INTEGRATED CIRCUITS

Product specification Supersedes data of 1997 Apr 10 IC24 Data Handbook

1998 May 20

Philips Semiconductors

74LV251

FEATURES

- Optimized for low voltage applications: 1.0 to 3.6 V
- Accepts TTL input levels between V_{CC} = 2.7 V and V_{CC} = 3.6 V
- Typical V_{OLP} (output ground bounce) < 0.8 V at V_{CC} = 3.3 V, $T_{amb} = 25^{\circ}C$
- Typical V_{OHV} (output V_{OH} undershoot) > 2 V at V_{CC} = 3.3 V, $T_{amb} = 25^{\circ}C$
- True and complement outputs
- Both outputs are 3-State for further multiplexer expansion
- Multifunction capability
- Permits multiplexing from n-lines to one line
- Output capability: standard
- I_{CC} category: MSI

QUICK REFERENCE DATA

GND = 0 V: $T_{auto} = 25^{\circ}C$: $t_a = t_f \le 2.5 \text{ ns}$

DESCRIPTION

The 74LV251 is a low-voltage Si-gate CMOS device and is pin and function compatible with 74HC/HCT251.

The 74LV251 is an 8-input multiplexer with 8 binary inputs (I_0 to I_7), an output enable input (\overline{OE}) and three select inputs (S₀, S₁, S₂). One of the eight binary inputs is selected by the select inputs and is routed to the outputs (\overline{Y}, Y) . Both outputs are in the high impedance OFF-state (Z) when the output enable input is HIGH, allowing multiplexer expansion by tying the outputs.

SYMBOL	PARAMETER	CONDITIONS	TYPICAL	UNIT
t _{PHL} /t _{PLH}	$\begin{array}{l} Propagation \ delay \\ I_n \ to \ Y \\ I_n \ to \ \overline{Y} \\ S_n \ to \ Y \\ S_n \ to \ \overline{Y} \end{array}$	C _L = 15 pF; V _{CC} = 3.3 V	14 16 19 20	ns
CI	Input capacitance		3.5	pF
C _{PD}	Power dissipation capacitance per gate	$V_{CC} = 3.3 \text{ V}$ V ₁ = GND to V _{CC} ¹	44	pF

NOTE:

1. C_{PD} is used to determine the dynamic power dissipation (P_D in μW)

 $\begin{array}{l} \mathsf{P}_{D} = \mathsf{C}_{PD} \times \mathsf{V}_{CC}^2 \times \mathsf{f}_i + \sum (\mathsf{C}_L \times \mathsf{V}_{CC}^2 \times \mathsf{f}_o) \text{ where:} \\ \mathsf{f}_i = \mathsf{input} \text{ frequency in MHz; } \mathsf{C}_L = \mathsf{output} \text{ load capacitance in } \mathsf{F}; \\ \mathsf{f}_o = \mathsf{output} \text{ frequency in MHz; } \mathsf{V}_{CC} = \mathsf{supply voltage in } \mathsf{V}; \end{array}$

 $\sum (C_L \times V_{CC}^2 \times f_0)$ = sum of the outputs.

ORDERING INFORMATION

PACKAGES	TEMPERATURE RANGE	OUTSIDE NORTH AMERICA	NORTH AMERICA	PKG. DWG. #
16-Pin Plastic DIL	–40°C to +125°C	74LV251 N	74LV251 N	SOT38-4
16-Pin Plastic SO	–40°C to +125°C	74LV251 D	74LV251 D	SOT109-1
16-Pin Plastic SSOP Type II	–40°C to +125°C	74LV251 DB	74LV251 DB	SOT338-1
16-Pin Plastic TSSOP Type I	-40°C to +125°C	74LV251 PW	74LV251PW DH	SOT403-1

74LV251

PIN CONFIGURATION

LOGIC SYMBOL

FUNCTIONAL DIAGRAM

PIN DESCRIPTION

PIN NUMBER	SYMBOL	FUNCTION
4, 3, 2, 1, 15, 14, 13, 12	I_0 to I_7	Multiplexer inputs
5	Y	Multiplexer output
6	Y	Complementary multiplexer output
7	ŌĒ	3-State output enable input (active LOW)
8	GND	Ground (0 V)
11, 10, 9	S_0 to S_2	Select inputs
16	V _{CC}	Positive supply voltage

