Product Preview

Dual 2-to-4 Decoder/ Demultiplexer

The MC74VHCT139A is an advanced high speed CMOS 2-to-4 decoder/ demultiplexer fabricated with silicon gate CMOS technology. It achieves high speed operation similar to equivalent Bipolar Schottky TTL devices while maintaining CMOS low power dissipation.

When the device is enabled ($\overline{E} = low$), it can be used for gating or as a data input for demultiplexing operations. When the enable input is held high, all four outputs are fixed high, independent of other inputs.

The internal circuit is composed of three stages, including a buffer output which provides high noise immunity and stable output.

The device output is compatible with TTL-type input thresholds and the output has a full 5 V CMOS level output swing. The input protection circuitry on this device allows overvoltage tolerance on the input, allowing the device to be used as a logic-level translator from 3.0 V CMOS logic to 5.0 V CMOS logic, or from 1.8 V CMOS logic to 3.0 V CMOS logic while operating at the high-voltage power supply

The MC74VHCT139A input structure provides protection when voltages up to 7 V are applied, regardless of the supply voltage. This allows the MC74VHCT139A to be used to interface 5 V circuits to 3 V circuits. The output structures also provide protection when $V_{CC}=0\ V$. These input and output structures help prevent device destruction caused by supply voltage—input/output voltage mismatch, battery backup, hot insertion, etc.

- High Speed: $t_{PD} = 5.0$ ns (Typ) at $V_{CC} = 5V$
- Low Power Dissipation: $I_{CC} = 4\mu A$ (Max) at $T_A = 25$ °C
- TTL-Compatible Inputs: $V_{IL} = 0.8 \text{ V}$; $V_{IH} = 2.0 \text{ V}$
- Power Down Protection Provided on Inputs and Outputs
- Balanced Propagation Delays
- Designed for 2V to 5.5V Operating Range
- Low Noise: $V_{OLP} = 0.8 \text{ V (Max)}$
- Pin and Function Compatible with Other Standard Logic Families
- Latchup Performance Exceeds 300mA
- ESD Performance: HBM > 2000V: Machine Model > 200V
- Chip Complexity: 100 FETs or 25 Equivalent Gates

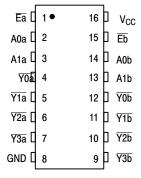
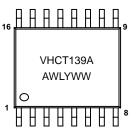


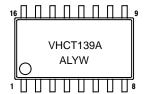
Figure 1. Pin Assignment

ON Semiconductor

http://onsemi.com

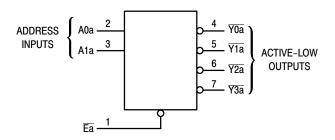

SOIC-16 D SUFFIX CASE 751B

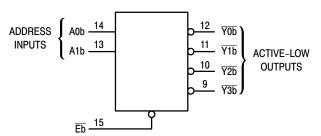
O AWLYYWW



TSSOP-16 DT SUFFIX CASE 948F

SOIC EIAJ-16 M SUFFIX CASE 966




A = Assembly Location

L, WL = Wafer Lot Y, YY = Year W, WW = Work Week

ORDERING INFORMATION

Device	Package	Shipping
MC74VHCT139AD	SOIC-16	48 Units/Rail
MC74VHCT139ADR2	SOIC-16	2500 Units/Reel
MC74VHCT139ADT	TSSOP-16	96 Units/Rail
MC74VHCT139ADTR2	TSSOP-16	2000 Units/Reel
MC74VHCT139AM	SOIC EIAJ-16	48 Units/Rail
MC74VHCT139AMEL	SOIC EIAJ-16	2000 Units/Reel

FUNCTION TABLE

Inputs				Out	puts	
Ē	A1	A0	<u>Y0</u>	<u>Y1</u>	<u>Y2</u>	<u>Y3</u>
Н	Х	Χ	Н	Н	Н	Η
L	L	L	L	Н	Н	Н
L	L	Н	Н	L	Н	Н
L	н	L	Н	Н	L	Н
L	Н	Н	Н	Н	Н	L

