
Digi TransPort® Fleet Card

User Guide

Revision history—90001245

Revision Date Description

B August, 2011 Added GPS antenna information.

C March, 2012 Updated CAN bus information.

D July, 2012 Made minor editorial updates.

E September, 2012 Added additional Ignition Sense Input information.

F July, 2017 Combined the Digi TransPort Fleet Card and Fleet I/O
documentation in one document, omitting Digi App Note 49,
Using the Digi TransPort Fleet Card.

Trademarks and copyright
Digi, Digi International, and the Digi logo are trademarks or registered trademarks in the United
States and other countries worldwide. All other trademarks mentioned in this document are the
property of their respective owners.
© 2017 Digi International Inc. All rights reserved.

Disclaimers
Information in this document is subject to change without notice and does not represent a
commitment on the part of Digi International. Digi provides this document “as is,” without warranty of
any kind, expressed or implied, including, but not limited to, the implied warranties of fitness or
merchantability for a particular purpose. Digi may make improvements and/or changes in this manual
or in the product(s) and/or the program(s) described in this manual at any time.

Warranty
To view product warranty information, go to the following website:
www.digi.com/howtobuy/terms

Send comments
Documentation feedback: To provide feedback on this document, send your comments to
techcomm@digi.com.

Customer support
Digi Technical Support: Digi offers multiple technical support plans and service packages to help our
customers get the most out of their Digi product. For information on Technical Support plans and
pricing, contact us at +1 952.912.3444 or visit us at www.digi.com/support.
Support portal login: www.digi.com/support/eservice

Digi TransPort Fleet Card User Guide 2

http://www.digi.com/howtobuy/terms
mailto:techcomm@digi.com
http://www.digi.com/support
http://www.digi.com/support/eservice

Contents

About the Digi TransPort Fleet Card
Requirements 5
Fleet Card features 5
User accessible ports 5
Fleet Card accessories 6

Fleet power cord (included) 6
GPS antenna (included) 6
Fleet telemetry cable (not included) 7

Connecting the hardware 8
Hardware configuration 9

Input power pin-out 9
Data port pin-out 9
Power control and Ignition Sense Input 14
GPS port 14
3-Axis accelerometer 14

Using the Digi TransPort Fleet Card
CAN bus and J1939 commands 16

Python commands for the CAN bus 16
CAN bus Python example 18
J1939 bus Python example 19

J1708 bus commands 21
J1708 Python example 22

GPS commands 23
GPS Python example 23

Accelerometer commands 25
Python commands for the accelerometer 25
Accelerometer Python example 26

Ignition Sense Input commands 27
Digital I/O port commands 28

Digital I/O Python example 28

Digi TransPort Fleet Card User Guide 3

About the Digi TransPort Fleet Card

The Digi TransPort Fleet Card is designed for transportation fleet applications requiring CAN/J1939,
J1708, GPS, I/O and Ignition Sense interfaces.
It is fully programmable using Python to send and receive data over the CAN/J1939 and J1708
interfaces, receive GPS data and control the I/O ports.
You can also configure the Fleet Card to control the power to the TransPort router to remain powered
up after the vehicle’s ignition has been switched off, which allows the TransPort router to download
data before powering down. The TransPort router will be switched off automatically after a
configurable period of time.

Requirements 5
Fleet Card features 5
User accessible ports 5
Fleet Card accessories 6
Connecting the hardware 8
Hardware configuration 9

Digi TransPort Fleet Card User Guide 4

Requirements
To use the functionality described in this document, you must have a Digi TransPort WR44 or WR44 R
model fitted with the Fleet Card, and TransPort firmware version 5140 or later.
This documentation assumes that your device is set to factory default configurations. Most
configuration commands are provided only if they differ from the factory default.
For successful implementation, you should have a good understanding of your product's
communications technologies, and the requirements of your specific application, as well as the ability
to access and navigate a Digi TransPort router, and configure it with basic routing functions.

Fleet Card features
The features of the Digi TransPort Fleet Card include:

n CAN-bus / J1939 bus

n J1708 bus

n GPS

n 3-axis accelerometer

n Local power control of the TransPort device

n 4 non-isolated digital I/O ports

n Ignition Sense Input

User accessible ports
1. Power port: This port powers the CAN-bus card.

