

CGHV35400F1 400 W, 2.9 - 3.5 GHz, GaN HEMT

Package Type: 440226 PNs: CGHV35400F1

transistor is matched to 50-ohms on the input and 50-ohms on the output. The CGHV35400F1 is based on Wolfspeed's high power density 50 V, 0.4 μ m GaN

ceramic/metal flange package of type 440226.

Description

Typical Performance Over 2.9 - 3.5 GHz ($T_c = 25^{\circ}C$)

Wolfspeed's CGHV35400F1 is a gallium nitride (GaN) high electron mobility transistor (HEMT) designed specifically with high efficiency and high gain for the 2.9 - 3.5 GHz S-Band radar band. The device has been developed with long pulse capability to meet the developing trends in radar architectures. The

on silicon carbide (SiC) manufacturing process. The transistor is supplied in a

Parameter	2.9 GHz	3.2 GHz	3.5 GHz	Units
Small Signal Gain ^{1,2}	15.0	13.6	12.5	dB
Output Power ^{1,3}	57.1	56.9	56.4	dBm
Power Gain ^{1,3}	11.1	10.9	10.4	dB
Drain Efficiency ^{1,3}	69	64	60	%

Note:

 1 V $_{\rm DD}$ = 50 V, I $_{\rm DQ}$ = 500 mA 2 Measured at P $_{\rm IN}$ = -20 dBm 3 Measured at P $_{\rm IN}$ = 46 dBm and 2 ms; Duty Cycle = 20%

Features

- 500 W Typical P_{SAT}
- >65% Typical Drain Efficiency
- 13 dB Large Signal Gain
- **High Temperature Operation**

Note: Features are typical performance across frequency under 25°C operation. Please reference performance charts for additional details.

Applications

Civil and Military Pulsed Radar Amplifiers

Figure 1.

Rev. 1.0, 2022-8-4

Absolute Maximum Ratings (not simultaneous) at 25°C

Parameter	Symbol	Rating	Units	Conditions
Drain-source Voltage	V _{DSS}	150	VDC	25°C
Gate-source Voltage	V _{GS}	-10, +2	VDC	25 C
Storage Temperature	T _{STG}	-65, +150	°C	
Maximum Forward Gate Current	Ι _G	80	mA	25°C
Maximum Drain Current	I _{DMAX}	24	A	
Soldering Temperature	T _s	245	°C	
Junction Temperature	T,	225	°C	MTTF > 1e6 Hours

Electrical Characteristics (Frequency = 2.9 GHz to 3.5 GHz unless otherwise stated; $T_c = 25^{\circ}C$)

