

Low-Power High-Performance and Low-Cost 65 Channel GPS Engine Board (ROM based)

Abstract

Technical data sheet describing the cost effective, high-performance **GPS622R** based series of ultra high sensitive GPS modules.

The GPS622R is a GPS module that is sensitive to *electrostatic dis- charge* (ESD). Please handle with appropriate care.

The Acceptability of Electronic Assemblies of this module has been under IPC-A-610D specification

©2010 www.rfsolutions.co.uk

Version History

Rev.	Date	Description
1.0	12-07-09	Initial Draft – preliminary information

1 Functional Description

1.1 Introduction

The GPS-622R a highly integrated smart GPS module with a ceramic GPS patch antenna. The antenna is connected to the module via an LNA. The module is with 51 channel acquisition engine and 14 channel track engine, which be capable of receiving signals from up to 65 GPS satellites and transferring them into the precise position and timing information that can be read over either UART port or RS232 serial port. Small size and high-end GPS functionality are at low power consumption, Both of the LVTTL-level and RS232 signal interface are provided on the interface connector, supply voltage of 3V~5.5V is supported.

The compact 22mm x 22mm form factor allows it to be used in many applications. Its on-board antenna connector allows external connection of active antenna. Switching to external antenna is automatic when external antenna is applied.

The smart GPS antenna module is available as an off-the-shelf component, 100% tested. The smart GPS antenna module can be offered for OEM applications with the versatile adaptation in form and connection. Additionally, the antenna can be tuned to the final systems' circumstances.

1.2 Features

- 65 Channel GPS L1 C/A Code
- Perform 8 million time-frequency hypothesis testing per second
- 65 Channel GPS L1 C/A Code
- Perform 8 million time-frequency hypothesis testing per second
- Open sky hot start 1 sec
- Open sky cold start 29 sec
- Signal detection better than -161dBm
- Multipath detection and suppression
- Accuracy 2.5m CEP
- Maximum update rate 10Hz
- Tracking current ~28Ma
- Supports external active antenna
- RoHS compliance

1.3 Applications

- Automotive and Marine Navigation
- Automotive Navigator Tracking
- Emergency Locator
- Personal Positioning

2 Characteristics

2.1 General Specification

Parameter	Spe	Specification		
	65	65 Channels GPS L1 frequency, C/A Code		
Receiver Type	GPS			
	Cold Start (Autonomous)	29s (Average, under open sky)		
	Warm Start (Autonomous)	29s (Average, under open sky)		
Time-To-First-Fix	Hot Start (Autonomous)	29s (Average, under open sky)		
	Tracking & Navigation	-161 dBm		
	Reacquisition	-158 dBm		
Sensitivity	Cold Start (Autonomous)	-148 dBm		
Accuracy	Autonomous	2.5 m CEP		
	Velocity	0.1 m/sec (without aid)		
	Time	300 ns		
Max Update Rate	Supports 1 / 2 / 4 / 5 / 8 / 10	Supports 1 / 2 / 4 / 5 / 8 / 10 Hz update rate (1Hz default)		
Velocity Accuracy		0.1m/s		
Heading Accuracy		0.5 degrees		
Dynamics		4 G (39.2 m/sec)		
Operational Limits	Velocity	515 m/s (1000 knots)		
	Altitude <18000 meters			
	(COCOM limit, either may be	exceeded but not both)		
Serial Interface	LVTTL level			
Datum		Default WGS-84		
	User definable			
Input Voltage	3.3V -5.5V DC +/-10%			
Input Current	~23 mA tracking			
Dimension	22L x 2	22L x 22W x H (mm)		
Weight	25g			
	Table 1: CDS 622D gap			

Table 1: GPS-622R general specification

*: GPGGA, GPGSA, GPGSV, GPRMC, GPVTG are default output message

2.2 Serial Port Settings

The default configuration within the standard GPS firmware is the Standard configuration of serial port:

 Supporting 4800/9600 baud rate (<u>Default Value : 9600</u>), 8 data bits, no parity, 1 stop bit, no flow control

2.3 Improved TTFF

In order to improve the TTFF (Time To First Fix), URANUS-634R has been built with the backup battery (SEIKO) to support the RTC with a back-up power when no system power is available.