Figure 2. Logic Diagram

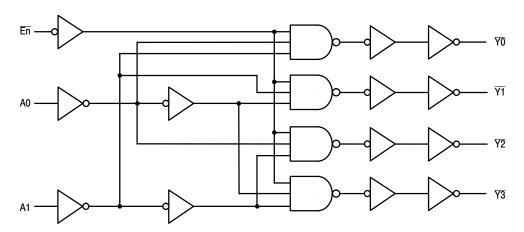


Figure 3. Expanded Logic Diagram (1/2 of Device)

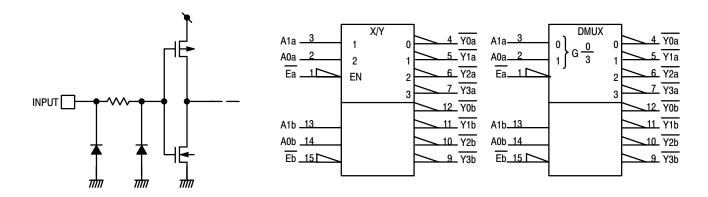


Figure 4. Input Equivalent Circuit

Figure 5. IEC Logic Diagram

MAXIMUM RATINGS (Note 1.)

Symbol	Pi	arameter	Value	Unit
V _{CC}	Positive DC Supply Voltage		-0.5 to +7.0	V
V _{IN}	Digital Input Voltage		-0.5 to +7.0	V
V _{OUT}	DC Output Voltage	Output in 3–State High or Low State	-0.5 to +7.0 -0.5 to V _{CC} +0.5	V
I _{IK}	Input Diode Current		-20	mA
l _{OK}	Output Diode Current		± 20	mA
l _{OUT}	DC Output Current, per Pin		± 25	mA
Icc	DC Supply Current, V _{CC} and GND Pins	3	±75	mA
P _D	Power Dissipation in Still Air	SOIC Package TSSOP	200 180	mW
T _{STG}	Storage Temperature Range		-65 to +150	°C
V _{ESD}	ESD Withstand Voltage	Human Body Model (Note 2.) Machine Model (Note 3.) Charged Device Model (Note 4.)	>2000 >200 >200	V
I _{LATCH-UP}	Latch–Up Performance	Above V _{CC} and Below GND at 125°C (Note 5.)	±300	mA
θ_{JA}	Thermal Resistance, Junction to Ambie	nt SOIC Package TSSOP	143 164	°C/W

^{1.} Maximum Ratings are those values beyond which damage to the device may occur. Functional operation should be restricted to the Recommended Operating Conditions.

RECOMMENDED OPERATING CONDITIONS

Symbol	Characteristics		Min	Max	Unit
V _{CC}	DC Supply Voltage		4.5	5.5	V
V _{IN}	DC Input Voltage		0	5.5	V
V _{OUT}	DC Output Voltage	Output in 3–State High or Low State	0 0	5.5 V _{CC}	V
T _A	Operating Temperature Range, all Package Types		-55	125	°C
t _r , t _f	Input Rise or Fall Time	V _{CC} = 5.0 V <u>+</u> 0.5 V	0	20	ns/V

DEVICE JUNCTION TEMPERATURE VERSUS TIME TO 0.1% BOND FAILURES

Junction Temperature °C	Time, Hours	Time, Years
80	1,032,200	117.8
90	419,300	47.9
100	178,700	20.4
110	79,600	9.4
120	37,000	4.2
130	17,800	2.0
140	8,900	1.0

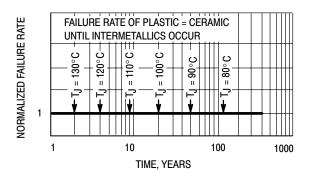


Figure 6. Failure Rate vs. Time Junction Temperature

^{2.} Tested to EIA/JESD22-A114-A

^{3.} Tested to EIA/JESD22-A115-A

^{4.} Tested to JESD22-C101-A

^{5.} Tested to EIA/JESD78

DC CHARACTERISTICS (Voltages Referenced to GND)

