

ISO8200BQ

Galvanic isolated octal high-side smart power solid state-relay

Datasheet - production data

Features

- V_{demag} = V_{CC} 45 V (per channel)
- $R_{DS(on)} = 0.12 \Omega$ (per channel)
- I_{OUT} = 0.7 A (per channel)
- V_{CC} = 45 V
- Parallel input interface
- Direct and synchronous control mode
- High common mode transient immunity
- Short-circuit protection
- Channel overtemperature protection
- Thermal independence of separate channels
- Common output disable pin
- Case overtemperature protection
- Loss of GND_{CC} and V_{CC} protection
- Undervoltage shutdown with auto-restart and hysteresis
- Overvoltage protection (V_{CC} clamping)
- Very low supply current
- Common fault open-drain output
- 5 V and 3.3 V TTL/CMOS compatible I/Os
- Fast demagnetization of inductive loads
- Reset function for IC output disable
- ESD protection
- Designed to meet IEC 61000-4-2, IEC 61000-4-4, IEC 61000-4-5 and IEC 61000-4-8
- UL1577 and UL508 certified
- Safety Limits as per VDE0884-11

Applications

- Programmable logic control
- Industrial PC peripheral input/output
- Numerical control machines
- Drivers for all types of loads (resistive, capacitive, inductive)

Description

The ISO8200BQ is a galvanic isolated 8-channel driver featuring a very low supply current. It contains 2 independent galvanic isolated voltage domains (V_{CC} for the power stage and V_{DD} for the digital stage). Additional embedded functions are: loss of GND protection, undervoltage shutdown with hysteresis, and reset function for immediate power output shutdown.

IC is intended to drive any kind of load with one side connected to ground. Active channel current limitation combined with thermal shutdown, (independent for each channel), and automatic restart, protect the device against overload and short-circuit. In overload conditions, if junction temperature overtakes threshold, the channel involved is turned off and on again automatically after the IC temperature decreases below a reset threshold. If this condition causes case temperature to reach TCR limit threshold, the overloaded channel is turned off and it only restarts when case and junction temperature decrease down to the reset thresholds. Nonoverloaded channels continue operating normally. An internal circuit provides an OR-wired nonlatched common FAULT indicator signaling the channel OVT. The FAULT pin is an open-drain active low fault indication pin.

May 2020

DS10781 Rev 9

This is information on a product in full production.

1/40

Contents

1	Bloc	Block diagram				
2	Pin o	Pin connection				
3	Abso	olute maximum ratings9				
4	Ther	mal data				
5	Elec	ctrical characteristics				
6	Fund	ctional description				
	6.1	Parallel interface				
		6.1.1 Input signals (IN1 to IN8)				
		6.1.2 Load input data (LOAD)				
		6.1.3 Output synchronization (SYNC)				
		6.1.4 Watchdog				
		6.1.5 Output enable (OUT_EN)19				
	6.2	Direct control mode (DCM)				
	6.3	Synchronous control mode (SCM) 21				
	6.4	Fault indication				
		6.4.1 Junction overtemperature and case overtemperature				
7	Pow	er section				
	7.1	Current limitation				
	7.2	Thermal protection				
8	Reve	erse polarity protection				
9	Reve	everse polarity on VDD				
10	Dem	magnetization energy 30				
11	Con	ventions				
	Supp	Supply voltage and power output conventions				

ISO8200BQ

12		nal information	
	Therm	al impedance	1
13	Packa	age information	2
	13.1	TFQFPN32 package information	2
14	Packi	ng information	7
	14.1	TFQFPN32 packing information 37	7
		14.1.1 TFQFPN32 packing method concept	7
		14.1.2 TFQFPN32 winding direction	9
		14.1.3 TFQFPN32 leader and trailer	9
15	Order	ring information)
16	Revis	ion history)

