

EV9830 Evaluation Kit User Manual

Advance Information

UM9830/3 November 2014

Features

- External VCO connection option to both fractional-N synthesisers
- 900MHz and 2.1GHz VCOs fitted
- Access to RF, control and baseband signals via connectors and test points
- On-board supply regulators operate from a dual +/-6V supply
- Includes HB9830 header board, allowing full PC data access and control via the PE0003 Interface Card
- 19.2MHz oscillator or external clock input to CMX983
- Differential to single-ended
 instrumentation interfaces
- On-board access to all CMX983 signals, commands and data

1 Brief Description

The EV9830 Evaluation Kit allows evaluation of the CMX983 Baseband Interface for Digital Radio.

For evaluation of the Fractional-N synthesisers, a 900MHz VCO is fitted with connections to synthesiser1 and a 2.1GHz VCO is fitted with connections to synthesiser2. Test pads are also provided for connection to an external VCO.

An instrumentation interface with single-ended signal connections to differential baseband I/Q connections on the CMX983 is provided to allow easy connection of proprietary test equipment.

The board also incorporates all of the necessary power supply regulation facilities for operation from a dual +/-6V supply.

The 'host' header is provided with both C-BUS and fast serial port connections. When connected via the HB9830 header board to the host port of a PE0003, full data access and control is possible using the associated PC GUI software. The C-BUS is also available on a separated header for command and control only.

CONTENTS

<u>Section</u>	1	<u>Page</u>
1	Brief Description	1
2 2.1 2.2 2.3	Preliminary Information Laboratory Equipment 2.1.1 Power Supply Handling Precautions 2.2.1 Static Protection 2.2.2 Contents - Unpacking Approvals	6 6 6 6 6
3 3.1 3.2	Quick Start With PE0003. 3.1.1 Setting-Up 3.1.2 Operation Without PE0003.	7 7 8 9
4	EV9830 Signal Lists	10
5 5.1 5.2	Circuit Schematics and Board Layouts EV9830 HB9830	 17 17 19
6 6.1 6.2 6.3 6.4	Detailed Description Hardware Description 6.1.1 Power Supplies 6.1.2 RF Synthesisers 6.1.3 Clock Options 6.1.4 Instrumentation Interface 6.1.5 Host Port 6.1.6 C-BUS PC Control Software 6.2.1 The C-BUS Control Tab 6.2.2 Fractional-N Synthesiser Control 6.2.3 Receive Channel Control 6.2.4 Transmit Channel Control 6.2.5 Rx/Tx Ports Tab 6.2.6 The Script Handler Tab Application Information 6.3.1 Filter Coefficients 6.3.2 SD Card Preparation Troubleshooting 6.4.1 6.4.2 SD Card	20 20 20 20 21 21 21 21 21 21 22 23 24 25 26 27 29 29 29 29 29 36 36
7 7.1	Performance Specification Electrical Performance 7.1.1 Absolute Maximum Ratings 7.1.2 Operating Limits 7.1.3 Operating Characteristics 7.1.4 Operating Characteristics - Timing Diagrams	37 37 37 37 38 39

2

<u>Table</u>		Page
Table 1	Signal List	10
Table 2	Test Points	14
Table 3	Jumpers	15
Table 4	LEDs	16
Table 5	Clock Select Jumper Positions	20

Figure

Page

Figure 1 Block Diagram	5
Figure 2 Location of C11	7
Figure 3 EV9830 used with PE0003	8
Figure 4 EV9830 PCB Layout: Top	. 17
Figure 5 EV9830 PCB Layout: Bottom	. 18
Figure 6 HB9830 PCB Layout: Top and Bottom	. 19
Figure 7 The C-BUS Control Tab	. 22
Figure 8 Fractional-N Synthesiser Control Tab	. 23
Figure 9 Receive Channel Control Tab	. 24
Figure 10 Transmit Channel Control Tab	. 25
Figure 11 Rx/Tx Ports Control Tab	. 26
Figure 12 Receive and Transmit Trigger Locations	. 27
Figure 13 Script Handler Tab	. 28
Figure 14 SD Card – Linux - fsck	. 31
Figure 15 SD Card – Linux - parted	. 32
Figure 16 SD Card – Windows Diskpart - List Volumes	. 33
Figure 17 SD Card – Windows Diskpart - Selected Volume	. 33
Figure 18 SD Card – Windows Diskpart - FileSystem	. 34
Figure 19 SD Card – Windows Diskpart - Shrink	. 34
Figure 20 Examples of Mod State Identification	. 36
Figure 21 Warning Message for No Unallocated SD Card Memory Detected	. 36
Figure 22 Error Message Informing of Speed Problems with the SD Card	. 36