Characteristics	Symbol	Min.	Тур.	Max.	Units	Conditions
DC Characteristics			0			
Gate Threshold Voltage	V _{GS(TH)}	-3.8	-3.0	-2.3	V	$V_{DS} = 10 \text{ V}, \text{ I}_{D} = 83.6 \text{ mA}$
Gate Quiescent Voltage	V _{GS(Q)}	_	-2.7	_	V _{DC}	$V_{DD} = 50 \text{ V, } I_{DQ} = 500 \text{ mA}$
Saturated Drain Current ¹	I _{DS}	62.7	75.5	_	А	$V_{DS} = 6.0 \text{ V}, V_{GS} = 2.0 \text{ V}$
Drain-Source Breakdown Voltage	V _{BR(DSS)}	125	_	_	V	$V_{GS} = -8 \text{ V}, \text{ I}_{D} = 83.6 \text{ mA}$
RF Characteristics²						
Small Signal Gain	S21 ₁	_	13.7	_	dB	P _{IN} = -20 dBm, Freq = 2.9 - 3.5 GHz
Output Power	P _{OUT1}	_	57.1	_		$V_{DD} = 50 \text{ V}, \text{ I}_{DQ} = 500 \text{ mA}, \text{ P}_{IN} = 46 \text{ dBm}, \text{ Freq} = 2.9 \text{ GHz}$
Output Power	P _{OUT2}	_	56.9	_	dBm	$V_{DD} = 50 \text{ V}, \text{ I}_{DQ} = 500 \text{ mA}, \text{ P}_{IN} = 46 \text{ dBm}, \text{ Freq} = 3.2 \text{ GHz}$
Output Power	P _{OUT3}	_	56.4	_		$V_{DD} = 50 \text{ V}, I_{DQ} = 500 \text{ mA}, P_{IN} = 46 \text{ dBm}, \text{ Freq} = 3.5 \text{ GHz}$
Drain Efficiency	D _{E1}	_	69	_		$V_{DD} = 50 \text{ V}, I_{DQ} = 500 \text{ mA}, P_{IN} = 46 \text{ dBm}, \text{ Freq} = 2.9 \text{ GHz}$
Drain Efficiency	D _{E2}	_	64	_	%	$V_{DD} = 50 \text{ V}, I_{DQ} = 500 \text{ mA}, P_{IN} = 46 \text{ dBm}, \text{ Freq} = 3.2 \text{ GHz}$
Drain Efficiency	D _{E3}	_	60	_		$V_{DD} = 50 \text{ V}, I_{DQ} = 500 \text{ mA}, P_{IN} = 46 \text{ dBm}, \text{ Freq} = 3.5 \text{ GHz}$
Power Gain	G _{P2}	_	11.1	_		$V_{DD} = 50 \text{ V}, \text{ I}_{DO} = 500 \text{ mA}, \text{ P}_{IN} = 46 \text{ dBm}, \text{ Freq} = 2.9 \text{ GHz}$
Power Gain	G _{P3}	_	10.9	_		$V_{DD} = 50 \text{ V}, \text{ I}_{DO} = 500 \text{ mA}, \text{ P}_{IN} = 46 \text{ dBm}, \text{ Freq} = 3.2 \text{ GHz}$
Power Gain	G _{P4}	_	10.4	_	dB	$V_{DD} = 50 \text{ V}, \text{ I}_{DO} = 500 \text{ mA}, \text{ P}_{IN} = 46 \text{ dBm}, \text{ Freq} = 3.5 \text{ GHz}$
Input Return Loss	S11	_	-7.1	_		
Output Return Loss	\$22	_	-5.8	_		P _{IN} = -20 dBm, 2.9 - 3.5 GHz
Output Mismatch Stress	VSWR	_	3:1	_	Ψ	No damage at all phase angles

Notes:

¹ Scaled from PCM data

 $^{\rm 2}$ Unless otherwise noted: Pulse Width = 2 ms, Duty Cycle = 20%

Thermal Characteristics

Parameter	Symbol	Rating	Units	Conditions
Operating Junction Temperature	Tj	224	°C	Pulse Width = 2 ms, Duty Cycle = 20%, P _{DISS} = 418 W, T _{CASE} = 57.2°C
Thermal Resistance, Junction to Case	R _{θJC}	0.4	°C/W	

Rev. 1.0, 2022-8-4

Test conditions unless otherwise noted: $V_D = 50 V$, $I_{DO} = 500 mA$, Pulse Width = 500 μ s, Duty Cycle = 10%, $P_{IN} = 46 dBm$, $T_{BASE} = +25^{\circ}C$

Test conditions unless otherwise noted: $V_D = 50 V$, $I_{DO} = 500 mA$, Pulse Width = 500 μ s, Duty Cycle = 10%, $P_{IN} = 46 dBm$, $T_{BASE} = +25^{\circ}C$

Rev. 1.0, 2022-8-4

Test conditions unless otherwise noted: V_D = 50 V, I_{DO} = 500 mA, Pulse Width = 500 µs, Duty Cycle = 10%, P_{IN} = 46 dBm, T_{BASE} = +25°C

Input Power (dBm)