List of tables

Table 1.	Pin description
Table 2.	Absolute maximum ratings
Table 3.	Thermal data
Table 4.	Power section
Table 5.	Digital supply voltage
Table 6.	Diagnostic pin and output protection function11
Table 7.	Power switching characteristics (VCC = 24 V; -40 °C < TJ < 125 °C)
Table 8.	Logic input and output
Table 9.	Parallel interface timings (VDD = 5 V; VCC = 24 V; -40 °C < TJ < 125 °C) 14
Table 10.	Insulation and safety-related specifications
Table 11.	Insulation characteristics
Table 12.	Safety limits
Table 13.	Interface signal operation (general)17
Table 14.	Interface signal operation in direct control mode
Table 15.	Interface signal operation in synchronous control mode
Table 16.	TFQFPN32 package mechanical data
Table 17.	Tolerance of form and position
Table 18.	Ordering information
Table 19.	Document revision history

List of figures

Block diagram
Pin connection (top through view)
RDS(on) measurement
dV/dT
td(ON) - td(OFF) synchronous mode
td(ON) - td(OFF) direct control mode 13
Watchdog behavior
Output channel enable timing
Direct control mode IC configuration
Direct control mode time diagram
Synchronous control mode IC configuration
Synchronous control mode time diagram
Multiple device synchronous control mode
Thermal status update (DCM)
Thermal status update (SCM)
Current limitation with different load conditions
Thermal protection flowchart
Thermal protection
Reverse polarity protection
Reverse polarity protection on VDD
Maximum demagnetization energy vs. load current, typical values Tamb = 125 °C 30
Supply voltage and power output conventions
Simplified thermal model
TFQFPN32 package outline
TFQFPN32 package detail outline
TFQFPN32 suggested footprint (measured in mm)
TFQFPN32 packing method concept
TFQFPN32 carrier tape
TFQFPN32 reel
TFQFPN32 winding direction
TFQFPN32 leader and trailer

1 Block diagram

Figure 1. Block diagram

Pin connection 2

Figure 2. Pin connection (top through view)

Table 1. Pin description

Pin	Name	Description	
1	GND _{DD}	Input logic ground, negative logic supply	
2	NC	Not connected	
3	GND _{CC}	Output power ground	
4	OUT8	Channel & neuror output	
5	OUT8	Channel 8 power output	
6	OUT7	Channel 7 nouver output	
7	OUT7	Channel 7 power output	
8	OUT6	Channel 6 power output	
9	OUT6		
10	OUT5	Channel 5 power output	
11	OUT5		
12	OUT4	Channel 4 nouver output	
13	OUT4	Channel 4 power output	
14	OUT3	Channel 2 nouver output	
15	OUT3	Channel 3 power output	
16	OUT2	Channel 2 nouver output	
17	OUT2	Channel 2 power output	

Pin	Name	Description			
18	OUT1	Channel 1 newer output			
19	OUT1	Channel 1 power output			
20	V _{DD}	Positive logic supply			
21	OUT_EN	Output enable			
22	SYNC	Input-to-output synchronization signal. Active low, see Section 6.3: Synchronous control mode (SCM) on page 21.			
23	LOAD	Load input data signal. Active low, see Section 6.3			
24	IN1	Channel 1 input			
25	IN2	Channel 2 input			
26	IN3	Channel 3 input			
27	IN4	Channel 4 input			
28	IN5	Channel 5 input			
29	IN6	Channel 6 input			
30	IN7	Channel 7 input			
31	IN8	Channel 8 input			
32	FAULT	Common fault indication, active low			
TAB(V _{CC})	V _{CC}	Exposed tab internally connected to V_{CC} , positive power supply voltage			
TAB(GND _{CC})	GND _{CC}	Exposed tab internally connected to GND _{CC}			

3 Absolute maximum ratings

Symbol	Parameter	Min.	Max.	Unit
V _{CC}	Power supply voltage	-0.3	45	V
V _{DD}	Digital supply voltage	-0.3	6.5	V
V _{IN}	DC input pin voltage (INx, OUT_EN, TOAD, SYNC)	-0.3	+6.5	V
V _{FAULT}	Fault pin voltage	-0.3	+6.5	V
	DC digital ground reverse current	-	-25	mA
I _{OUT}	Channel output current (continuous)	-	Internally limited	А
I _{GNDcc}	DC power ground reverse current	-	-250	mA
-I _{OUT}	Reverse output current (single channel) -		-5	Α
I _{IN}	DC input pin current (INx, OUT_EN, LOAD, SYNC)	-10	+ 10	mA
I _{FAULT}	Fault pin current	-10	+ 10	mA
V _{ESD}	Electrostatic discharge with human body model $(R = 1.5 \text{ k}\Omega; \text{ C} = 100 \text{ pF})$		2000	V
F	Single pulse avalanche energy per channel not simultaneously at _{Tamb} = 125 °C, I _{OUT} = 0.5 A		1.8	J
E _{AS}	Single pulse avalanche energy per channel, all channels driven simultaneously at $_{Tamb}$ = 125 °C, I_{OUT} = 0.5 A	-	0.35	
P _{TOT}	Power dissipation at Tc = 25 °C	-	Internally limited ⁽¹⁾	W
Τ _J	Junction operating temperature	-	Internally limited ⁽¹⁾	°C
T _{STG}	Storage temperature		-55 to 150	°C