<u>History</u>

Version	Changes	Date
3	Extensive update following evaluation of HB9830 header card and its	19 th November 2014
	incorporation into the EV9830 Evaluation Kit.	
2	Changes following evaluation of board and GUI updates, plus minor	7 th May 2014
	typographical and editorial changes.	-
1	First Approved	1 st October 2012

This is Advance Information; changes and additions may be made to this specification. Parameters marked TBD or left blank will be included in later issues. Items that are highlighted or greyed out should be ignored. These will be clarified in later issues of this document. Information in this advance document should not be relied upon for final product design.

^{© 2014} CML Microsystems PIc

It is always recommended that you check for the latest product datasheet version from the Datasheets page of the CML website: [www.cmlmicro.com].

2 **Preliminary Information**

2.1 Laboratory Equipment

The following laboratory equipment is needed to use this evaluation kit:

• Dual +/-6V dc power supply

If the EV9830 is being used with the PE0003 Interface Card, the following items will also be required:

IBM-compatible PC with the following requirements:

- One of the following Windows operating systems installed: XP, Vista, Windows 7 or Windows 8.
- USB port
- Minimum screen resolution 800 x 600. Recommended screen resolution 1024 x 768

USB type A male-to-mini USB type B male cable

Micro SD Card, class 10

PC application ES983030.exe, or later version, installed on the PC

2.1.1 Power Supply

The supply input voltage to the PCB is nominally +/-6V (input voltage range is 5.5 to 6.5V). On-board regulators are provided to generate all voltage rails used on the PCB (1.8V, 3.3V and +/-5V).

NOTE: When using the EV9830 with a PE0003 Interface Card, power is not supplied via the PE0003. The PE0003 must be connected directly to the +6V side of the dc power supply.

2.2 Handling Precautions

Like most evaluation kits, this product is designed for use in office and laboratory environments. The following practices will help ensure its proper operation.

2.2.1 Static Protection

This product uses low-power CMOS circuits that can be damaged by electrostatic discharge. Partially-damaged circuits can function erroneously, leading to misleading results. Observe ESD precautions at all times when handling this product.

2.2.2 Contents - Unpacking

Please ensure that you have received all of the items on the separate information sheet (EK9830) and notify CML within seven working days if the delivery is incomplete.

2.3 Approvals

This product is not approved to any EMC or other regulatory standard. Users are advised to observe local statutory requirements, which may apply to this product.

This section is divided into two sub-sections. The first is for those users who are using the EV9830 with a PE0003 controller card and its Windows PC GUI software. The second is for users who are using the EV9830 by itself, without a PE0003.

3.1 With PE0003

Check the revision and mod state of the EV9830 board. For boards up to revision D, mod 2, users are advised to change C11 to a 470nF, 0603 capacitor. This will ensure that a power on reset pulse of sufficient length for the CMX983 is generated. For correct identification of mod state (modification state) see Section 6.4.1. C11 is located just below the power indicator, D4, see below.

Figure 2 Location of C11

Insert the SD card into the socket on the underside of the PE0003. Connect the ribbon cable provided between connector, J4 (Host Port), of the EV9830 and connector, J2, of the HB9830. The HB9830, then plugs directly into the PE0003, with connectors, J1 and J3, of the HB9830, mating directly to connectors, J6 and J5, of the PE0003 respectively.

3.1.1 Setting-Up

The basic arrangement, when used with the PE0003, is shown in Figure 3.

Figure 3 EV9830 used with PE0003

- 3.1.1.1 Software Installation
 - Copy the file 'ES9830xx.zip', which is downloaded from the CML website following registration, to the hard drive of the host PC.
 - Extract the files to the hard drive of the host PC.
 - Connect a +/-6V dc supply to the EV9830 and the +6V side to the PE0003
 - Attach a USB cable from connector J2 of the PE0003 Interface Card to the PC USB port.
 - Turn on the power supplies to both boards. The following power indicators will light:
 - EV9830; D4
 - HB9830; D2
 - PE0003; D6
 - Install the USB driver when requested. Refer to the PE0003 User Manual for instructions on driver installation.