			V _{CC}	T _A = 25°C		T _A ≤	85°C	T _A = - 55 to 125°C			
Symbol	Parameter	Condition	(V)	Min	Тур	Max	Min	Max	Min	Max	Unit
V _{IH}	Minimum High–Level Input Voltage		4.5 to 5.5	2			2		2		V
V _{IL}	Maximum Low–Level Input Voltage		4.5 to 5.5			0.8		0.8		0.8	V
V _{OH}	Maximum High-Level Output Voltage	$V_{IN} = V_{IH} \text{ or } V_{IL}$ $I_{OH} = -50 \mu\text{A}$	4.5	4.4	4.5		4.4		4.4		V
		$V_{IN} = V_{IH} \text{ or } V_{IL}$ $I_{OH} = -8 \text{ mA}$	4.5	3.94			3.8		3.66		
V _{OL}	Maximum Low–Level Output Voltage	$V_{IN} = V_{IH} \text{ or } V_{IL}$ $I_{OL} = 50 \mu\text{A}$	4.5		0	0.1		0.1		0.1	V
		$V_{IN} = V_{IH} \text{ or } V_{IL}$ $I_{OH} = 8 \text{ mA}$	4.5			0.36		0.44		0.52	
I _{IN}	Input Leakage Current	V _{IN} = 5.5 V or GND	0 to 5.5			±0.1		±1.0		±1.0	μΑ
I _{CC}	Maximum Quiescent Supply Current	$V_{IN} = V_{CC}$ or GND	5.5			4.0		40.0		40.0	μΑ
I _{CCT}	Additional Quiescent Supply Current (per Pin)	Any one input: $V_{IN} = 3.4 \text{ V}$ All other inputs: $V_{IN} = V_{CC}$ or GND	5.5			1.35		1.5		1.5	μА
I _{OPD}	Output Leakage Current	V _{OUT} = 5.5 V	0			0.5		5		5	μΑ

AC ELECTRICAL CHARACTERISTICS (Input $t_r = t_f = 3.0$ ns)

				T _A = 25°C		T _A ≤ 85°C		T _A = - 55 to 125°C			
Symbol	Parameter	Test Condi	tions	Min	Тур	Max	Min	Max	Min	Max	Unit
t _{PLH} , t _{PHL}	Maximum Propagation Delay,	$V_{CC} = 3.3 \pm 0.3 \text{ V}$	$C_L = 15 pF$ $C_L = 50 pF$		7.2 9.7	11.0 14.5	1.0 1.0	13.0 16.5	1.0 1.0	13.0 16.5	ns
	A to Y	$V_{CC} = 5.0 \pm 0.5 \text{ V}$	$C_L = 15 pF$ $C_L = 50 pF$		5.0 6.5	7.2 9.2	1.0 1.0	8.5 10.5	1.0 1.0	8.5 10.5	
t _{PLH} , t _{PHL}	Maximum Propagation Delay, E to Y	$V_{CC} = 3.3 \pm 0.3 \text{ V}$	$C_L = 15 pF$ $C_L = 50 pF$		6.4 8.9	9.2 12.7	1.0 1.0	11.0 14.5	1.0 1.0	11.0 14.5	ns
	E to Y	$V_{CC} = 5.0 \pm 0.5 \text{ V}$	$C_L = 15 pF$ $C_L = 50 pF$		4.4 5.9	6.3 8.3	1.0 1.0	7.5 9.5	1.0 1.0	7.5 9.5	
C _{IN}	Maximum Input Capacitance				4	10		10		10	pF

		Typical @ 25°C, V _{CC} = 5.0V	
C_{PD}	Power Dissipation Capacitance (Note 6.)	26	pF

^{6.} C_{PD} is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load. Average operating current can be obtained by the equation: I_{CC(OPR)} = C_{PD} • V_{CC} • f_{in} + I_{CC}/2 (per decoder). C_{PD} is used to determine the no–load dynamic power consumption; P_D = C_{PD} • V_{CC}² • f_{in} + I_{CC} • V_{CC}.