Table 2.	Absolute	maximum	ratings
----------	----------	---------	---------

 Protection functions are intended to avoid IC damage in fault conditions and are not intended for continuous operation. Continuous or repetitive operations of protection functions may reduce the IC lifetime.

4 Thermal data

Table 3. Thermal data

Symbol	Parameter	Max. value	Unit
R _{thj-case}	Thermal resistance, junction-case(⁽¹⁾	2	°C/W
R _{thj-amb}	Thermal resistance, junction-ambient ⁽²⁾	15	°C/W

1. For each channel.

2. TFQFPN32 mounted on the product evaluation board (FR4, 4 layers, 8 cm² for each layer, copper thickness 35 mm).

5 Electrical characteristics

(10.5 V < V_{CC} < 36 V; -40 °C < T_J < 125 °C, unless otherwise specified)

		4. FOWEI SECLION				
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{CC(THON)}	V _{CC} undervoltage turn-ON threshold	-	-	9.5	10.5	V
V _{CC(THOFF)}	V _{CC} undervoltage turn-OFF threshold	-	8	9	-	V
V _{CC(hys)}	V _{CC} undervoltage hysteresis	-	0.25	0.5	-	V
V _{CCclamp}	Clamp on V _{CC} pin	I _{clamp} = 20 mA	45	50	52	V
R _{DS(on)}	On-state resistance ⁽¹⁾	I _{OUT} = 0.5 A, T _J = 25 °C I _{OUT} = 0.5 A T _J = 125 °C	-	0.12	0.24	Ω
R _{pd}	Output pull-down resistor		-	210	-	kΩ
I _{CC}	Power supply current	All channels in OFF-state All channels in ON-state	-	5 9	-	mA
I _{LGND}	Ground disconnection output current	$V_{CC} = V_{GND} = 0 V$ $V_{OUT} = -24 V$	-	-	500	μA
V _{OUT(OFF)}	Off-state output voltage	Channel OFF and $I_{OUT} = 0 A$	-	-	1	V
I _{OUT(OFF)}	Off-state output current	Channel OFF and $V_{OUT} = 0 V$	-	-	5	μA

Table 4	4. Po	wers	section
---------	-------	------	---------

1. See Figure 3: RDS(on) measurement.

Table 5. I	Digital supply voltage	

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{DD}	Operating voltage	-	2.75	-	5.5	V
V _{DD(THON)}	V _{DD} undervoltage turn-ON threshold	-	2.55	-	2.75	V
V _{DD(THOFF)}	V _{DD} undervoltage turn-OFF threshold	-	2.45	-	2.65	V
V _{DD(hys)}	V _{DD} undervoltage hysteresis	-	0.04	0.1	-	V
		V _{DD} = 5 V and input channel with a steady logic level	-	4.5	6	mA
I _{DD}	I _{DD} supply current	V_{DD} = 3.3 V and input channel with a steady logic level	-	4.4	5.9	mA

Table 6. Diagnostic pin and output protection function						
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{FAULT}	FAULT pin open-drain voltage output low	I _{FAULT} = 10 mA	-	-	0.4	v
I _{LFAULT}	FAULT output leakage current	V _{FAULT} = 5 V	-	-	1	μA
I _{PEAK}	Maximum DC output current before limitation	V _{CC} = 24 V R _{LOAD} = 0 Ω	-	1.6	-	A
I _{LIM}	Short-circuit current limitation	-	0.7	1.3	1.9	Α
H _{yst}	ILIM tracking limits	-	-	0.3	-	A
T _{JSD}	Junction shutdown temperature	-	150	170	-	°C
T _{JR}	Junction reset temperature	-	-	150	-	°C
T _{HIST}	Junction thermal hysteresis	-	-	20	-	°C
T _{CSD}	Case shutdown temperature	-	115	130	145	°C
T _{CR}	Case reset temperature	-	-	110	-	°C
T _{CHYST}	Case thermal hysteresis	-	-	20	-	°C
V _{demag}	Output voltage at turn-OFF	I _{OUT} = 0.5 A I _{LOAD} > = 1 mH	V _{CC} -45	V _{CC} -50	V _{CC} -52	v