3.1.2 Operation

CMX983 device set-up, monitoring and data transfer is via the Host Port connection and can be achieved with the ES9830 GUI application.

Note: from power up, or after reset, the internal system clock of the CMX983 is disabled. From the 'C-BUS Control' tab, see Figure 7, the 'Init. Board' button **MUST** be clicked, which will issue a C-BUS general reset and configure the internal system clock to the settings entered in the 'System Clock Generator area of this tab.

^{© 2014} CML Microsystems Plc

3.2 Without PE0003

As an alternative to using the PE0003 Interface Kit, users may control the EV9830 with a user-supplied host controller card. C-BUS connections are made via connector J10 or connector J4 alongside the transmit and receive data ports.

CONNECTOR PINOUT				
Connector Ref.	Connector Pin No.	Signal Name	Signal Type	Description
J2	1	AUXADC0	I/P	Auxiliary ADC Input 0
	2	AUXDAC0	O/P	Auxiliary DAC Output 0
	3	AUXADC1	I/P	Auxiliary ADC Input 1
	4	AUXDAC1	O/P	Auxiliary DAC Output 1
	5	AUXADC2	I/P	Auxiliary ADC Input 2
	6	AUXDAC2	O/P	Auxiliary DAC Output 2
	7	AUXADC3	I/P	Auxiliary ADC Input 3
	8	AUXDAC3	O/P	Auxiliary DAC Output 3
	9, 10	GNDA	PWR	Analogue Ground
	11	AUXADC4	I/P	Auxiliary ADC Input 4
	12	AUXDAC4	O/P	Auxiliary DAC Output 4
	13	AUXADC5	I/P	Auxiliary ADC Input 5
	14	AUXDAC5	O/P	Auxiliary DAC Output 5
	16	AUXDAC6	O/P	Auxiliary DAC Output 6
	18	AUXDAC7	I/O	Auxiliary DAC Output 7 / Auxiliary ADC Input 6
	20	AUXDAC8	I/O	Auxiliary DAC Output 8 / Auxiliary ADC Input 7
	15, 17, 19	N/C		
J4	1	IRQN	O/P	Interrupt request output. Connects to host microcontroller
	2	RDATA	O/P	C-BUS reply data. Connects to host microcontroller
	3	CDATA	I/P	C-BUS command data. Connects to host microcontroller
	4	CSN	I/P	C-BUS chip select. Connects to host microcontroller
	5	SCLK	I/P	C-BUS Clock. Connects to host microcontroller
	6	N/C		
	7, 8	GNDD	PWR	Digital ground
	9 ->12	N/C		
	13	RXCLK	O/P	Serial port receive clock

Table 1 Signal List

© 2014 CML Microsystems Plc

UM9830/3

CONNECTOR PINOUT					
Connector Ref.	Connector Pin No.	Signal Name	Signal Type	Description	
J4 cont'd	14	TXCLK	O/P	Serial port transmit clock	
	15	RXFS	O/P	Serial port receive frame sync	
	16	TXFS	O/P	Serial port transmit frame sync	
	17	RXD	O/P	Serial port receive data	
	18	TXD	I/P	Serial port transmit data	
	19, 20	GNDD	PWR	Digital ground	
J5	1	CLKEXT	I/P	External master clock input.	
J6	1	2100MHz	O/P	Output from 2.1GHz VCO	
J7	1	ITXP_I	I/P	Transmit I channel positive, instrumentation input	
	2	ITXP	O/P	Transmit I channel output positive	
	3	ITXN_I	I/P	Transmit I channel negative, instrumentation input	
	4	ITXN	O/P	Transmit I channel output negative	
	5, 6	GNDA	PWR	Analogue ground	
	7	QTXP_I	I/P	Transmit Q channel positive, instrumentation input	
	8	QTXP	O/P	Transmit Q channel output positive	
	9	QTXN_I	I/P	Transmit Q channel negative, instrumentation input	
	10	QTXN	O/P	Transmit Q channel output negative	
8L	1	ТХІ	O/P	Transmit I channel instrumentation output, single ended	
1 9	1	TXQ	O/P	Transmit Q channel instrumentation output, single ended	
J10	1	RESETN	I/P	CMX983 Reset control	
	2	CSN	I/P	C-BUS chip select. connects to host microcontroller	