LOGIC SYMBOL (IEEE/IEC)

Product specification

74LV251

FUNCTION TABLE

					INP	UTS						OUTE	PUTS
OE	S ₂	S ₁	S ₀	l ₀	l ₁	l ₂	I ₃	I ₄	I ₅	I ₆	I ₇	Ϋ́	Y
н	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Z	Z
	L L L	L L L	L L H H	L H X X	X X L H	X X X X	X X X X	X X X X	X X X X	X X X X	X X X X	H L H L	L H L H
	L L L	H H H	L L H H	X X X X	X X X X	L H X X	X X L H	X X X X	X X X X	X X X X	X X X X	H L H L	L H L H
	H H H	L L L	L L H H	X X X X	X X X X	X X X X	X X X X	L H X X	X X L H	X X X X	X X X X	H L H L	L H L H
L L L	H H H	Н Н Н	L L H H	X X X X	X X X X	X X X X	X X X X	X X X X	X X X X	L H X X	X X L H	H L H L	L H L H

NOTES:

H = HIGH voltage level L = LOW voltage level

L = X = Z =

don't care

high impedance OFF-state

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNIT
V _{CC}	DC supply voltage	See Note 1	1.0	3.3	3.6	V
VI	Input voltage		0	-	V _{CC}	V
Vo	Output voltage		0	-	V _{CC}	V
T _{amb}	Operating ambient temperature range in free air	See DC and AC characteristics	-40 -40		+85 +125	°C
t _r , t _f	Input rise and fall times	$V_{CC} = 1.0V \text{ to } 2.0V$ $V_{CC} = 2.0V \text{ to } 2.7V$ $V_{CC} = 2.7V \text{ to } 3.6V$	- - -	- - -	500 200 100	ns/V

NOTE:

1. The LV is guaranteed to function down to V_{CC} = 1.0V (input levels GND or V_{CC}); DC characteristics are guaranteed from V_{CC} = 1.2V to V_{CC} = 5.5V.

74LV251

ABSOLUTE MAXIMUM RATINGS^{1, 2}

In accordance with the Absolute Maximum Rating System (IEC 134). Voltages are referenced to GND (ground = 0 V).

SYMBOL	PARAMETER	CONDITIONS	RATING	UNIT
V _{CC}	DC supply voltage		-0.5 to +4.6	V
$\pm I_{\text{IK}}$	DC input diode current	$V_{\rm I} < -0.5 \text{ or } V_{\rm I} > V_{\rm CC} + 0.5 V$	20	mA
± I _{OK}	DC output diode current	$V_{\rm O}$ < -0.5 or $V_{\rm O}$ > $V_{\rm CC}$ + 0.5V	50	mA
$\pm I_{O}$	DC output source or sink current – standard outputs	$-0.5V < V_{O} < V_{CC} + 0.5V$	25	mA
$^{\pm I_{GND},}_{\pm I_{CC}}$	DC V _{CC} or GND current for types with – standard outputs		50	mA
T _{stg}	Storage temperature range		-65 to +150	°C
P _{TOT}	Power dissipation per package – plastic DIL – plastic mini-pack (SO) – plastic shrink mini-pack (SSOP and TSSOP)	for temperature range: -40 to +125°C above +70°C derate linearly with 12 mW/K above +70°C derate linearly with 8 mW/K above +60°C derate linearly with 5.5 mW/K	750 500 400	mW

NOTES:

1. Stresses beyond those listed may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

2. The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

DC ELECTRICAL CHARACTERISTICS

Over recommended operating conditions. Voltages are referenced to GND (ground = 0 V).