Table 6. Diagnostic pin and output protection function

Table 7. Power switching characteristics (VCC = 24 V; -40 °C < TJ < 125 °C)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
dV/dt(ON)	Turn-ON voltage slope	I_{OUT} = 0.5 A, resistive load 48 Ω	-	5.6	-	V/µs
dV/dt(OFF)	Turn-OFF voltage slope	I_{OUT} = 0.5 A, resistive load 48 Ω	-	2.81	-	V/µs
t _d (ON)	Turn-ON delay time ⁽¹⁾	I_{OUT} = 0.5 A, resistive load 48 Ω	-	17	22	μs
t _d (OFF)	Turn-OFF delay time ⁽¹⁾	I_{OUT} = 0.5 A, resistive load 48 Ω	-	22	40	μs
t _f	Fall time ⁽¹⁾	I_{OUT} = 0.5 A, resistive load 48 Ω	-	5	-	μs
t _r	Rise time ⁽¹⁾	I_{OUT} = 0.5 A, resistive load 48 Ω	-	5	-	μs

1. See Figure 3: RDS(on) measurement , Figure 4: dV/dT and Figure 6: td(ON) - td(OFF) direct control mode.

Figure 3. R_{DS(on)} measurement

Figure 6. $t_{d(ON)}$ - $t_{d(OFF)}$ direct control mode

Electrical characteristics

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{IL}	Logic input pin low level voltage (INx, OUT_EN, LOAD, SYNC)	-	-0.3		0.3 x V _{DD}	V
V _{IH}	Logic input pin high level voltage (INx, OUT_EN, LOAD, SYNC)	-	0.7 x V _{DD}		V _{DD} + 0.3	V
V _{I(HYST)}	Logic input hysteresis voltage (INx, OUT_EN, LOAD, SYNC)	V _{DD} = 5 V	-	100	-	mV
I _{IN}	Logic input pin current (INx, OUT_EN, LOAD, SYNC)	V _{IN} = 5 V	10	-	-	μA
t _{WM}	Power side watchdog time	-	272	320	400	μs

Table 8. Logic input and output

Table 9. Parallel interface timings (VDD = 5 V; VCC = 24 V; -40 °C < TJ < 125 °C)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{dis(SYNC)}	SYNC disable time	Sync. control mode	10	-	-	μs
t _{dis(DCM)}	SYNC, LOAD disable time	Direct control mode	80	-	-	ns
t _{w(SYNC)}	SYNC negative pulse width	Sync. control mode	20	-	195	μs
t _{su(LOAD)}	LOAD setup time	Sync. control mode	80	-	-	ns
t _{h(LOAD)}	LOAD hold time	Sync. control mode	400	-	-	ns
t _{w(LOAD)}	LOAD pulse width	Sync. control mode	240	-	-	ns
t _{su(IN)}	Input setup time	-	80	-	-	ns
t _{h(IN)}	Input hold time	-	10	-	-	ns
+	Input pulse width	Sync. control mode	160	-	-	ns
t _{w(IN)}		Direct control mode	20	-	-	μs
t _{INLD}	IN to $\overline{\text{LOAD}}$ time	Direct control mode From IN variation to LOAD falling edge	80	-	-	ns
t _{LDIN}	LOAD to IN time	Direct control mode From LOAD falling edge to IN variation	400	-	-	ns
t _{w(OUT_EN)}	OUT_EN pulse width	-	150	-	-	ns
t _{p(OUT_EN)}	OUT_EN propagation delay	-	-	22	40	μs
t _{jitter(SCM)}	Jitter on single channel	Sync. mode	-	-	6	
t _{jitter(DCM)}		Direct mode	-	-	20	μs
f _{refresh}	Refresh delay	-	-	15	-	kHz

