

TDA7342

Digitally controlled audio processor

Features

- Input multiplexer
 - Two stereo and one mono inputs
 - One quasi differential input
 - Selectable input gain for optimal adaptation to different sources
- Fully programmable loudness function
- Volume control in 0.3dB steps including gain up to 20dB
- · Zero crossing mute, soft mute and direct mute
- Bass and treble control
- Four speaker attenuators
 - Four independent speakers control in 1.25dB steps for balance and fader facilities
 - Independent mute function
- All functions programmable via serial I²C bus

Description

The audioprocessor TDA7342 is an upgrade of the TDA731X audioprocessor family.

Due to a highly linear signal processing, using CMOS-switching techniques instead of standard bipolar multipliers, very low distortion and very low noise are obtained. Several new features like softmute, and zero-crossing mute are implemented. The soft Mute function can be activated in two ways:

- 1. Via serial bus (Mute byte, bit D0)
- 2. Directly on pin 21 through an I/O line of the microcontroller

Very low DC stepping is obtained by use of a BICMOS technology.

Order codes

Part number	Package	Packing
TDA7342	LQFP32	Tray
TDA7342TR	LQFP32	Tape and reel

Contents

1	Bloc	Block diagram and pin description5					
	1.1	Block diagram					
	1.2	Pin description					
2	Elec	trical specifications6					
	2.1	Absolute maximum ratings 6					
	2.2	Quick reference data					
	2.3	Thermal data					
	2.4	Electrical characteristics					
3	12C	bus interface					
	3.1	Data Validity					
	3.2	Start and Stop Conditions 10					
	3.3	Byte Format					
	3.4	Acknowledge					
	3.5	Transmission without Acknowledge 10					
4	Soft	ware specification					
	4.1	Interface Protocol 12					
	4.2	Auto increment					
	4.3	Transmitted data					
	4.4	Data byte specification 13					
5	Pacl	kage information					
6	Revi	ision history					

List of tables

Table 1.	Absolute Maximum Ratings	. 6
Table 2.	Quick reference data	. 6
Table 3.	Thermal data	. 6
Table 4.	Electrical characteristics	. 7
Table 5.	Subaddress (receive mode)	12
Table 6.	Send mode	
Table 7.	Input selector	13
Table 8.	Loudness	
Table 9.	Mute	
Table 10.	Speaker attenuators (LF, LR, RF, RR)	15
Table 11.	Bass/Treble	
Table 12.	Volume	17
Table 13.	Document revision history	19

List of figures

	Block diagram	5
Figure 2.	Pin connection (top view)	5
Figure 3.	Data Validity on the I2C BUS1	1
Figure 4.	Timing Diagram of I2C BUS 1	1
Figure 5.	Acknowledge on the I2C BUS1	1
Figure 6.	Interface protocol	2
Figure 7.	LQFP32 Mechanical Data & Package Dimensions	8

1 Block diagram and pin description

1.1 Block diagram

Figure 1. Block diagram

1.2 Pin description

57

Figure 2. Pin connection (top view)

5/20

2 Electrical specifications

2.1 Absolute maximum ratings

Table 1. Absolute Maximum Ratings

Symbol	Parameter	Value	Unit
V _S	Operating supply voltage	10.5	V
T _{amb}	Operating ambient temperature	-40 to 85	°C
T _{stg}	Storage temperature range	-55 to 150	°C

2.2 Quick reference data

Table 2. Quick reference data

Symbol	Parameter	Min.	Тур.	Max.	Unit	
VS	Supply voltage	6	9	10.2	V	
V _{CL}	Max. input signal handling	2.1	2.6		Vrms	
THD	Total harmonic distortion V = 1Vrms f = 1KHz 0.01 0.08					
S/N	Signal to noise ratio		106		dB	
S _C	Channel separation		100		dB	
	Volume control 0.3dB step	-59.7		20	dB	
	Treble control 2dB step	-14		+14	dB	
	Bass control 2dB step	-10		+18	dB	
	Fader and balance control 1.25dB step	-38.75		0	dB	
	Input gain 3.75dB step	0		11.25	dB	
	Mute attenuation		100		dB	

2.3 Thermal data

Table 3. Thermal data

Symbol	Parameter	Value	Unit
R _{th j-amb}	Thermal resistance junction to pins	150	°C/W

2.4 Electrical characteristics

Table 4.Electrical characteristics

(V_S = 9V; R_L = 10K Ω ; R_g = 50 Ω ; T_{amb} = 25°C; all gains = 0dB; f = 1KHz. Refer to the test circuit, unless otherwise specified.)