Connector Ref.	Connector Pin No.	Signal Name	Signal Type	Description	
J10 cont'd	4	CDATA	I/P	C-BUS command data. Connects to host microcontroller	
	6	SCLK	I/P	C-BUS Clock. Connects to host microcontroller	
	8	RDATA	O/P	C-BUS reply data. Connects to host microcontroller.	
	10	IRQN	O/P	Interrupt request output. Connects to host microcontroller	
	11, 12	GNDD	PWR	Digital ground	
	3, 5, 7, 9, 13 to 20	N/C	-		
J11	1	CALI	I/P	Receive I channel calibration Input – single ended	
J13	1	CALQ	I/P	Receive Q channel calibration input – single ended	
J12	1	IRXP_I	O/P	Receive I channel positive, instrumentation output	
	2	IRXP	I/P	Receive I channel input positive	
	3	IRXN_I	O/P	Receive I channel negative, instrumentation output	
	4	IRXN	I/P	Receive I channel input negative	
	5, 6	GNDA	PWR	Analogue ground	
	7	QRXN_I	O/P	Receive Q channel negative, instrumentation output	
	8	QRXN	I/P	Receive Q channel input negative	
	9	QRXP_I	O/P	Receive Q channel positive, instrumentation output	
	10	QRXP	I/P	Receive Q channel input positive	
J16	1	+V	PWR	External supply voltage, nominally +6V	
	2	0V	PWR	External supply ground	
	3	-V	PWR	Optional external negative supply voltage, nominally -6V	

 $\ensuremath{\textcircled{}^\circ}$ 2014 CML Microsystems PIc

CONNECTOR PINOUT					
Connector Ref.	Connector Pin No.	Signal Name	Signal Type	Description	
J17	1	RXI	I/P	Single-ended input for receive I channel	
J18	1	RXQ	I/P	Single-ended input for receive Q channel	
J101	1	900MHz	O/P	Output from 900MHz VCO	

Notes:

=	Input
=	Not connected

N/C = Not con O/P = Output

I/P

PWR = Power supply connection

TP = Test Point

TEST POINTS					
Test Point Ref.	Default Measurement	Description			
TP1	+1.8V	Pad – Output from on-board regulator. DC supply voltage for digital rail			
TP2	+3.3V	Pad – Output from on-board regulator. DC supply voltage for digital rail			
TP3	+1.8V	Pad – Output from on-board regulator. DC supply voltage for RF rail			
TP4	+3.3V	Pad – Output from on-board regulator. DC supply voltage for analogue rail			
TP5	+5.0V	Pad – Output from on-board regulator. Positive supply voltage for instrumentation interface, +5.0V			
TP6	+5.0V	Pad – Output from on-board regulator. +5.0V supply for VCO and charge pumps			
TP7	+3.3V	Pad – Output from on-board regulator. +3.3V supply for VCO and charge pumps			
TP8	-5.0V	Pad – Output from on-board regulator. Negative supply voltage for instrumentation interface, -5.0V			
TP9	+6V	Pad – External positive supply voltage			
TP10	-6V	Pad – External negative supply voltage			
TP11, TP12, TP15, TP16	0V	Loop – Analogue ground			
TP13, TP14	0V	Loop – Digital ground			
TP19	+3.3V	Loop – Interrupt request			
TP20	-	Pad – RF1 single ended (or negative input) from external VCO			
TP21	-	Pad – RF1 positive input from external VCO			
TP22	-	Pad – CP1 output from charge pump 1 – input to external VCO			
TP23	-	Pad – RF2 single ended (or negative input) from external VCO			
TP24	-	Pad – RF2 positive input from external VCO			
TP25	-	Pad – CP2 output from charge pump 2 – input to external VCO			
TP26	1.65V	Loop - Buffered V _{BIAS}			
TP40	-	Spare operational amplifier circuit input			
TP41	-	Spare operational amplifier circuit input			
TP42	0V	Spare operational amplifier circuit output			
TP43	-	Spare operational amplifier circuit input			
TP44	-	Spare operational amplifier circuit input			
TP45	0V	Spare operational amplifier circuit output			