Symbol	Parameter	Test conditions	Value	Unit
CLR	Clearance (minimum external air gap)	Measured from input terminals to output terminals, the shortest distance through air	3.3	mm
CPG	Creepage (minimum external tracking)	Measured from input terminals to output terminals, the shortest distance path along body	3.3	mm
СТІ	Comparative tracking index (tracking resistance)	DIN IEC 112/VDE 0303 part 1	≥ 600	V
	Isolation group	Material group (DIN VDE 0110, 1/89, Table 1)	I	-

 Table 10. Insulation and safety-related specifications

Table 11	. Insulation	characteristics
----------	--------------	-----------------

Symbol	Parameter	Parameter Test conditions		Unit			
IEC 6074	IEC 60747-5-5						
V _{IORM}	Maximum working isolation	-	937	V _{PEAK}			
V		Method a, type test, V _{PR} = V _{IORM} x 1.6, tm = 10s partial discharge < 5 pC	1500	V _{PEAK}			
* PR	V _{PR} Input to output test voltage	Method b, 100% production test, V _{PR} = V _{IORM} x 1.875, tm = 1s partial discharge < 5 pC	1758	V _{PEAK}			
V _{IOTM}	Transient overvoltage	Type test t _{ini} = 60 s	4245	V _{PEAK}			
V _{IOSM}	Maximum surge insulation voltage	Type test	4245	V _{PEAK}			
R _{IO}	Insulation resistance	V _{IO} = 500 V at t _s	>10 ⁹	Ω			
UL1577							
V _{ISO}	Insulation withstand voltage	1 min. type test	2500/3536	V _{rms} /V _{PEAK}			
V _{ISO test}	Insulation withstand test	1 s 100% production	3000/4245	V _{rms} /V _{PEAK}			

Parameter	Description	Test Condition	Limit value	Unit
Input safety,	Logic side			
T _{si}	Safety temperature of Logic side	-	150	°C
P _{si}	Safety power of Logic side	$V_{DD} \le 6.5V,$ $V_{LOGIC(x)} \le 6.5V,$ $I_{LOGIC(x)} \le 10mA,$ $T_{J} \le Tsi$	0.9	W
Output safet	y, Process side			
T _{so}	Safety temperature of Process side	-	150	°C
P _{so}	Safety power of Process side	$V_{CC} \le 36V,$ $I_{OUT(x)} \le 1.5A,$ $T_J \le Tso$	4.5	W

Table	12.	Safety	limits
-------	-----	--------	--------

Note:

The above limits are measured according to VDE 0884-11. Respecting above limits prevents potential damage potential damage to the isolation barrier upon failure on logic or process side circuitry. User can use these values to protect the IC and consequently guarantee the safety of the embedded isolation barrier.

LOGIC(X) stands for "any pin of logic side".

OUT(X) stands for "any of the 8 output pins of process side".

6 Functional description

6.1 **Parallel interface**

Smart parallel interface built-in ISO8200BQ offers three interfacing signals easily managed by a microcontroller.

The $\overline{\text{LOAD}}$ signal enables the input buffer storing the value of the channel inputs.

The $\overline{\text{SYNC}}$ signal copies the input buffer value into the transmission buffer and manages the synchronization between low voltage side and the channel outputs on the isolated side. The OUT_EN signal enables the channel outputs.

An internal refresh signal updates the configuration of the channel outputs with a f_{refresh} frequency. This signal can be disabled forcing low the SYNC input when LOAD is high.

SYNC and LOAD pins can be in direct control mode (DCM) or synchronous control mode (SCM).

The operation of these two signals is described as follows:

LOAD	SYNC	OUT_EN	Device behavior
Don't care	Don't care	Low ⁽¹⁾	The outputs are disabled (turned off)
High	High	High	The outputs are left unchanged
Low	High	High	The input buffer is enabled The outputs are left unchanged
High	Low	High	The internal refresh signal is disabled The transmission buffer is updated The outputs are left unchanged
Low	Low	High	The device operates in direct control mode as described in <i>Section 6.2: Direct control mode (DCM)</i>

1. The outputs are turned off on OUT_EN falling edge and they are kept disabled as long as it is low.

6.1.1 Input signals (IN1 to IN8)

Inputs from IN1 to IN8 are the driving signals of the corresponding OUT1 to OUT8 outputs. Data are direct loaded on related outputs if <u>SYNC</u> and <u>LOAD</u> inputs are low (DCM operation) or stored into input buffer when LOAD is low and <u>SYNC</u> is high.