Test conditions unless otherwise noted: $V_D = 50 V$, $I_{DO} = 500 mA$, Pulse Width = 500 μ s, Duty Cycle = 10%, $P_{IN} = 46 dBm$, $T_{BASE} = +25^{\circ}C$

as a Function of Temperature

as a Function of Temperature

4600 Silicon Drive | Durham, NC 27703 | Tel: +1.919.313.5300

Rev. 1.0, 2022-8-4

Test conditions unless otherwise noted: $V_D = 50 V$, $I_{DQ} = 500 mA$, Pulse Width = 500 μ s, Duty Cycle = 10%, $P_{IN} = 46 dBm$, $T_{BASE} = +25^{\circ}C$

4600 Silicon Drive | Durham, NC 27703 | Tel: +1.919.313.5300

Test conditions unless otherwise noted: V_D = 50 V, I_{DO} = 500 mA, Pulse Width = 2 ms, Duty Cycle = 20%, P_{IN} = 46 dBm, T_{BASE} = +25°C

Rev. 1.0, 2022-8-4

Test conditions unless otherwise noted: V_D = 50 V, I_{DO} = 500 mA, Pulse Width = 2 ms, Duty Cycle = 10%, Pin = 46 dBm, T_{BASE} = +25°C

Rev. 1.0, 2022-8-4

Test conditions unless otherwise noted: V_D = 50 V, I_{DO} = 500 mA, Pulse Width = 2 ms, Duty Cycle = 20%, P_{IN} = 46 dBm, T_{BASE} = +25°C

as a Function of Frequency

Input Power (dBm)

Figure 43. Drain Current vs Input Power as a Function of Frequency

Test conditions unless otherwise noted: $V_D = 50 V$, $I_{DQ} = 500 mA$, Pulse Width = 2 ms, Duty Cycle = 20%, $P_{IN} = 46 dBm$, $T_{BASE} = +25^{\circ}C$

Figure 48. Drain Current vs Input Power as a Function of Temperature

Test conditions unless otherwise noted: $V_D = 50 V$, $I_{DO} = 500 mA$, Pulse Width = 2 ms, Duty Cycle = 20%, $P_{IN} = 46 dBm$, $T_{BASE} = +25^{\circ}C$

Rev. 1.0, 2022-8-4

Test conditions unless otherwise noted: V_D = 50 V, I_{DO} = 500 mA, Pulse Width = 2 ms, Duty Cycle = 20%, P_{IN} = 46 dBm, T_{BASE} = +25°C

Rev. 1.0, 2022-8-4

Test conditions unless otherwise noted: $V_D = 50 \text{ V}$, $I_{DQ} = 500 \text{ mA}$, $P_{IN} = -20 \text{ dBm}$, $T_{BASE} = +25^{\circ}\text{C}$

as a Function of Temperature

Figure 62. Gain vs Frequency as a Function of Temperature

Figure 64. Input RL vs Frequency as a Function of Temperature

Figure 66. Output RL vs Frequency as a Function of Temperature

Rev. 1.0, 2022-8-4

Test conditions unless otherwise noted: $V_D = 50 \text{ V}$, $I_{DQ} = 500 \text{ mA}$, $P_{IN} = -20 \text{ dBm}$, $T_{BASE} = +25^{\circ}\text{C}$

CGHV35400F1-AMP Evaluation Board Outline

Rev. 1.0, 2022-8-4

4600 Silicon Drive | Durham, NC 27703 | Tel: +1.919.313.5300

© 2022 Wolfspeed, Inc. All rights reserved. Wolfspeed® and the Wolfstreak logo are registered trademarks and the Wolfspeed logo is a trademark of Wolfspeed, Inc. The information in this document is subject to change without notice. 16