Symbol	Parameter	Test condition	Min.	Тур.	Max.	Unit
Input sel	ector					
R _I	Input resistance		70	100	130	KΩ
V_{CL}	Clipping level	$d \le 0.3\%$	2.1	2.6		V _{RMS}
SI	Input separation		80	100		dB
RL	Output load resistance		2			KΩ
G _{I MIN}	Minimum input gain		-0.75	0	0.75	dB
G _{I MAX}	Maximum input gain		10.25	11.25	12.25	dB
G _{step}	Step resolution		2.75	3.75	4.75	dB
e _N	Input noise	20Hz to 20 KHz unweighted		2.3		μV
	DC store	Adiacent Gain Steps		1.5	10	mV
V _{DC}	DC steps	G _{IIN} to G _{IMAX}		3		mV
Different	ial input (IN 3)	·				
	land and interest	Input selector BIT D6 = 0 (0dB)	10	15	20	KΩ
R _I	Input resistance	Input selector BIT D6 = 1(-6dB)	14	20	30	KΩ
		V _{CM} = 1V _{RMS} ; f =1KHz	48	75		dB
CMRR	Common mode rejection ratio	f = 10KHz	45	70		dB
d	Distortion	V _I = 1V _{RMS}		0.01	0.08	%
e _{IN}	Input noise	20Hz to 20KHz; Flat; D6 = 0		5		μV
<u> </u>	Differential agin	D6 = 0	-1	0	1	dB
G _{DIFF}	Differential gain	D6 = 1	-7	-6	-5	dB
Volume c	ontrol	·				
R _I	Input resistance		35	50		KΩ
G _{MAX}	Maximum gain		18.75	20	21.25	dB
A _{MAX}	Maximum attenuation		57.7	59.7	62.7	dB
A _{STEPC}	Step resolution coarse atten.		0.5	1.25	2.0	dB
A _{STEPF}	Step resolution fine attenuation		0.11	0.31	0.51	dB
	Attenuation act array	G = 20 to -20dB	-1.25	0	1.25	dB
E _A	Attenuation set error	G = -20 to -58dB	-3		2	dB
Et	Tracking error				2	dB
V	DC atom	Adiacent Attenuation Steps	-3	0	3	mV
V_{DC}	DC steps	From 0dB to A _{MAX}		0.5	5	mV

Table 4.

Electrical characteristics (continued) (V_S = 9V; R_L = 10K Ω ; R_g = 50 Ω ; T_{amb} = 25°C; all gains = 0dB; f = 1KHz. Refer to the test circuit, unless otherwise specified.)

Symbol	Parameter Test condition		Min.	Тур.	Max.	Unit
Loudnes	s control					
RI	Internal resistor	Loud = On	35	50	65	KΩ
A _{MAX}	Maximum attenuation		17.5	18.75	20.0	dB
A _{step}	Step resolution		0.5	1.25	2.0	dB
Zero cros	sing mute					
		WIN = 11		20		mV
M	7	WIN = 10		40		mV
V_{TH}	Zero crossing threshold ⁽¹⁾	WIN = 01		80		mV
		WIN = 00		160		mV
A _{MUTE}	Mute attenuation		80	100		dB
V _{DC}	DC step	0dB to Mute		0	3	mV
Soft mute	9					
A _{MUTE}	Mute attenuation		45	60		dB
-	On delay time	C_{CSM} = 22nF; 0 to -20dB; I = I _{MAX}	0.7	1	1.7	ms
T _{DON}		C_{CSM} = 22nF; 0 to -20dB; I = I _{MIN}	20	35	55	ms
		V_{CSM} = 0V; I = I _{MAX}	25	50	75	μA
IDOFF	Off current	V_{CSM} = 0V; I = I _{MIN}		1		μA
V _{THSM}	Soft mute threshold (pin 14)		1.5	2.5	3.5	V
R _{INT}	Pull-up resistor (pin 21)	(2)	35	50	65	kΩ
V_{SMH}	(pin 21) level high		3.5			V
V _{SML}	(pin 21) level low	Soft mute active			1	V
Bass cor	trol					
B _{BOOST}	Max bass boost		15	18	20	dB
B _{CUT}	Max bass cut		-8.5	-10	-11.5	dB
A _{step}	Step resolution		1	2	3	dB
Rg	Internal feedback resistance		45	65	85	KΩ
Treble co	ntrol					
C _{RANGE}	Control range		±13	±14	±15	dB
A _{step}	Step resolution		1	2	3	dB
Speaker	attenuators			+	+	
C _{RANGE}	Control range		35	37.5	40	dB
A _{step}	Step resolution		0.5	1.25	2.00	dB