6.1.2 Load input data (LOAD)

The input is active low; it stores the data from IN1 to IN8 into the input buffer.

6.1.3 Output synchronization (SYNC)

The input is active low; it enables the ISO8200BQ transmission buffer loading input buffer data and manages the transmission between the two isolated sides of the device.

DS10781 Rev 9

6.1.4 Watchdog

The isolated side of the device provides a watchdog function in order to guarantee a safe condition when V_{DD} supply voltage is missing.

If the logic side does not update the output status within t_{WD} , all outputs are disabled until a new update request is received.

The refresh signal is also considered a valid update signal, so the isolated side watchdog does not protect the system from a failure of the host controller (MCU freezing).

Figure 7. Watchdog behavior

6.1.5 Output enable (OUT_EN)

This pin provides a fast way to disable all outputs simultaneously. When the OUT_EN pin is driven low the outputs are disabled. To enable the output stage, the OUT_EN pin has to be raised. This timing execution is compatible with an external reset push, safety requirement, and allows, in a PLC system, the microcontroller polling to obtain all internal information during a reset procedure.

Figure 8. Output channel enable timing

6.2 Direct control mode (DCM)

When $\overline{\text{SYNC}}$ and $\overline{\text{LOAD}}$ inputs are driven by the same signal, the device operates in direct control mode (DCM).

In DCM the SYNC / LOAD signal operates as an active low input enable:

- When the signal is high, the current output configuration is kept regardless the input values
- When the signal is low, each channel input directly drives the respective output

This operation mode can also be set shorting both signals to the digital ground; in this case the channel outputs are always directly driven by the inputs except when OUT_EN is low (outputs disabled).

SYNC / LOAD	OUT_EN	Device behavior
Don't care	Low ⁽¹⁾	The outputs are disabled (turned off)
High	High	The outputs are left unchanged
Low	High	The channel inputs drive the outputs

Table 14. Interface signal operation in direct control mode

1. The outputs are turned off on OUT_EN falling edge and they are kept disabled as long as it is low.

Figure 10. Direct control mode time diagram

DS10781 Rev 9

6.3 Synchronous control mode (SCM)

When SYNC and LOAD inputs are independently driven, the device can operate in synchronous control mode (SCM). The SCM is used to reduce the jittering of the outputs and to drive all outputs of different devices at the same time.

In SCM the LOAD signal is forced low to update the input buffer while the SYNC signal is high. The LOAD signal is raised and the SYNC one is forced low for at least $t_{SYNC(SCM)}$. During this period, the internal refresh is disabled and any pending transmission between the low voltage and the isolated side is completed. When the SYNC signal is raised the channel output configuration is changed according to the one stored in the input.

If the t_{SYNC(SCM)} limit is met, the maximum jitter of the channel outputs is t_{iitter}(SCM).

If more devices share the same SYNC signal, all device outputs change simultaneously with a maximum jitter related to maximum delay and maximum jitter for single device.

LOAD	SYNC	OUT_EN	Device behavior
Don't care	Don't care	Low ⁽¹⁾	The outputs are disabled (turned off)
High	High	High	The outputs are left unchanged
Low	High	High	The input buffer is enabled. The outputs are left unchanged.
High	Low	High	The internal refresh signal is disabled. The transmission buffer is updated. The outputs are left unchanged.
High	Rising edge	High	The outputs are updated according to the current transmission buffer value
Low	Low	High	Should be avoided (DCM operation only)

Table 15. Interface signal operation in synchronous control mode
--

1. The outputs are turned off on OUT_EN falling edge and they are kept disabled as long as it is low.

Figure 11. Synchronous control mode IC configuration

Figure 12. Synchronous control mode time diagram

Figure 13. Multiple device synchronous control mode

6.4 Fault indication

The \overline{FAULT} pin is an active low open-drain output indicating fault conditions. This pin is active when at least one of the following conditions occurs:

- Junction overtemperature of one or more channels (T_J >T_{TJSD})
- Communication error

The communication error is intended as an internal data corruption event in the data transfer through isolation. In case of communication error the outputs are initially kept in the previous status and then reset (turned off) at the first communication error during data transfer of the refresh signal.