2. Data port: This port provides access to the Fleet/J1939 interface, J1708, the 4 x Digital I/O
ports, and the Ignition Sense Input.

3. GPS port: Use this SMA connector to connect the unit's GPS antenna.

See the Hardware configuration section for pinout diagrams.

Digi TransPort Fleet Card User Guide 5

Fleet Card accessories
This section describes included and optional accessories for the Digi TransPort Fleet Card.

Fleet power cord (included)
This power cord is the unit’s primary power source. The 4-pin connector connects to the Pwr port, and
the locking barrel-type connector connects to the MAIN port.
You can order replacement cables from Digi using the following part numbers:
76000873 – Fleet Power Cable for TransPort WR44

GPS antenna (included)
The GPS antenna has an SMA connector that connects to the Fleet Card.
You can order a replacement antenna from Digi using the following part number:
76000842 – GPS Antenna (Magnet Mount, 1575 Mhz, 5 m cable)

Digi TransPort Fleet Card User Guide 6

https://www.digi.com/products/models/76000842

About the Digi TransPort Fleet Card Fleet Card accessories

Digi TransPort Fleet Card User Guide 7

Fleet telemetry cable (not included)
The Fleet telemetry cable has a D-Sub HD 15-pin connector on one end and 15 bare wires on the
other end.
You can order a Fleet telemetry cable from Digi using the following part number: 76000872

https://www.digi.com/products/models/76000872

About the Digi TransPort Fleet Card Connecting the hardware

Digi TransPort Fleet Card User Guide 8

Connecting the hardware
This section describes how to install the cables and accessories for your Digi TransPort device.

WARNING! Complete the hardware installation process prior to booting up your device.
You must connect the wiring and pin placement prior to boot-up for the device to
recognize the Fleet Card.

1. Connect the 4-pin connector of the Fleet Power Cord to the Pwr port on the unit. Connect the
locking barrel-type connector to the Main port. Connect the bare wire ends to an appropriate
power source.

2. Connect the 15-pin connector of the Fleet telemetry cable to the Data port on the unit.
Connect the bare wire ends to the respective devices (see Pin-out diagram for a pin-out
diagram of the cable).

3. Connect the GPS antenna to the device.

About the Digi TransPort Fleet Card Hardware configuration

Digi TransPort Fleet Card User Guide 9

Hardware configuration
This section outlines the specifications and configuration of the interface.

Input power pin-out
The Fleet Card has the ability to locally control the power to the unit. One use of this feature is to
allow the unit to remain powered up for a configured amount of time after the vehicle ignition is
switched off. This allows it to download data before powering down.
The Pwr port uses a 4-pin Molex connector. The pin-out diagram for this port follows.

Pin Signal

1 DC In-

2 DC Out-

3 DC Out+

4 DC In+

"DC In-" and "DC Out-" are ground returns of the input and output supply rails, respectively.

Data port pin-out
The pin-out diagram for the data port follows:

Pin Signal

1 CAN-bus High

2 CAN-bus Low

3 J1708 Positive

4 J1708 Negative

5 J1708 Ground

6 CAN-bus Ground

7 Ignition Sense/Digital IO 0 Ground

8 Digital IO 1 Ground

About the Digi TransPort Fleet Card Hardware configuration

Digi TransPort Fleet Card User Guide 10

Pin Signal

9 Digital IO 2 Ground

10 Digital IO 3 Ground

11 Ignition Sense

12 Digital IO 0

13 Digital IO 1

14 Digital IO 2

15 Digital IO 3

CAN-bus/J1939 bus
CAN-bus is a vehicle bus standard that is equipped onmost new vehicles and uses a differential pair of
signals. The interface supports baud rates of up to 1 Mbps; you can configure the baud rates via the
CLI and the Digi Python “digicanbus” module.
The interface can send and receive raw CAN messages to and from the vehicle’s CAN-bus as well as
1939 messages. The interface uses the Digi Python ”digicanbus” module to send and receive the
messages.
J1939 is a high level vehicle bus standard that defines how communication between nodes occurs on
the CAN bus.
The Fleet Card can send and receive raw CAN messages and J1939 to and from the vehicle’s CAN-bus.
For more information, see Using the Digi TransPort Fleet Card.

