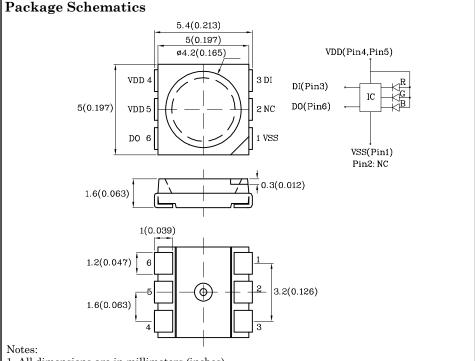


5.0 x 5.0 mm Surface Mount LED Lamp


www.SunLEDusa.com

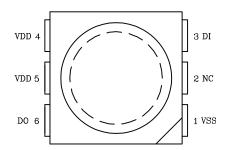
Features

- The control circuit and the LED share the same
- Intelligent protection against reverse connection
- Built-in electric reset and power lost reset Circuit
- 256-level grayscale adjustable circuit
- Built-in signal reshaping circuit
- Cascade port transmission signal by single line
- Standard Package: 500pcs/ Reel
- MSL (Moisture Sensitivity Level): 3
- Halogen-free
- RoHS compliant

Descriptions

- •An intelligent control LED light source that integrates the control circuit and RGB chips in a 5050 package for a complete control of pixel point
- •Data protocol uses unipolar NRZ communication mode
- •The control chip integrated in the LED enables a simple circuit, small size, and convenient installation

- 1. All dimensions are in millimeters (inches).
- 2. Tolerance is $\pm 0.2(0.008")$ unless otherwise noted.
- 3. Specifications are subject to change without notice.



ATTENTION

OBSERVE PRECAUTIONS FOR HANDLING ELECTROSTATIC DISCHARGE DEVICES

Pin Configuration

Part Number	0	Emitting Material	Lens-color
-------------	---	----------------------	------------

Pin Function

No.	Symbol	Function Description
1	VSS	Ground
2	NC	/
3	DI	Control data signal input
4	VDD	Power supply LED
5	VDD	Power supply LED
6	DO	Control data signal output

Iv (mcd) @ $V_{DD} = 5V$,

Gray Scale

	00101	1114001141		λP	λD	Level	= 255	_01/_
				typ.	typ.	min.	typ.	
XZM2CRKDGKCBD107S-IC	Red	AlGaInP		640*	625*	200*	357*	
	Green	InGaN	Water Clear	515*	525*	400*	597*	120°
	Blue	InGaN	•	460*	465*	80*	148*	

Wavelength

CIE127-2007*

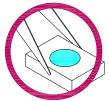
Wavelength

CIE127-2007*

Viewing Angle

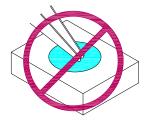
201/2

^{*}Luminous intensity value and wavelength are in accordance with CIE127-2007 standards. Nov 27 2019


 $5.0 \times 5.0 \text{ mm}$ Surface Mount LED Lamp

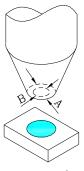
Handling Precautions

Compare to epoxy encapsulant that is hard and brittle, silicone is softer and flexible. Although its characteristic significantly reduces thermal stress, it is more susceptible to damage by external mechanical force.


As a result, special handling precautions need to be observed during assembly using silicone encapsulated LED products. Failure to comply might lead to damage and premature failure of the LED.

1. Handle the component along the side surfaces by using forceps or appropriate tools.

2. Do not directly touch or handle the silicone lens surface. It may damage the internal circuitry.



3. Do not stack together assembled PCBs containing exposed LEDs. Impact may scratch the silicone lens or damage the internal circuitry.

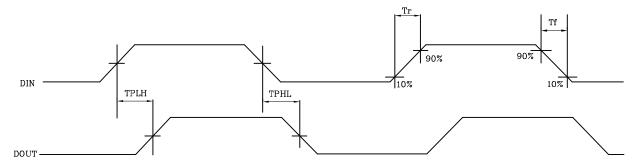
- 4.1. The inner diameter of the SMD pickup nozzle should not exceed the size of the LED to prevent air leaks.
- 4.2. A pliable material is suggested for the nozzle tip to avoid scratching or damaging the LED surface during pickup.
- 4.3. The dimensions of the component must be accurately programmed in the pick-and-place machine to insure precise pickup and avoid damage during production.