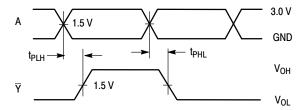


Figure 7. Switching Waveform

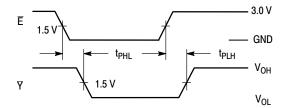
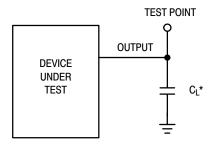
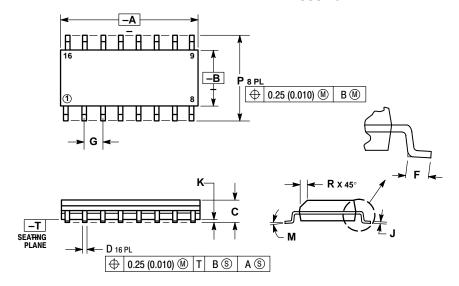



Figure 8. Switching Waveform



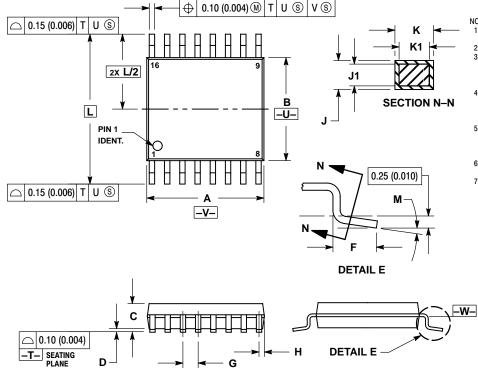
*Includes all probe and jig capacitance

Figure 9. Test Circuit

PACKAGE DIMENSIONS

SOIC-16 **D SUFFIX** CASE 751B-05 **ISSUE J**

NOTES:


- NOTES:

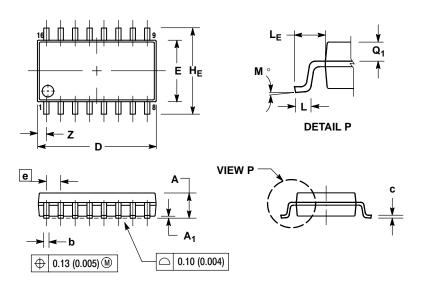
 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.

 2. CONTROLLING DIMENSION: MILLIMETER.
- DIMENSIONS A AND B DO NOT INCLUDE MOLD PROTRUSION.
- MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE.
- DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION.

MILLIMETERS INCHES							
	MILLIM	IETERS	INC				
DIM	MIN	MAX	MIN	MAX			
Α	9.80	10.00	0.386	0.393			
В	3.80	4.00	0.150	0.157			
С	1.35	1.75	0.054	0.068			
D	0.35	0.49	0.014	0.019			
F	0.40	1.25	0.016	0.049			
G	1.2	7 BSC	0.050	0 BSC			
J	0.19	0.25	0.008	0.009			
K	0.10	0.25	0.004	0.009			
M	0°	7°	0°	7°			
Р	5.80	6.20	0.229	0.244			
R	0.25	0.50	0.010	0.019			

TSSOP-16 **DT SUFFIX** CASE 948F-01 **ISSUE O**

16X **K** REF


NOTES:

- DIMENSIONING AND TOLERANCING PER ANSI Y14 5M 1982
- Y 14.3M, 1982.
 CONTROLLING DIMENSION: MILLIMETER.
 DIMENSION A DOES NOT INCLUDE MOLD FLASH.
 PROTRUSIONS OR GATE BURRS. MOLD FLASH OF
 GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER
- DIMENSION B DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE.
- 0.23 (0.010) Feb 310E.
 DIMENSION K DOES NOT INCLUDE DAMBAR
 PROTRUSION. ALLOWABLE DAMBAR PROTRUSION
 SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE K
 DIMENSION AT MAXIMUM MATERIAL CONDITION.
- TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY.
- DIMENSION A AND B ARE TO BE DETERMINED AT DATUM PLANE -W-.