Cable length
The CAN cable length depends on the bit rate:

Bit rate Cable length

1 Mbps 30 m

500 kbps 100 m (normal for cars)

250 kbps 250 m (normal for trucks)

ESD protection
CAN bus lines are protected from the damage caused by ElectroStatic Discharge (ESD) and other
transients with the following specification:
IEC 61000-4-2 (ESD Level 4
IEC 61000-4-4 (EFT) 40A – 5/50 ns waveform
IEC-61000-4-5 (lightning) 8A – 8/20 us waveform
ISO 7637-1 Non-repetitive EMI surge pulse 2, 9.5 A (one 50 us pulse)
ISO 7637-3 Repetitive Fast Transient 50 A (5 x 50 us)

About the Digi TransPort Fleet Card Hardware configuration

Digi TransPort Fleet Card User Guide 11

J1708 bus
J1708 is a vehicle communications standard for heavy duty vehicles. It consists of a 2-wire (18 gauge,
twisted pair) interface that operates at 9600 bits per second.
The interface can send and receive J1708 messages to and from the vehicle’s bus. The interface uses
the Digi Python ”digij1708” module to send and receive the messages.
For more information, see Using the Digi TransPort Fleet Card.

CAN-bus/J1708 Rx/Tx circuit
The following diagram shows the CAN and J1708 Rx/Tx circuitry on the Fleet Card and the connection
to a vehicle bus:

About the Digi TransPort Fleet Card Hardware configuration

Digi TransPort Fleet Card User Guide 12

Digital I/O ports
There are four non-isolated digital I/O ports available. Internally, all digital I/O ports share a common
ground which is the same as the vehicle’s ground. The ports are internally protected against back EMF
current flow. The ports are configured for input or output mode via software. Using the DIO port as
input, powered drive has to be applied (either push-pull or open collector with external pull-up).
Unpowered input, like passive switch to GND doesn’t work. The DIO port provides open collector type
driving when used as output.

Input signal

Applied input voltage to activate +5 V to +33 V DC

Applied input voltage to deactivate 0 V to +1 V DC

Maximum input current 3 mA

Output signal

Maximum voltage switched +33 V DC

Maximum current switched 50 mA

Maximum leakage current 3 mA

Input impedance of the DIO ports is around 10 K ohms. Overvoltage protection activates above +33 V
or under -0.5 V DC. On-board 100 mA PTC fuse is used at each DIO port for current limiting in case of
over/under voltage condition.

Wiring configuration
The following figures illustrate typical wiring configurations for both Input and Output applications:

About the Digi TransPort Fleet Card Hardware configuration

Digi TransPort Fleet Card User Guide 13

About the Digi TransPort Fleet Card Hardware configuration

Digi TransPort Fleet Card User Guide 14

Power control and Ignition Sense Input
The Fleet Card can control the power to the main TransPort router by using the Ignition Sense Input.
When the Fleet Card detects the Ignition Sense line going high (for example, when the engine is
switched on), it will provide power to the TransPort router. When the Fleet Card detects the “Ignition
Sense” signal going low (for example, when the engine is turned off), it will keep the power to the
TransPort router switched on for a configurable amount of time after which the TransPort router will
be switched off.
To use this feature with a WR44(R) router, use power cable 76000873.

WR44R with cable 76000873

GPS port
The Fleet Card's GPS device lets you configure the TransPort router to receive GPS messages and
either process them locally or use them to forward data onto a remote device via TCP or UDP.
When the GPS data is processed locally, the longitude, latitude, altitude, number of satellites, speed,
heading, and time are displayed when available.
For more information, see Using the Digi TransPort Fleet Card.

3-Axis accelerometer
You can use the 3-axis accelerometer to obtain the current forces on the X, Y, Z axes. Also, using the
Digi Python “digihw_accel” module, you can set a threshold so a call-back function is called if the
forces on an axis exceed the threshold.
For more information, see Using the Digi TransPort Fleet Card.