Table 4. Electrical characteristics (continued)

 $(V_S = 9V; R_L = 10K\Omega; R_g = 50\Omega; T_{amb} = 25^{\circ}C; all gains = 0dB; f = 1KHz. Refer to the test circuit, unless otherwise specified.)$

Symbol	Parameter	Test condition	Min.	Тур.	Max.	Unit	
A _{MUTE}	Output mute attenuation	Data word = XXX11111	80	100		dB	
E _A	Attenuation set error				1.25	dB	
V _{DC}	DC steps	Adjacent attenuation steps		0	3	mV	
Audio ou	tput						
V _{clip}	Clipping level	d = 0.3%	2.1	2.6		Vrms	
R_L	Output load resistance		2			KΩ	
R _O	Output impedance			30	100	Ω	
V _{DC}	DC voltage Level		3.5	3.8	4.1	V	
General			-				
V _{CC}	Supply voltage		6	9	10.2	V	
I _{CC}	Supply current		5	10	15	mA	
DODD	Dower outputy rejection ratio	f = 1KHz	60	80		dB	
PSRR	Power supply rejection ratio	B = 20 to 20kHz "A" weighted		65		dB	
	Output poice	Output Muted (B = 20 to 20kHz flat)		2.5		μV	
e _{NO}	Output noise	All Gains 0dB (B = 20 to 20kHz flat)		5	15	μV	
F		A _V = 0 to -20dB		0	1	dB	
Et	Total tracking error	A _V = -20 to -60dB		0	2	dB	
S/N	Signal to noise ratio	All Gains = 0dB; V _O = 1Vrms		106		dB	
S _C	Channel separation		80	100		dB	
d	Distortion	V _{IN} =1V		0.01	0.08	%	
Bus inpu	ts		-				
V _{IL}	Input low voltage				1	V	
V _{IN}	Input high voltage		3			V	
I _{IN}	Input current	V _{IN} = 0.4V	-5		5	μA	
V _O	Output voltage SDA acknowledge	I _O = 1.6mA		0.4	0.8	V	

1. WIN represents the MUTE programming bit pair D6, D5 for the zero crossing window threshold.

2. Internal pull-up resistor to Vs/2; LOW = softmute active.

3 I²C bus interface

Data transmission from microprocessor to the TDA7342 and viceversa takes place thru the 2 wires I²C BUS interface, consisting of the two lines SDA and SCL (pull-up resistors to positive supply voltage must be externally connected).

3.1 Data Validity

As shown in *Figure 3*, the data on the SDA line must be stable during the high period of the clock. The HIGH and LOW state of the data line can only change when the clock signal on the SCL line is LOW.

3.2 Start and Stop Conditions

As shown in *Figure 5* a start condition is a HIGH to LOW transition of the SDA line while SCL is HIGH. The stop condition is a LOW to HIGH transition of the SDA line while SCL is HIGH.

A STOP conditions must be sent before each START condition.

3.3 Byte Format

Every byte transferred to the SDA line must contain 8 bits. Each byte must be followed by an acknowledge bit. The MSB is transferred first.