					LIMITS			
SYMBOL	PARAMETER	TEST CONDITIONS	-4	0°C to +8	5°C	-40°C to	o +125°C	UNIT
			MIN	TYP ¹	MAX	MIN	MAX	1
		V _{CC} = 1.2 V	0.9			0.9		
VIH	HIGH level Input voltage	V _{CC} = 2.0 V	1.4			1.4		V
	l	V _{CC} = 2.7 to 3.6 V	2.0			2.0		1
		V _{CC} = 1.2 V			0.3		0.3	
VIL	LOW level Input voltage	V _{CC} = 2.0 V			0.6		0.6	V
	Voltage	V _{CC} = 2.7 to 3.6 V			0.8		0.8	
		V_{CC} = 1.2 V; V_I = V_{IH} or V_{IL} ; $-I_O$ = 100 μ A		1.2				
., í	HIGH level output	$V_{CC} = 2.0 \text{ V}; \text{ V}_{I} = V_{IH} \text{ or } \text{V}_{IL}; -I_{O} = 100 \mu \text{A}$	1.8	2.0		1.8		1,
V _{OH}	voltage; all outputs $V_{CC} = 2.7 \text{ V}; \text{ V}_{I} = \text{V}_{IH} \text{ or } \text{V}_{IL}; -I_{O} = 100 \mu \text{V}$		2.5	2.7		2.5		V
		$V_{CC} = 3.0 \text{ V}; \text{ V}_{I} = V_{IH} \text{ or } \text{V}_{IL}; -I_{O} = 100 \mu \text{A}$	2.8	3.0		2.8		1
V _{OH}	HIGH level output voltage; STANDARD outputs	$V_{CC} = 3.0 \text{ V}; \text{ V}_{I} = \text{V}_{IH} \text{ or } \text{V}_{IL}; -\text{I}_{O} = 6\text{mA}$	2.40	2.82		2.20		v
		V_{CC} = 1.2 V; V_I = V_{IH} or V_{IL} ; I_O = 100 μ A		0				
	LOW level output	V_{CC} = 2.0 V; V_I = V_{IH} or V_{IL} ; I_O = 100 μ A		0	0.2		0.2	
V _{OL}	voltage; all outputs	V_{CC} = 2.7 V; V_I = V_{IH} or V_{IL} ; I_O = 100 μ A		0	0.2		0.2	V
		V_{CC} = 3.0 V; V_I = V_{IH} or V_{IL} ; I_O = 100 μ A		0	0.2		0.2	
V _{OL}	LOW level output voltage; STANDARD outputs	V_{CC} = 3.0 V; V_{I} = V_{IH} or V_{IL} ; I_{O} = 6mA		0.25	0.40		0.50	V

74LV251

DC ELECTRICAL CHARACTERISTICS (Continued)

			LIMITS						
SYMBOL	PARAMETER	TEST CONDITIONS	-40	°C to +85	5°C	-40°C to			
			MIN	TYP ¹	MAX	MIN	MAX		
I	Input leakage current	V_{CC} = 3.6 V; V_{I} = V_{CC} or GND			1.0		1.0	μΑ	
I _{CC}	Quiescent supply current; MSI	V_{CC} = 3.6 V; V_{I} = V_{CC} or GND; I_{O} = 0			20.0		160	μΑ	
ΔI _{CC}	Additional quiescent supply current per input	V_{CC} = 2.7 V to 3.6 V; V_{I} = V_{CC} – 0.6 V			500		850	μA	

NOTE:

1. All typical values are measured at $T_{amb} = 25^{\circ}C$.

AC CHARACTERISTICS

 $GND = 0V; t_r = t_f = 2.5ns; C_L = 50pF; R_L = 1K\Omega$

			CONDITION			LIMITS			
SYMBOL	PARAMETER	WAVEFORM	CONDITION	_	40 to +85 °	°C	-40 to	+125 °C	UNIT
			V _{CC} (V)	MIN	TYP ¹	MAX	MIN	MAX	
			1.2		90				
	Propagation delay		2.0		31	58		70	
t _{PHL} /t _{PLH}	I _n to Y	Figure 1	2.7		23	43		51	ns
			3.0 to 3.6		17 ²	34		41	
			1.2		100				
	Propagation delay		2.0		34	65		77	
t _{PHL} /t _{PLH}	I_n to \overline{Y}	Figure 2	2.7		25	48		56	ns
			3.0 to 3.6		19 ²	38		45	
			1.2		120				
	Propagation delay	Linung 1	2.0		41	77		92	
t _{PHL} /t _{PLH}	S _n to Y	Figure 1	2.7		30	56		68	ns
			3.0 to 3.6		23 ²	45		54	
			1.2		125				
	Propagation delay		2.0		43	82		97	ns
t _{PHL} /t _{PLH}	Propagation delay S _n to Y	Figure 2	2.7		31	60		71	
		[3.0 to 3.6		24 ²	48		57	
			1.2		65				
	3-State output disable time	Einung O	2.0		22	43		51	
t _{PZH} /t _{PZL}	OE to Y, Y	Figure 2	2.7		16	31		38	ns
			3.0 to 3.6		12 ²	25		30	
			1.2	1	60				
	3-State output disable time		2.0		22	39		48	
t _{PHZ} /t _{PLZ}	\overline{OE} to Y, \overline{Y}'	Figure 2	2.7		17	29		36	ns
			3.0 to 3.6		13 ²	24		29	

NOTES:

1. Unless otherwise stated, all typical values are measured at $T_{amb} = 25^{\circ}C$ 2. Typical values are measured at $V_{CC} = 3.3 \text{ V}$.