5. As silicone encapsulation is permeable to gases, some corrosive substances such as H_2S might corrode silver plating of leadframe. Special care should be taken if an LED with silicone encapsulation is to be used near such substances.

Nov 27 2019 XDSB9260 V2-Z Layout: Maggie L.

 $5.0 \ge 5.0 \ \mathrm{mm}$ Surface Mount LED Lamp

Absolute Maximum Ratings at $T_A=25$ °C


Parameter	Symbol	Ratings	Unit
Power Supply Voltage	$V_{ m DD}$	+3.5~+5.5	V
Input Voltage	VI	-0.5~V _{DD} +0.5	V
Operating Temperature	$T_{ m op}$	-40 ~ + 85	°C
Storage Temperature	$T_{ m stg}$	-40 ~ + 115	°C
EST Pressure	V _{ESD}	4000	V

Electrical Characteristics ($T_A=-20\sim+70^{\circ}\text{C}, V_{DD}=+4.5\sim+5.5\text{V}, V_{SS}=0\text{V}, \text{unless otherwise specified}$)

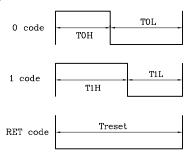
Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
Supply Voltage	V_{DD}	-	-	5	-	V
R / G / B Port Pressure	$ m V_{DS}$	-	-	-	26	V
R / G / B Port Drive Current	I _{OUT_R/G/B}	Vds_r/g/b	-	12	-	mA
mi ci i i i i i i i i i i i i i i i i i	V _{IH}	77	-	3.4	-	V
The Signal Input Flip Threshold	V _{IL}	$ m V_{DD}$ =5 $ m V$	-	1.6	-	V
The Frequency of PWM	F_{PWM}	-	-	1.2	-	KHZ
Static Power Consumption	I_{DD}	-	-	1	-	mA

Dynamic Characteristics at $T_A=25$ °C

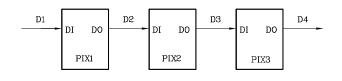
Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
Operation Frequency	$F_{ m DIN}$	The Duty Ratio of 67%(Data 1)	-	800	-	KHZ
Tuonamiagian Dalay Tima	$\mathrm{T}_{\mathrm{PLH}}$	DIN → DOUT	-	-	500	ns
Transmission Delay Time	$\mathrm{T}_{\mathrm{PHL}}$	DIN → DOUT	-	-	500	ns
I Tim-	T_{R}	V_{DS} =1.5 V	-	70	-	ns
$ m I_{OUT}$ Time	T_{F}	I _{OUT} =12mA	-	100	-	ns

Nov 27 2019

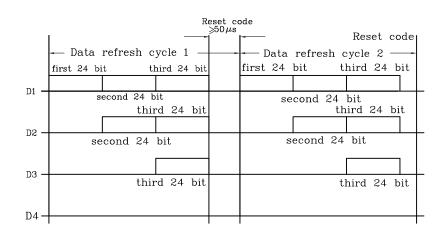
XDSB9260 V2-Z Layout: Maggie L.



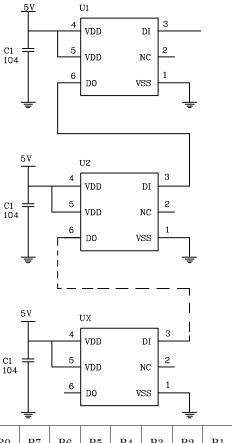
 $5.0 \times 5.0 \text{ mm}$ Surface Mount LED Lamp


Data Transfer Time (TH+TL=1.25µs±600ns)

ТОН	0 code, high voltage time	0.3μs	±150ns
T1H	1 code, high voltage time	0.6μs	±150ns
TOL	0 code, low voltage time	0.9μs	±150ns
T1L	1 code, low voltage time	0.6μs	±150ns
RES	low voltage time	80μs	-


Sequence Chart

Cascade Method



Data Transmission Method

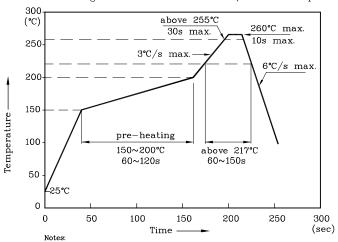
Note: The data of D1 is sent by MCU, and D2,D3,D4 through pixel internal reshaping amplification to transmit.