Using the Digi TransPort Fleet Card

CAN bus and J1939 commands 16
J1708 bus commands 21
GPS commands 23
Accelerometer commands 25
Ignition Sense Input commands 27
Digital I/O port commands 28

Digi TransPort Fleet Card User Guide 15

CAN bus and J1939 commands
To configure and control the CAN bus and J1939 bus, use the command line interface (CLI).
The following are examples of useful commands.
To configure the CAN bitrate, the CLI command is as follows, where <bitrate> is in the range of 10000
to 1000000:

can 0 bitrate <bitrate>

The default bitrate is 250000.
To display the CAN statistics, the CLI command is as follows:

can 0 stats [r]

If the "r" parameter is entered, the CAN statistics are reset.
Use the following command to dump out CAN messages to the debug port:

can 0 debug

To access the debug, use one of thefollowing:
To send debug output to the connected Telnet session:

debug t

To send debug output to a terminal on SERIAL 0.

debug 0

Python commands for the CAN bus
The Fleet Card supports the use of the Digi Canbus Python module. You can use this module to
configure the bitrate and to send and receive raw CAN messages.
To get the module, use:

import digicanbus

To create a CAN instance and configure bitrate, use:

can_h = digicanbus.CANHandle(<bus id>)
can_h.configure(<bitrate>)

To send a CAN message, use:
can_h.send(width, id, remote_frame, data)

In this example, replace the variables with the following:

width 11 or 29, referring to the bits in CAN identifier.

Digi TransPort Fleet Card User Guide 16

Using the Digi TransPort Fleet Card CAN bus and J1939 commands

Digi TransPort Fleet Card User Guide 17

id 11 or 29 bit integer value.

remote_frame true or false, indicating if this is a remote or data frame.

data a string of 19 characters or less.

To receive a CAN message, register the receive method to a message id:

can_h.register_filter (width, id, mask, recv_method, context)

In this example, replace the variables as follows:

width 11 or 29, referring to the bits in CAN identifier.

id 11 or 29 bit integer value.

mask An idmask. It should be in the same format as the id
parameter and indicates which bits in the identifier
are significant for matching.

recv_method The Pythonmethod to be called when a matching
message is received.

context Context data passed to the receive method.

The receive callback method has the following definition:

def recv_method(width, id, mask, payload, context)

The callback method can be unregistered:

can_h.unregister_filter(width, id, mask, recv_method, context)

You can also use the Digi Canbus Python module to create and parse J1939 PDUs.
To create a J1939 PDU:

PDU = J1939_PDU()
PDU = J1939_PDU (width, identifier, remote_frame, payload, return_arg)

To create a CAN message from a J1939 PDU:

can_msg = PDU.CANMsgTuple()

Using the Digi TransPort Fleet Card CAN bus and J1939 commands

Digi TransPort Fleet Card User Guide 18

CAN bus Python example
Import the CAN module
from digicanbus import *
import struct, time, sys

speed = 125000
if len(sys.argv) >= 2:
speed = int(sys.argv[1])

The digicanbus module has CANHandle(). A function that returns
a handle to the current CAN bus.

Specify the CAN bus number.
print "Getting handle to CAN bus 0"
handle = CANHandle(0)

First we configure the bus to the speed specified
print "Configuring for %d bps" %speed
handle.configure(speed)

We create a simple callback function to use with the CAN filters.
The callback must have the following parameters defined:
width: specifies either 11 or 29 bit message
identifier: The identifier that was matched
remote_frame: Boolean indicating a remote frame (RTR)
payload: 0-8 bytes of payload for the message
return_arg: Argument specified when creating the filter

We will use the return_arg parameter to determine which filter
triggered the callback.

def callback_1(width, identifier, remote_frame, payload, return_arg):
print "\ncallback_1 function was called"
print '11 or 29 bit: ', width, ' bit'
print 'Identifier matched: ', identifier
print 'Is remote frame: ', remote_frame
print 'Payload: ', struct.unpack('%dB'%len(payload), payload)
print 'Return arg: ', return_arg

We create a tuple, which contains all the information needed for
the filter
Width: 11 or 29 bit message
Identifier: Which CAN identifier will be selected
Mask: Which bits of the identifier matter when matching
callback function: The function will be called when something
is matched
return_arg: Argument passed to the call back when

Note: Multiple filters can use the same callback function

Below we are exploring different scenarios with the filters.

print "Defining filters:"
Filter 1 will only trigger on messages with the 0x700 identifier.
This is done by saying that the bits 0x700 must be on, and all
bits will be measured in the mask (0x7FF).