74LV251

AC WAVEFORMS

 V_M = 1.5 V at $V_{CC} \geq 2.7$ V V_{M} = 0.5 V \times V_{CC} at V_{CC} < 2.7 V $V_{\mbox{OL}}$ and $V_{\mbox{OH}}$ are the typical output voltage drop that occur with the output load. V_X = V_{OL} + 0.3 V at $V_{CC} \geq$ 2.7 V V_X = V_{OL} + 0.1 \times V_{CC} at V_{CC} < 2.7 V Vcc In, Sn INPUT $^{\sf V}{}_{\sf M}$ GND ← ^tPLH t_{PHL}-> V_{ОН} $^{\rm V}{\rm M}$ Y OUTPUT VOL SV00633

Figure 1. Multiplexer input (I_n) and select input (S_n) to output (Y) propagation delays.

Figure 2. Multiplexer input (I_n) and the select input (S_n) to output (\overline{Y}) propagation delays.

Figure 3. 3-State enable and disable times

TEST CIRCUIT

Figure 4. Load circuitry for switching times.

Product specification

8-input multiplexer (3-State)

74LV251

UNIT	A max.	A ₁ min.	A ₂ max.	b	b ₁	b ₂	c	d ⁽¹⁾	E ⁽¹⁾	e	e ₁	L	M _E	M _H	w	Z ⁽¹⁾ max.
mm	4.2	0.51	3.2	1.73 1.30	0.53 0.38	1.25 0.85	0.36 0.23	19.50 18.55	6.48 6.20	2.54	7.62	3.60 3.05	8.25 7.80	10.0 8.3	0.254	0.76
inches	0.17	0.020	0.13	0.068 0.051	0.021 0.015	0.049 0.033	0.014 0.009	0.77 0.73	0.26 0.24	0.10	0.30	0.14 0.12	0.32 0.31	0.39 0.33	0.01	0.030

Note

1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.

OUTLINE		REFERENCES				ISSUE DATE
VERSION	IEC	JEDEC	EIAJ		PROJECTION	1550E DATE
SOT38-4						-92-11-17 95-01-14

74LV251

74LV251

74LV251

74LV251

	DEFINITIONS								
Data Sheet Identification	Product Status	Definition							
Objective Specification	Formative or in Design	This data sheet contains the design target or goal specifications for product development. Specifications may change in any manner without notice.							
Preliminary Specification	Preproduction Product	This data sheet contains preliminary data, and supplementary data will be published at a later date. Philips Semiconductors reserves the right to make changes at any time without notice in order to improve design and supply the best possible product.							
Product Specification	Full Production	This data sheet contains Final Specifications. Philips Semiconductors reserves the right to make changes at any time without notice, in order to improve design and supply the best possible product.							

Philips Semiconductors and Philips Electronics North America Corporation reserve the right to make changes, without notice, in the products, including circuits, standard cells, and/or software, described or contained herein in order to improve design and/or performance. Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified. Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

LIFE SUPPORT APPLICATIONS

Philips Semiconductors and Philips Electronics North America Corporation Products are not designed for use in life support appliances, devices, or systems where malfunction of a Philips Semiconductors and Philips Electronics North America Corporation Product can reasonably be expected to result in a personal injury. Philips Semiconductors and Philips Electronics North America Corporation customers using or selling Philips Semiconductors and Philips Electronics North America Corporation so at their own risk and agree to fully indemnify Philips Semiconductors and Philips Electronics North America Corporation for any damages resulting from such improper use or sale.

Philips Semiconductors 811 East Arques Avenue P.O. Box 3409 Sunnyvale, California 94088–3409 Telephone 800-234-7381 © Copyright Philips Electronics North America Corporation 1998 All rights reserved. Printed in U.S.A.

print code

Document order number:

9397-750-04439

Date of release: 05-96

Let's make things better.