 $\ensuremath{\textcircled{}^{\circ}}$ 2014 CML Microsystems PIc

	JUMPERS	6	
Link Ref.	Positions	Default Position	Description
JP1	1-2	Short	Isolates digital supply rail from the CMX983 if removed
JP6	1-2	Open	Select 5.0V dc supply for charge pump 1 if shorted
	2-3	Short	Select 3.3V dc supply for charge pump 1 if shorted
JP7	1-2	Open	Select 5.0V dc supply for charge pump 2 if shorted
	2-3	Short	Select 3.3V dc supply for charge pump 2 if shorted
JP11	1-2	Short	Isolates analogue supply rail from the test chip if removed
JP13	1-2	Short	Isolates I/O supply rail from the test chip if removed
JP14	1-2	Short	Isolates RF supply rail from the test chip if removed
J1	-	-	See Table 5 Clock Select Jumper Positions
17	1-2	Short	Isolates Transmit I channel +ve from instrumentation interface if
57	1-2	Short	removed
	3-4	Short	Isolates Transmit I channel -ve from instrumentation interface if removed
	7-8	Short	Isolates Transmit Q channel +ve from instrumentation interface if removed
	9-10	Short	Isolates Transmit Q channel -ve from instrumentation interface if removed
J12	1-2	Short	Isolates Receive I channel +ve from instrumentation interface if removed
	3-4	Short	Isolates Receive I channel -ve from instrumentation interface if removed
	7-8	Short	Isolates Receive Q channel -ve from instrumentation interface if removed
	9-10	Short	Isolates Receive Q channel +ve from instrumentation interface if removed

Table 3 Jumpers

Table	4	I FDs
Iable	4	LEDS

	LEDs
LED Ref.	Description
D4	Indicates that the digital supply voltage is present.

5 Circuit Schematics and Board Layouts

For clarity, circuit schematics are available as separate high-resolution files. These can be obtained via the CML website.

5.1 EV9830

Figure 4 EV9830 PCB Layout: Top

Figure 5 EV9830 PCB Layout: Bottom

^{© 2014} CML Microsystems Plc

5.2 HB9830

Figure 6 HB9830 PCB Layout: Top and Bottom

6 Detailed Description

The EV9830 functionality includes:

- Two phase locked loops (PLLs) with fractional-N dividers and selectable modular VCOs for each PLL. The CMX983 synthesiser frequency operation is between 100MHz and 2.1GHz.
- Additional test pads are provided for connection to an external VCO.
- Receive I and Q input channels with single-ended to differential instrumentation interface.
- Transmit I and Q output channels with differential to single-ended instrumentation interface.
- Auxiliary ADCs and DACs.
- Host Interface incorporating serial data ports for both transmit and receive channels with separate C-BUS serial interface for device configuration.
- C-BUS Interface that allows the board to be connected to a host microcontroller. Interface to a PC for initial test and customer evaluation is available separately with suitable PC software that allows control of all device functions.

6.1 Hardware Description

6.1.1 **Power Supplies**

All on-board power rails are derived from an external +/- 6V supply. Each power rail has a test point where it can be monitored, see Table 2.

6.1.2 RF Synthesisers

The CMX983 has two fractional-N synthesisers.

SYNTH1 can be connected to either a 900MHz VCO or an external VCO via test pads.

SYNTH2 can be connected to either a 2.1GHz VCO or an external VCO via test pads.

The charge pump supplies (VCPn) are separate for both channels and can individually be set to 3.3V dc or 5V dc.

6.1.3 Clock Options

The PCB design provides two master clock options for the test chip: A 19.2MHz TCXO module is fitted or an external clock source input at J5 may be selected. Either of these sources may be buffered before feeding to the CMX983 MCLK input. Buffering is not necessary if the CMX983 internal MCLK amplifier is enabled.

Header J1 is used with jumper sockets to select the required option as shown in Table 5:

Clock Option	Fit J1 jumpers on pins:
19.2MHz TCXO	1->2, 3->4
External	3->4 5->6
19.2MHz TCXO, Buffered	2->4, 7->8
External, Buffered	4->6, 7->8

Table 5 Clock Select Jumper Positions

6.1.4 Instrumentation Interface

An instrumentation interface has been provided to enable connection of the differential I and Q signals to laboratory equipment that has only single-ended connections. Use of this section of the EV9830 requires an additional negative supply rail, nominally –6V.