Using the Digi TransPort Fleet Card CAN bus and J1939 commands

Digi TransPort Fleet Card User Guide 19

filter_1 = (11, 0x700, 0x7FF, callback_1, 'filter_1')
print "Filter 1: ", filter_1

Filter 2 will trigger on messages between 0x700 and 0x7FF.
This is done by saying that the bits 0x700 must be on, but only
the 0x700 bits will be measured in the mask.

filter_2 = (11, 0x700, 0x700, callback_1, 'filter_2') print "Filter 2: ", filter_
2

Filter 3 will trigger on all 29 bit messages.
This is done by setting the width to 29, and using values 0x0 for
identifier and mask.

filter_3 = (29, 0x0, 0x0, callback_1, 'filter_3')
print "Filter 3: ", filter_3

Register the filters on the CAN bus
print "Registering filters..."
handle.register_filter(*filter_1)
handle.register_filter(*filter_2)
handle.register_filter(*filter_3)

counter = 0
print "Hit enter to send a CAN message, type 'quit' to exit"
while raw_input().lower() != 'quit':
counter += 1
msg = (11, counter % 0x500, False, str(counter % 99999))
handle.send(*msg)

Unregister the filters created using the stored tuples
print "Unregistering filters"
handle.unregister_filter(*filter_1)
handle.unregister_filter(*filter_2)
handle.unregister_filter(*filter_3)

J1939 bus Python example
Import the CAN module
from digicanbus import *
import struct, time, sys

baud = 125000 if len(sys.argv) >= 2:
baud = int(sys.argv[1])

The digicanbus module has CANHandle(). A function that returns a handle
to the current CAN bus.

Specify the CAN bus number.
print "Getting handle to CAN bus 0"
handle = CANHandle(0)

Configures the CAN bus to a specific bps and starts it. This must be
called at least once.
print "Configuring the bus to %d bps" % baud
handle.configure(baud)

We create a function to be called when a J1939 message that is matched

Using the Digi TransPort Fleet Card CAN bus and J1939 commands

Digi TransPort Fleet Card User Guide 20

will be passed to.

def callback_1(width, identifier, remote_frame, payload, return_arg):
PDU = J1939_PDU(width, identifier, remote_frame, payload)
print "====PDU received===="
for opt in ['DA', 'DP', 'EDP', 'GE', 'PF', 'PGN',

'PS', 'SA', 'priority', 'payload']:
print opt + " = " + str(PDU.__getattribute__(opt))

print "Converting to a raw can message, sending it over the CAN bus"
raw_msg = PDU.CANMsgTuple()
print "%s %s %s %s" %(raw_msg[0], hex(raw_msg[1]), raw_msg[2],

raw_msg[3])
try:

handle.end(*raw_msg)
except Exception, e:

print e
else:

print "Message succesfully sent"

We create a filter that will trigger on 29 bit messages
filter_1 = (29, 0x0, 0x0, callback_1, 'filter_1')
print "Filter 1: ", filter_1

Register the filters on the CAN bus
print "Registering filters..."
handle.register_filter(*filter_1)
counter = 0
print "Hit enter to send J1939_PDU, type 'quit' to exit"
while raw_input().lower() != 'quit':
counter += 1

P = J1939_PDU()
P.DA = 0x76
P.PGN = 0xF001
P.payload = 'msg' + str(counter)
can_msg = P.CANMsgTuple()
handle.send(*can_msg)

Unregister the filters created using the stored tuples print "Unregistering
filters"
handle.unregister_filter(*filter_1)

Using the Digi TransPort Fleet Card J1708 bus commands

Digi TransPort Fleet Card User Guide 21

J1708 bus commands
This section provides examples for setting up the J1708 communication with the vehicle's bus.
The Fleet Card supports the use of the Digi J1708 Python module. It can be used to configure the bus
and to send and receive J1708 messages.
To get the module use:

import digij1708

To create and configure a J1708 instance, use the following:

j1708_h = digij1708.J1708Handle(<bus id>)0
j1708_h.configure(<options>)

The valid options are:

mid=nJ1708 This is the AE J1708 message identification character.
No two devices on the bus should share a message identifier, per specification.
'n' must be between 0 and 255.
If the mid option is left unconfigured, sending capability is disabled.