2.4 GPS Status Indicator

- Non-Fixed mode : LED is always on
- Fixed mode : LED toggle every second

ltem	Description		
Interface	Full duplex serial interface		
Bit rate	4800/9600/38400/115200bps (Optional, Default 9600),		
Start bit	1bit		
Stop bit	1bit		
Data bit	8bit		
Parity	None		
Transmission data	SACII NMEA0183 Ver:3.01		
Update rate	1Hz		
Output sentence	GGA/GSA/GSV/RMC/VTG (typ)		

1. Communication Specifications

Table 2: Communication specifications

2.6 Multi-path Mitigation

Multipath refers to the existence of signals reflected from objects in the vicinity of a receiver's antenna that corrupt the direct line-of-sight signals from the GPS satellites, thus degrading the accuracy of both code-based and carrier phase-based measurements. Particularly difficult is close-in multipath in which the reflected secondary signals arrive only slightly later (within about 100 nanoseconds) than does the direct-path signal, having been reflected from objects only a short distance from the receiver antenna.

GPS-622R deploys the advanced multi-path detection and suppression algorithm to reduce multipath errors, the GPS signals themselves can be designed to provide inherent resistance to multipath errors

2.7 Operating Conditions

Description	Min	Typical	Max
V _{CC}	2.7v	3.3v	3.6v
Enhanced-mode Acquisition		70 mA	
Low power Acquisition Current		50mA	
Tracking Current		23mA	

Table 3: Operating Conditions

2.8 1PPS Output

The GPS receiver is in navigation mode upon power-up, with 1PPS output free running. After 3 minutes of valid position fix and remaining under static-mode, the receiver changes to timing-mode, with 1PPS output signal synchronized to the UTC second. The receiver will change to navigation-mode, with 1PPS output free running, if the receiver is in motion. The 1PPS output will become synchronized to the UTC second again after the receiver had remained in static mode for 3 minutes.

2.9 Antenna

A numbers of important properties of GNSS antennas affect functionality and performance, including;

- Frequency coverage
- Gain pattern
- Circular polarization
- Multipath suppression
- Phase Center
- Impact on receiver sensitivity
- Interference handling

The GPS-622R module is designed to work both active and passive antenna. Active antenna with gain in range of 10 \sim 30dB and noise figure less than 2dB can be used.

2.10 Mechanical Characteristics

Mechanical dimensions	Length Width Height	43 mm 31 mm 6 mm
Weight		30g (may vary)

3 PINOUT DESCRIPTION

Pin Number	Signal Name	Description
1	RXD	UART input, 3V LVTTL for SUP500R, SUP500RB
2	TXD	UART output, 3V LVTTL for SUP500R, SUP500RB
		UART output, RS232 level for SUP500RR
З	GND	System ground
4	VDD	Main3.0V \sim 5.5V supply input
5	VBAT	Backup supply voltage for RTC and SRAM, 1.5V \sim 5.5V for
6	P1PS	1 pulse per second time mark output
7	PSE_SEL	Search Engine Mode select

4. Mechanical Characteristics

Table 4: Pin definition

4. Environmental Conditions

Paran	neter	Specification
	Operating	-20°C~+65°C
Temperature	Storage	-55℃~+100℃
Humidity		5%~95%
Storage		6 months in original vacuum package.

Table 5: Environmental conditions

5. NMEA protocol

The serial interface protocol is based on the National Marine Electronics Association's NMEA 0183 ASCII interface specification. This standard is fully define in "NMEA 0183, Version 3.01" The standard may be obtained from NMEA, <u>www.nmea.org</u>

5.1 GGA-GLOBAL POSITIONING SYSTEM FIX DATA

Time, position and fix related data for a GPS receiver.

Structure:

\$GPGGA,hhmmss.sss,ddmm.mmmm,a,dddmm.mmmm,a,x,xx,x.x,X,M,x.x,M,x.x,M,x.x,Xxx*hh<CR><LF>

1 2 3 4 5 6 7 8 9 10 11 12 13

Example:

\$GPGGA,060932.448,2447.0959,N,12100.5204,E,1,08,1.1,108.7,M,,,,0000*0E<CR><LF>

Field	Name	Example	Description
1	UTC Time	060932.448	UTC of position in hhmmss.sss format, (000000.00 ~ 235959.99)
2	Latitude	2447.0959	Latitude in ddmm.mmmm format Leading zeros transmitted
3	N/S Indicator	Ν	Latitude hemisphere indicator, 'N' = North, 'S' = South
4	Longitude	12100.5204	Longitude in dddmm.mmmm format Leading zeros transmitted
5	E/W Indicator	E	Longitude hemisphere indicator, 'E' = East, 'W' = West
6	GPS quality indicator	1	 GPS quality indicator O: position fix unavailable 1: valid position fix, SPS mode 2: valid position fix, differential GPS mode 3: GPS PPS Mode, fix valid 4: Real Time Kinematic. System used in RTK mode with fixed integers 5: Float RTK. Satellite system used in RTK mode. Floating integers

			6: Estimated (dead reckoning) Mode
			7: Manual Input Mode
			8: Simulator Mode
7	Satellites Used	08	Number of satellites in use, (00 \sim 12)
8	HDOP	1.1	Horizontal dilution of precision, (00.0 \sim 99.9)
9	Altitude	108.7	mean sea level (geoid), (-9999.9 ~ 17999.9)
10	Geoid Separation		Geoid separation in meters according to WGS-84 ellipsoid (-999.9 \sim 9999.9)
11	DGPS Age		Age of DGPS data since last valid RTCM transmission in xxx format (seconds) NULL when DGPS not used
12	DGPS Station ID	0000	Differential reference station ID, 0000 \sim 1023 NULL when DGPS not used
13	Checksum	OE	

Note: The checksum field starts with a '*' and consists of 2 characters representing a hex number. The checksum is the exclusive OR of all characters between '\$' and '*'.