CGHV35400F1-AMP Evaluation Board Bill of Materials

Designator	Description	Qty
R1	RES, 511, ohm, +/- 1%, 1/16W, 0603	1
R2	RES, 5.1, ohm, +/- 1%, 1/16W, 0603	1
C1	CAP, 6.8pF, +/-0.25%, 250V, 0603	1
C2, C7, C8	CAP, 10.0pF, +/-1%, 250V, 0805	3
C3	CAP, 10.0pF, +/-5%, 250V, 0603	1
C4, C9	CAP, 470pF, 5%, 100V, 0603, X	2
C5	CAP, 33000 pF, 0805, 100V, X7R	1
C6	CAP, 10µF, 16V, TANTALUM	1
C10	CAP, 1.0μF, 100V, 10%, X7R, 1210	1
C11	CAP, 33µF, 20%, G CASE	1
C12	CAP, 3300µF, +/-20%, 100V, ELECTROLYTIC	1
J1, J2	CONN, SMA, PANEL MOUNT JACK, FL	2
J3	HEADER, RT>PLZ, 0.1CEN LK 9POS	1
J4	CONNECTOR; SMB, Straight, JACK, SMD	1
W1	CABLE, 18 AWG, 4.2	1
	PCB, RO4350, 2.5 X 4.0 X 0.030	1
Q1	CGHV35400F1	1

Electrostatic Discharge (ESD) Classifications

Parameter	Symbol	Class	Classification Level	Test Methodology
Human Body Model	НВМ	1B	ANSI/ESDA/JEDEC JS-001 Table 3	JEDEC JESD22 A114-D
Charge Device Model	CDM	0CB	ANSI/ESDA/JEDEC JS-002 Table 3	JEDEC JESD22 C101-C

Rev. 1.0, 2022-8-4

Product Dimensions CGHV35400F1 (Package 440226)

NOTES: (UNLESS OTHERWISE SPECIFIED)

- 1. INTERPRET DRAWING IN ACCORDANCE WITH ANSI Y14.5M-2009
- 2. ADHESIVE FROM LID MAY EXTEND A MAXIMUM OF .020 BEYOND EDGE OF LID
- 3. LID MAY BE MISALIGNED TO THE BODY OF PACKAGE BY A MAXIMUM OF .008 IN ANY DIRECTION
- 4. ALL PLATED SURFACES ARE GOLD DVER NICKEL

Pin	Desc.
1	GATE/RFIN
2	DRAIN/RFOUT
3	SOURCE/FLANGE

Rev. 1.0, 2022-8-4

Part Number System

Table 1.

Table	2.
-------	----

Parameter	Value	Units	
Lower Frequency	2.9		
Upper Frequency	3.5	GHz	
Power Output	400	W	
Package	Flange	_	

Note:

Alpha characters used in frequency code indicate a value greater than 9.9 GHz. See Table 2 for value.

Character Code	Code Value
А	0
В	1
С	2
D	3
E	4
F	5
G	6
Н	7
J	8
К	9
Examples:	1A = 10.0 GHz 2H = 27.0 GHz

Rev. 1.0, 2022-8-4

Product Ordering Information

Order Number	Description	Unit of Measure	Image
CGHV35400F1	GaN HEMT	Each	Construction Construction
CGHV35400F1-AMP	Test board with GaN HEMT installed	Each	

For more information, please contact:

4600 Silicon Drive Durham, NC 27703 USA Tel: +1.919.313.5300 www.wolfspeed.com/RF

Sales Contact RFSales@wolfspeed.com

RF Product Marketing Contact RFMarketing@wolfspeed.com

Notes & Disclaimer

Specifications are subject to change without notice. "Typical" parameters are the average values expected by Wolfspeed in large quantities and are provided for information purposes only. Wolfspeed products are not warranted or authorized for use as critical components in medical, life-saving, or life-sustaining applications, or other applications where a failure would reasonably be expected to cause severe personal injury or death. No responsibility is assumed by Wolfspeed for any infringement of patents or other rights of third parties which may result from use of the information contained herein. No license is granted by implication or otherwise under any patent or patent rights of Wolfspeed.

© 2021-2022 Wolfspeed, Inc. All rights reserved. Wolfspeed® and the Wolfstreak logo are registered trademarks and the Wolfspeed logo is a trademark of Wolfspeed, Inc. PATENT: https://www.wolfspeed.com/legal/patents

The information in this document is subject to change without notice.

Rev. 1.0, 2022-8-4