To send a J1708 message, use the following:

j1708_h.send(priority, data)

In this example, replace the variables as follows:

priority 1 – 8, as defined in the SAE J1708 specification.

data a string of 19 characters or less.

To receive a J1708 message, the receive methodmust be registered:

j1708_h.register_filter(recv_method, context)

In this example, replace the variables as follows:

recv_method 1 – 8, as defined in the SAE J1708 specification.

context Context data passed to the receive method.

The Python method to be called when a matching message is received.

The receive callback function has the following definition:

def j1708_recv_function(mid, payload, context)

A callback function can be unregistered:

j1708_h.unregister_filter(recv_method, context)

Using the Digi TransPort Fleet Card J1708 bus commands

Digi TransPort Fleet Card User Guide 22

J1708 Python example
Import the J1708 python API
import digij1708
import struct

Create a handle to the J1708 bus through the class J1708Handle()
The class takes 1 parameter, the bus number to get a handle to.
print "Getting a handle to the J1708 Bus"
handle = digij1708.J1708Handle(0)

Configure the bus to a particular mid. in this case 0x48
handle.configure(0x48)

##Create a callback function. This function requires three parameters:
mid, payload, and arg

mid: The message ID
payload: The payload of the message
arg: An arbitrary parameter defined when setting the callback.

def callback_1(mid, payload, arg):
print "\nMid: ", mid
print "Payload: ", payload
print "Arg: ", arg

Register the callback on the J1708 bus
handle.register_callback(callback_1, 'foo')
print "Type 'quit' to exit, or type a message in to send then hit enter:\n"
while 1:
input = raw_input()
if input.lower() in ['q', 'qu', 'qui', 'quit']:
break

input = input.strip()

If no input, create a fake message
if len(input) == 0:
msg = struct.pack('=2B', 45, 12)

If input, take up to 19 characters of it
else:
if len(input) > 19:
msg = input[:19]

else:
msg = input

Send the message at priority 1
try:
handle.send(1, msg)

except Exception, e:
print e

Unregister the call back, must use exact same input as the register call
print "Unregistering callback"
handle.unregister_callback(callback_1, 'foo')

Using the Digi TransPort Fleet Card GPS commands

Digi TransPort Fleet Card User Guide 23

GPS commands
This section provides examples for setting up the GPS communication.
The TransPort router supports the Digi hardware Python module, digihw.
To get the module, use:

import digihw

To get the GPS data, use the following command:

gpsData = digihw.gps_location()

In this example:
gps data A tuple containing latitude, longitude, altitude and timestamp.

GPS Python example
The returned values from the gps_location call are NMEA parsed into a
tuple: (latitude, longitude, altitude, timestamp)

The sample returned is the latest received from the GPS device. The
timestamp is assigned to it when it was successfully parsed.
In cases where there are no sample available, an exception is raised.

"""\
GPS Location API Sample
This example reads and displays all the values from the device's
integrated GPS each 5 seconds, using the GPS Location API.

Displays Latitude, Longitude, Altitude, Timestamp in GMT/GPS time
"""
imports
import sys
import os
import time
import digihw ## From the digi embedded library, import the parsed
gps_location

variables is_reading = True

def get_formmated_value(value):
"""

Returns the given value formatted in degrees, minutes and seconds.
"""
working_value = value
if working_value < 0:

working_value = working_value * -1
deg = working_value;
gpsdeg = int(deg)
remainder = deg - (gpsdeg * 1.0)
gpsmin = remainder * 60.0
remainder2 = gpsmin - int(gpsmin)*1.0
gpsseg = int(remainder2*60.0)

final_value = "%sdeg %smin %ssec" %(gpsdeg, int(gpsmin), gpsseg)

Using the Digi TransPort Fleet Card GPS commands

Digi TransPort Fleet Card User Guide 24

return final_value
def get_latitude_hemisphere(latitude):
"""
Returns the hemisphere depending on the latitude (S or N)
"""
if latitude < 0:
return "S"
return "N"
def get_longitude_hemisphere(longitude):
"""
Returns the hemisphere depending on the longitude (W or E)
"""
if longitude < 0:
return "W"
return "E"