Typical Application Circuit

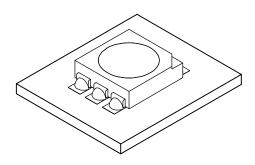
Composition of 24bit Data

т																								
	G7	G6	G_5	CA	G3	G2	G1	G0	R7	R6	R5	R4	R3	R2	R1	R0	B7	B6	B5	B4	В3	B2	B1	B0
	GI	GO	Go	G4	α_{0}	G2	GI	GU	107	110	по	114	113	112	111	110	Di	ъо	ъэ	104	ъэ	102	DI	ъ

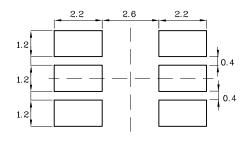
Note: Follow the order of GRB to send data and the high bit is sent first.


Nov 27 2019

XDSB9260 V2-Z Layout: Maggie L.

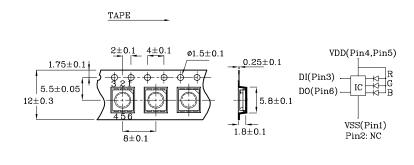

LED is recommended for reflow soldering and soldering profile is shown below.

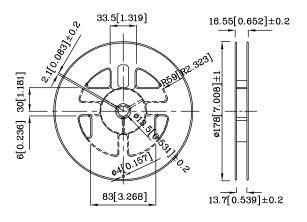
Reflow Soldering Profile for SMD Products (Pb-Free Components)



- 1. All temperatures refer to the center of the package, measured on the package body surface facing up during reflow
- 2. Do not apply any stress to the LED during high temperature conditions. 3. Maximum number of soldering passes: 2

♦ The device has a single mounting surface. The device must be mounted according to the specifications.

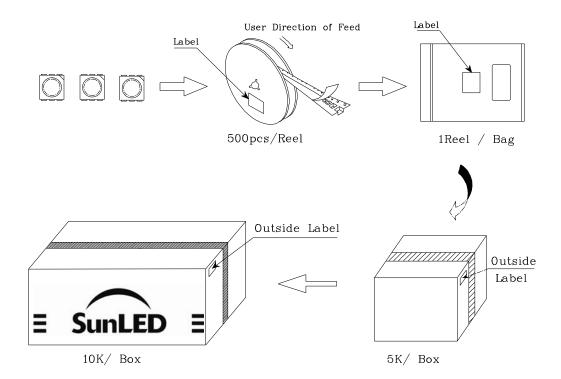


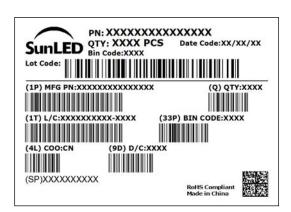

Recommended Soldering Pattern (Units: mm; Tolerance: ± 0.1)

❖ Tape Specification (Units:mm)

Reel Dimension

Remarks:


If special sorting is required (e.g. binning based on forward voltage, Luminous intensity / luminous flux, or wavelength), the typical accuracy of the sorting process is as follows:


- 1. Wavelength: +/-1nm
- 2. Luminous intensity / luminous flux: +/-15%
- 3. Forward Voltage: +/-0.1V

Note: Accuracy may depend on the sorting parameters.

PACKING & LABEL SPECIFICATIONS

TERMS OF USE

- $1.\ Data\ presented\ in\ this\ document\ reflect\ statistical\ figures\ and\ should\ be\ treated\ as\ technical\ reference\ only.$
- 2. Contents within this document are subject to improvement and enhancement changes without notice.
- 3. The product(s) in this document are designed to be operated within the electrical and environmental specifications indicated on the datasheet. User accepts full risk and responsibility when operating the product(s) beyond their intended specifications.
- 4. The product(s) described in this document are intended for electronic applications in which a person's life is not reliant upon the LED. Please consult with a SunLED representative for special applications where the LED may have a direct impact on a person's life.
- 5. The contents within this document may not be altered without prior consent by SunLED.
- 6. Additional technical notes are available at https://www.SunLEDusa.com/TechnicalNotes.asp

Nov 27 2019 XDSB9260 V2-Z Layout: Maggie L.