OB(E

5.2 GLL - LATITUDE AND LONGITUDE, WITH TIME OF POSITION FIX AND STATUS

Latitude and longitude of current position, time, and status.

Structure:

\$GPGLL,ddmm.mmmm,a,dddmm.mmmm,a,hhmmss.sss,A,a*hh<CR><LF>

1 2 3 4 5 6 7 8

Example:

\$GPGLL,4250.5589,S,14718.5084,E,092204.999,A,A*2D<CR><LF>

Field	Name	Example	Description
1	Latitude	4250.5589	Latitude in ddmm.mmmm format
			Leading zeros transmitted
			Latitude hemisphere indicator
2	N/S Indicator	S	'N' = North
			'S' = South
З	Longitude	14718.5084	Longitude in dddmm.mmmm format
	Longioudo	11710.0001	Leading zeros transmitted
			Longitude hemisphere indicator
4	E/W Indicator	E	'E' = East
			'W' = West
5	UTC Time	092204.999	UTC time in hhmmss.sss format (000000.00 \sim
		002204.000	235959.99)
6	Status	А	Status, 'A' = Data valid, 'V' = Data not valid
			Mode indicator
	Mode Indicator		'N' = Data not valid
			'A' = Autonomous mode
7		А	'D' = Differential mode
			'E' = Estimated (dead reckoning) mode
			'M' = Manual input mode
			'S' = Simulator mode
8	Checksum	2D	

5.3 GSA - GPS DOP AND ACTIVE SATELLITES

GPS receiver operating mode, satellites used in the navigation solution reported by the GGA or GNS sentence and DOP values.

Structure:

123333333333334567

Example:

\$GPGSA,A,3,01,20,19,13,,,,,,40.4,24.4,32.2*0A<CR><LF>

Field	Name	Example	Description
			Mode
1	Mode	А	'M' = Manual, forced to operate in 2D or 3D mode
	initiae		'A' = Automatic, allowed to automatically switch
			2D/3D
			Fix type
2	Mode	3	1 = Fix not available
E .			2 = 2D
			3 = 3D
3	Satellite used	01,20,19,13,	Satellite ID number, 01 to 32, of satellite used in
0	1~12	, , , , , , , , ,	solution, up to 12 transmitted
4	PDOP	40.4	Position dilution of precision (00.0 to 99.9)
5	HDOP	24.4	Horizontal dilution of precision (00.0 to 99.9)
6	VDOP	32.2	Vertical dilution of precision (00.0 to 99.9)
7	Checksum	OA	

5.4 GSV - GPS SATELLITE IN VIEW

Numbers of satellites in view, PRN number, elevation angle, azimuth angle, and C/No. Four satellites details are transmitted per message. Additional satellite in view information is send in subsequent GSV messages.

Structure:

1234567 45678

Example:

\$GPGSV,3,1,09,28,81,225,41,24,66,323,44,20,48,066,43,17,45,336,41*78<CR><LF> \$GPGSV,3,2,09,07,36,321,45,04,36,257,39,11,20,050,41,08,18,208,43*77<CR><LF>

Field	NaME	Example	Description
1	Number of message	3	Total number of GSV messages to be transmitted (1-3)
2	Sequence number	1	Sequence number of current GSV message
3	Satellites in view	09	Total number of satellites in view (00 \sim 12)
4	Satellite ID	28	Satellite ID number, GPS: 01 ~ 32, SBAS: 33 ~ 64 (33 = PRN120)
5	Elevation	81	Satellite elevation in degrees, (00 \sim 90)
6	Azimuth	225	Satellite azimuth angle in degrees, (000 \sim 359)
7	SNR	41	C/No in dB (00 ~ 99) Null when not tracking
8	Checksum	78	

5.5 RMC - RECOMMANDED MINIMUM SPECIFIC GPS/TRANSIT DATA

Time, date, position, course and speed data provided by a GNSS navigation receiver.