3.4 Acknowledge

The master (μ P) puts a resistive HIGH level on the SDA line during the acknowledge clock pulse (see *Figure 5*). The peripheral (audioprocessor) that acknowledges has to pull-down (LOW) the SDA line during the acknowledge clock pulse, so that the SDA line is stable LOW during this clock pulse.

The audioprocessor which has been addressed has to generate an acknowledge after the reception of each byte, otherwise the SDA line remains at the HIGH level during the ninth clock pulse time. In this case the master transmitter can generate the STOP information in order to abort the transfer.

3.5 Transmission without Acknowledge

Avoiding to detect the acknowledge of the audioprocessor, the μ P can use a simplier transmission: simply it waits one clock without checking the slave acknowledging, and sends the new data. This approach of course is less protected from misworking and decreases the noise immunity.

Figure 5. Acknowledge on the I²C BUS

Patent note: Purchase of I²C Components of STMicrolectronics, conveys a license under the Philips I²C Patent Rights to use these components in an I²C system, provided that the system conforms to the I²C Standard Specifications as defined by Philips.

4 Software specification

4.1 Interface Protocol

The interface protocol comprises:

- ? A start condition (s)
- ? A chip address byte, (the LSB bit determines read/write transmission)
- ? A subaddress byte.
- ? A sequence of data (N-bytes + acknowledge)
- ? A stop condition (P)

Figure 6. Interface protocol

CHIP ADDRESS	SUE	BADDRESS DA	TA 1 DATA n
MSB	LSB MSB	LSB MSB	LSB
S 1 0 0 0 1 0 0	R/W ACK X X X	I A ₃ A ₂ A ₁ A ₀ ACK	DATA ACK P
D05AU1575			

ACK = Acknowledge

- S = Start
- P = Stop
- I = Auto Increment
- X = Not used
- A = I²C address value selectable according to ADDR pin status ADDR = Open/Gnd A = O ADDR = V_{CC} A = I

MAX CLOCK SPEED 500kbits/s

4.2 Auto increment

If bit I in the subaddress byte is set to "1", the autoincrement of the subaddress is enabled

MSB							LSB	Function
Х	Х	Х	I	A3	A2	A1	A0	
				0	0	0	0	Input Selector
				0	0	0	1	Loudness
				0	0	1	0	Volume
				0	0	1	1	Bass, Treble
				0	1	0	0	Speaker Attenuator LF
				0	1	0	1	Speaker Attenuator LR
				0	1	1	0	Speaker Attenuator RF
				0	1	1	1	Speaker Attenuator RR
				1	0	0	0	Mute

Table 5. Subaddress (receive mode)

4.3 Transmitted data

Table 6. Send mode

MSB							LSB
Х	Х	Х	Х	Х	SM	ZM	Х

ZM = Zero crossing muted (HIGH active)

SM = Soft mute activated (HIGH active)

X = Not used

The transmitted data is automatically updated after each ACK.

Transmission can be repeated without new chip address.

4.4 Data byte specification

X = not relevant; set to "1" during testing

MSB							LSB	Function
D7	D6	D5	D4	D3	D2	D1	D0	T unction
0		1			0	0	0	not used
0		1			0	0	1	IN 2
0		1			0	1	0	IN 1
0		1			0	1	1	AM mono
0		1			1	0	0	not used
0		1			1	0	1	not used
0		1			1	1	0	not allowed
0		1			1	1	1	not allowed
0		1	0	0				11.25dB gain
0		1	0	1				7.5dB gain
0		1	1	0				3.75dB gain
0		1	1	1				0dB gain
	0							0dB differential input gain (IN3)
	1							-6dB differential input gain (IN3)

Table 7.	Input selector
	input obiotol

For example to select the IN 2 input with a gain of 7.5dB the Data Byte is: X X 1 0 1 0 0 1