Read GPS information every 5 seconds while is_reading:
try:
print "Reading GPS data...\r\n" gps_data = digihw.gps_location()
latitude, longitude, altitude, timestamp = gps_data
print "Latitude : %s %s" %(get_formmated_value(latitude),
get_latitude_hemisphere(latitude))
print "Longitude : %s %s" %(get_formmated_value(longitude),
get_longitude_hemisphere(longitude))
print "Altitude : %d meters" %altitude
print "Date : % s" %time.ctime(timestamp)
Wait 1 seconds
print "Please, wait 1 seconds...\r\n"
time.sleep(1)
except:
print "Couldn't read GPS data. You need to get a better GPS signal.\n
Please, ensure the GPS antenna is correctly connected and \
has an open view of the sky.\r\n"

Wait 20 seconds
print "Please, wait 20 seconds...\r\n\r\n"
time.sleep(20)

Using the Digi TransPort Fleet Card Accelerometer commands

Digi TransPort Fleet Card User Guide 25

Accelerometer commands
The Fleet Card accelerometer can detect movement in all directions.
To take a sample of the current forces, use the following CLI command:

accel 0 show [num of samples]

If a threshold is exceeded, the TransPort router displays the previous 33 samples on the debug port.
To set the threshold for the accelerometer, use the following CLI command:

accel 0 set <threshold>

In this example, replace the threshold variable as follows:

<threshold> = (0.00-15.99)*64)

For example, to set a threshold of 1.5G, you would enter 96 (= 1.5 x 64).

Python commands for the accelerometer
The Fleet Card supports the use of the Digi Accelerometer Python module. You can use this Python
module to set thresholds and read the current forces being detected.
To get the module, use:

import digihw

To take a sample of the current forces, use the following:

accel = digihw.accelerometer()
accel.sample()

This method returns a 3-tuple (x, y, z) representing the g-forces measured in the X, Y and Z axes.
You can configure the Fleet Card to call a callback method when a certain threshold is exceeded:

accel = digihw.accelerometer()
accel.sample()

This method returns a 3-tuple (x, y, z) representing the g-forces measured in the X, Y and Z axes.
You can configure the Fleet Card to call a callback method when a certain threshold is exceeded:

accel = digihw.accelerometer()
accel.register_threshold(threshold, method, context)

In this example, replace the variables as follows:
threshold G-force threshold on any axis
method Callback method
context Context data passed to the callback method

The callback method has the following definition:

def callback_method(sample, context)

In this example, replace the variables as follows:

sample 3-tuple (x, y, z) representing the g-forces
measured in the X, Y and Z axes

Using the Digi TransPort Fleet Card Accelerometer commands

Digi TransPort Fleet Card User Guide 26

context Context data passed to the callback method

Accelerometer Python example
#
Sets the callback threshold and displays on which axes the
threshold is exceeded.
#
import digihw
import time
import sys

AXIS_X = 0
AXIS_Y = 1
AXIS_Z = 2

if len(sys.argv) != 2:
print "Usage: python accel.py <threshold>"
sys.exit(-1)

threshold_g = float(sys.argv[1])

def accel_callback(sample, context):
x_g = sample[AXIS_X]
y_g = sample[AXIS_Y]
z_g = sample[AXIS_Z]

if x_g >= threshold_g:
print("Threshold exceeded on X axis (%fG)" % x_g)

if y_g >= threshold_g:
print("Threshold exceeded on Y axis (%fG)" % y_g)

if z_g >= threshold_g:
print("Threshold exceeded on Z axis (%fG)" % z_g)

print "Digi TransPort Accelerometer Python example"

Register the callback function and wait for 10 seconds
print ("Threshold set to %fG" % threshold_g)
accel = digihw.accelerometer()
accel.register_threshold(threshold_g, accel_callback, 0)

time.sleep(10);

print "Complete"