Structure:

\$GPRMC,hhmmss.sss,A,dddmm.mmmm,a,dddmm.mmmm,a,x.x,x.x,ddmmyy,x.x ,a,a*hh<CR><LF>

1 2 3 4 5 6 7 8 9 10 11 12 13

Example:

\$GPRMC,092204.999,A,4250.5589,S,14718.5084,E,0.00,89.68,211200,,A*25<CR><LF>

Field	NaME	Example	Description
1	UTC time	092204.999	UTC time in hhmmss.sss format (000000.00 \sim 235959.999)
2	Status	A	Status 'V' = Navigation receiver warning
			'A' = Data Valid
З	Latitude	4250.5589	Latitude in dddmm.mmmm format
			Leading zeros transmitted
	N/S indicator	S	Latitude hemisphere indicator
4			'N' = North
			'S' = South
5	Longitude	14718.5084	Longitude in dddmm.mmmm format
			Leading zeros transmitted
	E/W Indicator	E	Longitude hemisphere indicator
6			'E' = East
			'W' = West
7	Speed over ground	000.0	Speed over ground in knots (000.0 \sim 999.9)
8	Course over ground	000.0	Course over ground in degrees (000.0 \sim 359.9)
9	UTC Date	211200	UTC date of position fix, ddmmyy format
10	Magnetic variation		Magnetic variation in degrees (000.0 \sim 180.0)
	Magnetic Variation		Magnetic variation direction
11			'E' = East
			'W' = West
	Mode indicator	A	Mode indicator
			'N' = Data not valid
			'A' = Autonomous mode
12			'D' = Differential mode
			'E' = Estimated (dead reckoning) mode
			'M' = Manual input mode
			'S' = Simulator mode
13	checksum	25	

5.6 VTG - COURSE OVER GROUND AND GROUND SPEED

The Actual course and speed relative to the ground.

Structure:

GPVTG,x.x,T,x.x,M,x.x,N,x.x,K,a*hh<CR><LF>

1 2 3 4 5 6

Example:

\$GPVTG,89.68,T,,M,0.00,N,0.0,K,A*5F<CR><LF>

Field	Name	Example	Description
1	Course	89.68	True course over ground in degrees (000.0 \sim 359.9)
2	Course		Magnetic course over ground in degrees (000.0 \sim 359.9)
3	Speed	0.00	Speed over ground in knots (000.0 \sim 999.9)
4	Speed	0.00	Speed over ground in kilometers per hour (0000.0 \sim 1800.0)
5	Mode	A	Mode indicator 'N' = not valid 'A' = Autonomous mode 'D' = Differential mode 'E' = Estimated (dead reckoning) mode 'M' = Manual input mode 'S' = Simulator mode
6	Checksum	5F	

5.7 ZDA- TIME AND DATE

Structure:

\$GPRMC,hhmmss.sss,dd,mm.yyyy, , ,xxx<CR><LF>

1 2 3 4 5 6 7

Example:

\$GPZDA,104548.04,25,03,2004,,*6C<CR><LF>

Field	Name	Example	Description
1	UTC time	104548.04	UTC time in hhmmss.ss format, 000000.00 \sim 235959.99
2		25	UTC time day (01 31)
3	UTC time: month	03	UTC time: month (01 12)
4	UTC time: year	2004	UTC time: year (4 digit year)
5			Local zone hour Not being output by the receiver (NULL)
6			Local zone minutes Not being output by the receiver (NULL)
7	6C	6C	Checksum

6. Contact Information

We hope this datasheet will be helpful to the user to get the most out of the GPS module, furthermore feedback inputs about errors or mistakable verbalizations and comments or proposals to **RF Solutions Ltd.**. for further improvements are highly appreciated.

© 2009 RF Solutions Ltd. All rights reserved.

Not to be reproduced in whole or part for any purpose without written permission of RF Solutions Ltd. Information provided by RF Solutions Ltd is believed to be accurate and reliable. These materials are provided by RF Solutions Ltd as a service to its customers and may be used for informational purposes only. RF Solutions Ltd assumes no responsibility for errors or omissions in these materials, nor for its use RF Solutions Ltd reserves the right to change specification at any time without notice.

These materials are provides "as is" without warranty of any kind, either expressed or implied, relating to sale and/or use of **RF Solutions Ltd** products including liability or warranties relating to fitness for a particular purpose, consequential or incidental damages, merchantability, or infringement of any patent, copyright or other intellectual property right. **RF Solutions Ltd** further does not warrant the accuracy or completeness of the information, text, graphics or other items contained within these materials. **RF Solutions Ltd** shall not be liable for any special, indirect, incidental, or consequential damages, including without limitation, lost revenues or lost profits, which may result from the use of these materials.

RF Solutions Ltd products are not intended for use in medical, life-support devices, or applications involving potential risk of death, personal injury, or severe property damage in case of failure of the product.