57

Table 0.	204	ulless						
MSB							LSB	Function
D7	D6	D5	D4	D3	D2	D1	D0	runction
Х	Х	Х	0	0	0	0	0	0dB
Х	Х	Х	0	0	0	0	1	-1.25dB
Х	Х	Х	0	0	0	1	0	-2.5dB
Х	Х	Х	0	0	0	1	1	-3.75dB
Х	Х	Х	0	0	1	0	0	-5dB
Х	Х	Х	0	0	1	0	1	-6.25dB
Х	Х	Х	0	0	1	1	0	-7.5dB
Х	Х	Х	0	0	1	1	1	-8.75dB
Х	Х	Х	0	1	0	0	0	-10dB
Х	Х	Х	0	1	0	0	1	-11.25dB
Х	Х	Х	0	1	0	1	0	-12.5dB
Х	Х	Х	0	1	0	1	1	-13.75dB
Х	Х	Х	0	1	1	0	0	-15dB
х	Х	Х	0	1	1	0	1	-16.25dB
Х	Х	Х	0	1	1	1	0	-17.5dB
Х	Х	Х	0	1	1	1	1	-18.75dB
Х	Х	Х	1	D3	D2	D1	D0	Loudness OFF ⁽¹⁾

Table 8. Loudness

1. If the loudness is switched OFF, the loudness stage is acting like a volume attenuator with flat frequency response. D0 to D3 determine the attenuation level.

For example to select -17.5dB attenuation, loudness OFF, the Data Byte is: X X X1 1 1 1 0

	/. I							
MSB							LSB	Function
D7	D6	D5	D4	D3	D2	D1	D0	
							1	Soft Mute On
						0	1	Soft Mute with fast slope (I = I_{MAX})
						1	1	Soft Mute with slow slope (I = I_{MIN})
				1				Direct Mute
			0		1			Zero Crossing Mute On
			0		0			Zero Crossing Mute Off (delayed until next zerocrossing)
			1					Zero Crossing Mute and Pause Detector Reset
	0	0						160mV ZC Window Threshold (WIN = 00)

Table 9.	Mute
----------	------

				,					
MSB					Function				
D7	D6	D5	D4	D3	D2	D1	D0	- unotion	
	0	1						80mV ZC Window Threshold (WIN = 01)	
	1	0						40mV ZC Window Threshold (WIN = 10)	
	1	1						20mV ZC Window Threshold (WIN = 11)	
0								Nonsymmetrical Bass Cut ⁽¹⁾	
1								Symmetrical Bass Cut	

Table 9.Mute (continued)

1. Bass cut for very low frequencies; should not be used at +16 and +18dB bass boost (DC gain)

An additional direct mute function is included in the Speaker Attenuators.

MSB							LSB	Function
D7	D6	D5	D4	D3	D2	D1 D0		i uncuon
					1.25dB step			
Х	Х	Х			0	0	0	0dB
Х	Х	Х			0	0	1	-1.25dB
Х	Х	Х			0	1	0	-2.5dB
Х	Х	Х			0	1	1	-3.75dB
Х	Х	Х			1	0	0	-5dB
Х	Х	Х			1	0	1	-6.25dB
Х	Х	Х			1	1	0	-7.5dB
Х	Х	Х			1	1	1	-8.75dB
								10dB step
Х	Х	Х	0	0				0dB
Х	Х	Х	0	1				-10dB
Х	Х	Х	1	0				-20dB
Х	Х	Х	1	1				-30dB
Х	Х	Х	1	1	1	1	1	Speaker Mute

 Table 10.
 Speaker attenuators (LF, LR, RF, RR)

For example an attenuation of 25dB on a selected output is given by: X X X1 0 1 0 0

MSB					LSB	Function		
D7	D6	D5	D4	D3	D2	D1	D0	i uncuon
								Treble step
				0	0	0	0	-14dB
				0	0	0	1	-12dB

Table 11. Bass/Treble

Function

MSB							LSB	
D7	D6	D5	D4	D3	D2	D1	D0	
				0	0	1	0	
				0	0	1	1	
				0	1	0	0	
				0	1	0	1	
				0	1	1	0	
				0	1	1	1	
				1	1	1	1	
				1	1	1	0	