6.4.1 Junction overtemperature and case overtemperature

The thermal status of the device is updated during each transmission sequence between the two isolated sides.

In SCM operation, when the LOAD signal is high and the SYNC one is low, the communication is disabled. In this case the thermal status of the device cannot be updated and the FAULT indication can be different from the current status.

In any case, the thermal protection of the channel outputs is always operative.

Figure 14. Thermal status update (DCM)

Figure 15. Thermal status update (SCM)

7 Power section

7.1 Current limitation

The current limitation process is active when the current sense connected on the output stage measures a current value, which is higher than a fixed threshold.

When this condition is verified the gate voltage is modulated to avoid the increase of the output current over the limitation value.

Figure 16 shows typical output current waveforms with different load conditions.

Figure 16. Current limitation with different load conditions

7.2 Thermal protection

The device is protected against overheating in case of overload conditions. During the driving period, if the output is overloaded, the device suffers two different thermal stresses, the former related to the junction, and the latter related to the case.

The two faults have different trigger thresholds: the junction protection threshold is higher than the case protection one; generally the first protection, that is active in thermal stress conditions, is the junction thermal shutdown. The output is turned off when the temperature is higher than the related threshold and turned back on when it goes below the reset threshold. This behavior continues until the fault on the output is present.

If the thermal protection is active and the temperature of the package increases over the fixed case protection threshold, the case protection is activated and the output is switched off and back on when the junction temperature of each channel in fault and case temperature is below the respective reset thresholds.

Figure 17 shows the thermal protection behavior, while *Figure 18* reports typical temperature trends and output vs. input state.

Figure 17. Thermal protection flowchart

8 **Reverse polarity protection**

Reverse polarity protection can be implemented on board using two different solutions:

- Placing a resistor (R_{GND}) between IC GND pin and load GND 1.
- 2. Placing a diode in parallel to a resistor between IC GND pin and load GND

If option 1 is selected, the minimum resistance value has to be selected according to Equation 1:

Equation 1

$$R_{GND} \ge V_{CC}/I_{GNDcc}$$

where IGNDcc is the DC reverse ground pin current and can be found in Section 3: Absolute maximum ratings on page 9.

Power dissipated by RGND during reverse polarity situations is:

Equation 2

$$P_{\rm D} = (V_{\rm CC})^2 / R_{\rm GND}$$

If option 2 is selected, the diode has to be chosen by taking into account VRRM > $|V_{CC}|$ and its power dissipation capability:

Equation 3

$$P_D \ge I_S * V_F$$

Note: In normal operation (no reverse polarity), there is a voltage drop (ΔV) between GND of the device and GND of the system. Using option 1, $\Delta V = Rgnd * Icc.$ Using option 2, $\Delta V = VF_{@(IF)}$

Figure 19. Reverse polarity protection

This schematic can be used with any type of load.

DS10781 Rev 9

9 Reverse polarity on V_{DD}

The reverse polarity on V_{DD} can be implemented on board by placing a diode between ${\sf GND}_{DD}$ pin and GND digital ground.

The diode has to be chosen by taking into account VRRM > $|V_{DD}|$ and its power dissipation capability:

Equation 4

$$P_D \geq I_{DD} \ ^* \ V_F$$

Note: In normal operation (no reverse polarity), there is a voltage drop ($\Delta V = VF@(Idd)$) between GNDDD of the device and digital ground of the system. In order to guarantee to proper triggering of the input signal, $\Delta V(max.)$ must result lower than VIH(MIN).

Figure 20. Reverse polarity protection on V_{DD}

10 Demagnetization energy

11 Conventions

Supply voltage and power output conventions

Figure 22 shows the convention used in this paper for voltage and current usage.

30/40

12 Thermal information

Thermal impedance

13 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: *www.st.com*. ECOPACK[®] is an ST trademark.

