k,\,t_{r}\!=t_{f}\!=20$ ns, unless otherwise specified

Symbol	Parameter	Conditions	Min	Тур	Max	Units
CLOCK OPERAT	ION			l	l	
t _{PHL} , t _{PLH}	Propagation Delay Time	$V_{DD} = 5V$		230	350	
		$V_{DD} = 10V$		80	160	ns
		$V_{DD} = 15V$		60	120	
t _{THL} , t _{TLH}	Transition Time	$V_{DD} = 5V$		100	200	
		$V_{DD} = 10V$		50	100	ns
		$V_{DD} = 15V$		40	80	
t _{WL} , t _{WM}	Minimum Clock	$V_{DD} = 5V$		160	250	
	Pulse-Width	$V_{DD} = 10V$		60	110	ns
		$V_{DD} = 15V$		50	85	
t _{rCL} , t _{fCL}	Clock Rise and	$V_{DD} = 5V$			15	
	Fall Time	$V_{DD} = 10V$			15	μs
		$V_{DD} = 15V$			15	
t _{SU}	Minimum Data	$V_{DD} = 5V$		50	100	
	Set-Up Time	$V_{DD} = 10V$		20	40	μs
		$V_{DD} = 15V$		15	30	
f_{CL}	Maximum Clock	$V_{DD} = 5V$	2	3.5		
	Frequency	$V_{DD} = 10V$	4.5	8		MHz
		$V_{DD} = 15V$	6	11		
C _{IN}	Input Capacitance	Clock Input		7.5	10	pF
		Other Inputs		5	7.5	pΕ
RESET OPERAT	ION		•			
t _{PHL(R)}	Propagation Delay Time	$V_{DD} = 5V$		200	400	
		$V_{DD} = 10V$		100	200	ns
		$V_{DD} = 15V$		80	160	
t _{WH(R)}	Minimum Reset	$V_{DD} = 5V$		135	250	
	Pulse Width	$V_{DD} = 10V$		40	80	ns
		$V_{DD} = 15V$		30	60	


Note 5: AC Parameters are guaranteed by DC correlated testing.

16-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow Package Number M16A

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

16-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide Package Number N16E

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com