Table 11. **Bass/Treble (continued)**

				0	0	1	0	-10dB
				0	0	1	1	-8dB
				0	1	0	0	-6dB
				0	1	0	1	-4dB
				0	1	1	0	-2dB
				0	1	1	1	0dB
				1	1	1	1	0dB
				1	1	1	0	2dB
				1	1	0	1	4dB
				1	1	0	0	6dB
				1	0	1	1	8dB
				1	0	1	0	10dB
				1	0	0	1	12dB
				1	0	0	0	14dB
								Bass steps
0	0	1	0					-10dB
0	0	1	1					-8dB
0	1	0	0					-6dB
0	1	0	1					-4dB
0	1	1	0					-2dB
0	1	1	1					-0dB
1	1	1	1					-0dB
1	1	1	0					2dB
1	1	0	1					4dB
1	1	0	0					6dB
1	0	1	1					8dB
1	0	1	0					10dB
1	0	0	1					12dB
1	0	0	0					14dB
0	0	0	1					146B
0	0	0	0					18dB

For example 12dB Treble and -8dB Bass give the following DATA BYTE: 0 0 1 1 1 0 0 1

MSB	<u></u>	volum	-				LSB	
								Function
D7	D6	D5	D4	D3	D2	D1	D0	
								0.31dB Fine Attenuation Steps
						0	0	0dB
						0	1	-0.31dB
						1	0	-0.62dB
						1	1	-0.94dB
								1.25dB Coarse Attenuation Steps
			0	0	0			0dB
			0	0	1			-1.25dB
			0	1	0			-2.5dB
			0	1	1			-3.75dB
			1	0	0			-5dB
			1	0	1			-6.25dB
			1	1	0			-7.5dB
			1	1	1			-8.75dB
								10dB Gain / Attenuation Steps
0	0	0						20dB
0	0	1						10dB
0	1	0						0dB
0	1	1						-10dB
1	0	0						-20dB
1	0	1						-30dB
1	1	0						-40dB
1	1	1						-50dB

Table 12. Volume

For example to select -47.81dB Volume the Data Byte is: 1 1 0 1 1 0 0 1

Power on RESET: All Bytes Set to 1 1 1 1 1 1 1 0

57

5 Package information

In order to meet environmental requirements, ST offers these devices in ECOPACK[®] packages. These packages have a Lead-free second level interconnect. The category of second Level Interconnect is marked on the package and on the inner box label, in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering conditions are also marked on the inner box label. ECOPACK is an ST trademark. ECOPACK specifications are available at: www.st.com.

Figure 7. LQFP32 Mechanical Data & Package Dimensions

6 Revision history

Table 13. Document revision history

Date	Revision	Changes
24-Jan-2006	1	Initial release.
20-Nov-2006	2	Layout changes, text modifications, updated package informations.
24-Sep-2013	3	Updated Disclaimer.

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

ST PRODUCTS ARE NOT DESIGNED OR AUTHORIZED FOR USE IN: (A) SAFETY CRITICAL APPLICATIONS SUCH AS LIFE SUPPORTING, ACTIVE IMPLANTED DEVICES OR SYSTEMS WITH PRODUCT FUNCTIONAL SAFETY REQUIREMENTS; (B) AERONAUTIC APPLICATIONS; (C) AUTOMOTIVE APPLICATIONS OR ENVIRONMENTS, AND/OR (D) AEROSPACE APPLICATIONS OR ENVIRONMENTS. WHERE ST PRODUCTS ARE NOT DESIGNED FOR SUCH USE, THE PURCHASER SHALL USE PRODUCTS AT PURCHASER'S SOLE RISK, EVEN IF ST HAS BEEN INFORMED IN WRITING OF SUCH USAGE, UNLESS A PRODUCT IS EXPRESSLY DESIGNATED BY ST AS BEING INTENDED FOR "AUTOMOTIVE, AUTOMOTIVE SAFETY OR MEDICAL" INDUSTRY DOMAINS ACCORDING TO ST PRODUCT DESIGN SPECIFICATIONS. PRODUCTS FORMALLY ESCC, QML OR JAN QUALIFIED ARE DEEMED SUITABLE FOR USE IN AEROSPACE BY THE CORRESPONDING GOVERNMENTAL AGENCY.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries. Information in this document supersedes and replaces all information previously supplied. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2013 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