13.1 TFQFPN32 package information

Figure 24. TFQFPN32 package outline

DS10781 Rev 9

Figure 25. TFQFPN32 package detail outline

Figure 26. TFQFPN32 suggested footprint (measured in mm)

	Dimensions (mm]			
Symbol	Min.	Тур.	Max.	
A	0.95	1.00	1.05	
A1	0	-	0.05	
A2	-	0.20 REF	-	
b ⁽¹⁾	0.20	0.25	0.30	
b1 ⁽¹⁾	0.25	0.30	0.35	
D	10.90	11.0	11.10	
E ⁽¹⁾	8.90	9.00	9.10	
D2	4.30	4.40	4.50	
E2	6.70	6.80	6.90	
D3	1.40	1.50	1.60	
E3	3.20	3.30	3.40	
D4	1.13	1.23	1.33	
E4	1.00	1.10	1.20	
е	-	0.65	-	
e2	-	0.40	-	
e3	-	1.05	-	
e4	-	3.15	-	
e5	-	4.85	-	
k	0	0.30	-	
z1	-	0.80	-	
z2	-	4.07	-	
z3	-	3.80	-	
z4	-	1.10	-	
z5	-	1.15	-	
z6	-	2.85	-	
L ⁽¹⁾	0.45	0.50	0.55	

Table 16. TFQFPN32 package mechanical data

1. Dimensions "b" and "L" are measured on terminal plating surface.

Symbol	Tolerance of form and position	Definition	Notes
aaa	0.15	The bilateral profile tolerance that controls the position of the plastic body sides. The centers of the profile zones are defined by the basic dimensions D and E.	
bbb	0.10	The tolerance that controls the position of the entire terminal pattern with respect to datum's A and B. The center of the tolerance zone for each terminal is defined by the basic dimension "e" as related to datum's A and B.	
ccc	0.10	The tolerance located parallel to the seating plane in which the top surface of the package must be located.	
ddd	0.08	The tolerance that controls the position of the terminals to each other. The centers of the profile zones are defined by basic dimension "e".	This tolerance is normally compounded with tolerance zone defined by bbb.
eee	0.08	The unilateral tolerance located above the seating plane where in the bottom surface of all terminals must be located.	This tolerance is commonly known as the "coplanarity" of the package terminals.
fff	0.10	The tolerance that controls the position of the exposed metal heat feature. The center of the tolerance zone will be datum's defined by the centerlines of the package body.	
REF	-	-	No tolerance for A2

Table 17. Tolerance of form and position

14 Packing information

14.1 TFQFPN32 packing information

14.1.1 TFQFPN32 packing method concept

Figure 29. TFQFPN32 reel

57

14.1.2 TFQFPN32 winding direction

14.1.3 TFQFPN32 leader and trailer

Note: Leader and trailer length as per EAI-481specification.

15 Ordering information

Order code	Package	Packing
ISO8200BQ	TFQFPN32	Tube
ISO8200BQTR	TFQFPN32	Tape and reel

Table 18. Ordering information

16 Revision history

Date	Revision	Changes
17-Nov-2016	3	Datasheet promoted from preliminary to production data. Updated <i>Table 6: Diagnostic pin and output protection function</i> .
21-Apr-2017	4	Updated <i>Table 10: "Insulation and safety-related specifications".</i> Minor text changes.
05-Oct-2017	5	Updated Table 11: "IEC 60747-5-2 insulation characteristics".
18-May-2018	6	Updated Section : Features on page 1. Replaced Vdd by V _{DD} in whole document. Updated titles of Table 7 on page 11 and Table 9 on page 14 . Updated titles of Figure 3 on page 12, Figure 5 on page 13, Figure 6 on page 13, Figure 20 on page 29 and Figure 21 on page 30 . Added cross-reference to Section 6.2 in Table 13 on page 17. Updated Figure 9 on page 20 and Figure 11 on page 21 (replaced ISO8200B by ISO8200BQ). Added Section on page 34. Minor modifications throughout document.
24-Apr-2019	7	Added Table 12: Safety limits on page 15, Updated Table 2: Absolute maximum ratings on page 9 Updated Section : Features on page 1. Minor text changes.
18-Oct-2019	8	Updated Section : Features on page 1.
08-May-2020	9	Table 4, 11 and 16 updated. Figure 24 replaced. Table 17 added.

Table 19. Document revision history

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2020 STMicroelectronics – All rights reserved

DS10781 Rev 9