Using the Digi TransPort Fleet Card Ignition Sense Input commands

Digi TransPort Fleet Card User Guide 27

Ignition Sense Input commands
This signal controls the power up/down of the Fleet Card andmay optionally also control the host, as
required. The purpose of this signal is to allow the router to be permanently connected to a +12 or +24
V vehicle supply, but the time that the router is operational is governed by this input. Assuming the
presence of the vehicle supply in the Fleet Card’s power input, then when power is supplied to this
input (typically in the range +12 V to +24 V with some margin either way) the Fleet Card will power up.
If the Fleet Card power cable’s “Host Extension” is looped back into the power socket of the host, the
Fleet Card will now also power up the host. When the “Ignition” signal is disconnected from the +12
V/+24 V supply (perhaps because the driver turned off the vehicle engine), a timer on the Fleet Card
starts a countdown to the time when both the Fleet Card and the host (if powered via the Fleet Card)
the host will power down. This countdown period is software configurable. The purpose of this is to
allow the router enough time to transmit data such as journey statistics and present location before
the system shuts down.
Users can select one of two configurations:

n The router/Fleet Card is running while the engine is on and will continue to run for a preset
time afterwards.

n The router/Fleet Card is running only when power is applied (all power control is either
manually managed or is controlled by some other system separate from the router).

Two wiring arrangements are available for these scenarios:

1. Fleet-card controlled power

Wire the power input to the Fleet Card directly into a permanent battery (+12 V or +24 V)
supply. Connecting directly to the battery is best, using thick wire of as short a length as
possible to minimize losses in the cable. Connect the Fleet Card ignition signal to the vehicle
ignition. This is the second position onmost key switches, and should be the position for the
engine to be running normally. Connect the power output from the Fleet Card (the Host
Extension) into the power input of the host router. Turn on the vehicle ignition and when the
router has booted, configure the “Router Stay Alive” time as required.

2. Externally controlled power

Wire the power to the Fleet Card directly to the power source. Wire the Fleet Card ignition to
the same power source. if this step is not done, the Fleet Card will not operate. Wire the Host
router directly to the same power source. Do NOT use the Host Extension power connection
coming out of the Fleet Card for this as the direct connection reduces losses in the system.

Commands for Ignition Sense Input
To configure the delay between the “Ignition Sense” signal going low and the TransPort router being
switched off, use the following command:

fleet 0 holdon <secs>

If this feature is not required, the TransPort router should be powered by a separate power cable.
The status of the ignition signal can be retrieved using the following CLI command:

fleet ignition

Using the Digi TransPort Fleet Card Digital I/O port commands

Digi TransPort Fleet Card User Guide 28

Digital I/O port commands
The ports are configured for input or output mode via software. The CLI command is as follows:

fleet gpio <port> <in|out>

To enable or disable the GPIO output port, the CLI command is as follows:

fleet gpio <port> <on|off>

To retrieve the status of the ports, the CLI command is as follows:

fleet gpio

Python commands for the digital I/O ports
The Fleet Card supports the use of the Digi hardware Python module, digihw. You can use this Python
module to manipulate the digital I/O ports.
To get the module, use:

import digihw

digihw.gpio_set_value(<port>,<0|1>)
digihw.gpio_set_input(<port>)
digihw.gpio_get_value(<port>)

Digital I/O Python example
#
Sets port 0 level to 1. It then sets port 1 to be an input
and waits for the level to go to 0. When this has happened,
it sets port 0 back to 0.
#

import digihw
import time

PORT_0 = 0
PORT_1 = 1

print "Digi TransPort Digital I/O Python example"

digihw.gpio_set_value(PORT_0, 1)

digihw.gpio_set_input(PORT_1)

print “Waiting for Port 1 to go low” while digihw.gpio_get_value(PORT_1) != 0:
time.sleep(1)

digihw.gpio_set_value(PORT_0, 0)

print "Complete"

	About the Digi TransPort Fleet Card
	Requirements
	Fleet Card features
	User accessible ports
	Fleet Card accessories
	Fleet power cord (included)
	GPS antenna (included)
	Fleet telemetry cable (not included)

	Connecting the hardware
	Hardware configuration
	Input power pin-out
	Data port pin-out
	Power control and Ignition Sense Input
	GPS port
	3-Axis accelerometer

	Using the Digi TransPort Fleet Card
	CAN bus and J1939 commands
	Python commands for the CAN bus
	CAN bus Python example
	J1939 bus Python example

	J1708 bus commands
	J1708 Python example

	GPS commands
	GPS Python example

	Accelerometer commands
	Python commands for the accelerometer
	Accelerometer Python example

	Ignition Sense Input commands
	Digital I/O port commands
	Digital I/O Python example

	Bookmarks
	Pinout