	MILLIN	IETERS	INC	HES
DIM	MIN	MAX	MIN	MAX
Α	4.90	5.10	0.193	0.200
В	4.30	4.50	0.169	0.177
С		1.20		0.047
D	0.05	0.15	0.002	0.006
F	0.50	0.75	0.020	0.030
G	0.65	BSC	0.026	BSC
Н	0.18	0.28	0.007	0.011
J	0.09	0.20	0.004	0.008
J1	0.09	0.16	0.004	0.006
K	0.19	0.30	0.007	0.012
K1	0.19	0.25	0.007	0.010
L	6.40 BSC		0.252 BSC	
M	0°	8° 0°		8°

PACKAGE DIMENSIONS

SOIC EIAJ-16 M SUFFIX CASE 966-01 ISSUE O

- NOTES:
 1. DIMENSIONING AND TOLERANCING PER ANSI
 Y14.5M, 1982.
 2. CONTROLLING DIMENSION: MILLIMETER.
 3. DIMENSIONS D AND E DO NOT INCLUDE
 MOLD FLASH OR PROTRUSIONS AND ARE

 - MOLD FLASH OR PROTRUSIONS AND ARE MEASURED AT THE PARTING LINE. MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.15 (0.006) PER SIDE.

 4. TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY.

 5. THE LEAD WIDTH DIMENSION (b) DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE LEAD WIDTH DIMENSION AT MAXIMUM MATERIAL CONDITION. DAMBAR CANNOT BE LOCATED ON THE LOWER RADIUS OR THE FOOT. MINIMUM SPACE BETWEEN PROTRUSIONS AND ADJACENT LEAD TO BE 0.46 (0.018). TO BE 0.46 (0.018).

	MILLIN	IETERS	INC	HES
DIM	MIN	MIN MAX		MAX
Α		2.05		0.081
A ₁	0.05	0.20	0.002	0.008
b	0.35	0.50	0.014	0.020
С	0.18	0.27	0.007	0.011
D	9.90	10.50	0.390	0.413
E	5.10	5.45	0.201	0.215
е	1.27 BSC		0.050	BSC
HE	7.40	8.20	0.291	0.323
L	0.50	0.85	0.020	0.033
LE	1.10	1.50	0.043	0.059
M	0 °	10°	0 °	10°
Q ₁	0.70	0.90	0.028	0.035
Z		0.78		0.031

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.

PUBLICATION ORDERING INFORMATION

NORTH AMERICA Literature Fulfillment:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada **Fax**: 303–675–2176 or 800–344–3867 Toll Free USA/Canada

Email: ONlit@hibbertco.com

Fax Response Line: 303-675-2167 or 800-344-3810 Toll Free USA/Canada

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

EUROPE: LDC for ON Semiconductor - European Support

German Phone: (+1) 303–308–7140 (Mon–Fri 2:30pm to 7:00pm CET)

Email: ONlit-german@hibbertco.com

French Phone: (+1) 303–308–7141 (Mon–Fri 2:00pm to 7:00pm CET)

Email: ONlit-french@hibbertco.com

English Phone: (+1) 303–308–7142 (Mon–Fri 12:00pm to 5:00pm GMT)

Email: ONlit@hibbertco.com

EUROPEAN TOLL-FREE ACCESS*: 00-800-4422-3781

*Available from Germany, France, Italy, UK, Ireland

CENTRAL/SOUTH AMERICA:

Spanish Phone: 303-308-7143 (Mon-Fri 8:00am to 5:00pm MST)

Email: ONlit-spanish@hibbertco.com

Toll-Free from Mexico: Dial 01-800-288-2872 for Access -

then Dial 866-297-9322

ASIA/PACIFIC: LDC for ON Semiconductor – Asia Support

Phone: 1-303-675-2121 (Tue-Fri 9:00am to 1:00pm, Hong Kong Time)

Toll Free from Hong Kong & Singapore:

001-800-4422-3781 Email: ONlit-asia@hibbertco.com

JAPAN: ON Semiconductor, Japan Customer Focus Center

4-32-1 Nishi-Gotanda, Shinagawa-ku, Tokyo, Japan 141-0031

Phone: 81–3–5740–2700 Email: r14525@onsemi.com

ON Semiconductor Website: http://onsemi.com

For additional information, please contact your local

Sales Representative.