The input path has an effective gain of 6dB. The input path is configured for, nominally, 0V offset in the differential signal input to the CMX983.

There are also two spare op-amps in this section that are configured as unity-gain buffers with the input tied to analogue ground. Further component footprints are provided so that these can be reconfigured and test pads are provided for input and output.

6.1.5 Host Port

The host port, on J4, carries the C-BUS serial interface for CMX983 configuration and the transmit and receive serial ports that are the data interface for these channels. Using the HB9830 header board and ribbon cable the host port can be connected to the PE0003 interface card's host port.

6.1.5.1 HB9830

The HB9830 converts the EV9830 transmit and receive data port format to I²S format for compatibility with the PE0003 host port.

6.1.6 C-BUS

The C-BUS is also brought out on connector J10. This is a legacy format that is compatible with the C-BUS only connections on PE0003 and its predecessor, the PE0002

6.2 PC Control Software

The EV9830 itself does not require any embedded firmware. However, it does require C-BUS control from an external microcontroller. The CML PE0003 Evaluation Kit Interface Card can be used with the EV9830, HB9830 and PC software files in 'Es9830xx.zip'. To use the software, connect the EV9830, HB9830 and PE0003 as shown in Figure 3. First ensure that the drivers supplied for the PE0003 are installed correctly. The executable file must be in the same folder on the PC as the 'EF9830xx.bin' file. Run the 'Es9830xx.exe' and the main application window will open with a progress bar for the initialisation process. Once the initialisation process is complete, one of seven tabs can be selected.

Additional to the basic C-BUS control tab, there are:

- Four tabs that cover the major functional blocks of the CMX983
- The 'Tx/Rx Ports' tab for handling data flow from/to the receive/transmit data ports
- The CML script handler tab. Scripts can be used for additional features that are not covered in the other tabs, e.g. the auxiliary circuits of the CMX983.

To select a tab simply click on the corresponding name in the row at the top of the program window. Setting or clearing the check box associated with a bit of a register will cause that bit to be set or cleared when the register is next written to. The program can be closed at any time by clicking the '<u>C</u>lose' button or by pressing 'Alt' and 'F4' keys simultaneously.

The buttons 'Save State' and 'Load State' allow the user to save or load a particular control configuration for all tabs of the GUI. These buttons only save or load the configuration and do not update the CMX983 registers on the EV9830 board. After loading, the write buttons for each tab must be used to execute the new configuration. The configurations are saved with '.sta' file extension.

6.2.1 The C-BUS Control Tab

The C-BUS Control Tab allows the user to read from or write to any 8 or 16-bit register and initialise the CMX983 device on the target EV9830 board ('Init. Board'), see Figure 7. Additionally the CMX983 internal system clock settings are included as these will be used by the 'Init. Board' control.

From power up, or after reset, the internal system clock of the CMX983 is disabled. Executing an 'Init Board' from this tab will issue a C-BUS General Reset and configure the CMX983 internal system clock to the settings entered in the 'System Clock generator' area of the tab. The user must enter the MCLK frequency supplied to the CMX983 on the EV9830, which when shipped is 19.2MHz.

Every time the 'Init. Board' control is used all controls in all tabs of the GUI are reset to their default values. To retain the control settings in the other tabs, the 'Reset GUI' checkbox can be unticked. In this case, the CMX983 device is reset but the GUI Controls retain their previous values. However, to configure the CMX983 device registers to these retained values, the write buttons for each tab must be used.

ES9830 Evaluation Kit Software	
C-BUS Control Frac-N 1 Frac-N 2 Rx Channel	Tx Channel Rx/Tx Ports Script Handler
Register Address (\$) S-bit Register Data (\$) Write	(© 8-bit Register Address (\$) (\$) (\$) (\$) Read
System Clock Generator MCLK frequency 19.2 MHz System Clock 19.2 MHz MCLK amplifier Use PLL CLK_CON 2B03 CLKPLL_CON0 0B40 CLKPLL_CON1 0404 Select Target Board	PLL, N/R Dividers Required Freq 38.4 MHz N = 8 dec Comparison Freq 4800 kHz R = 4 dec Reference Freq 19.2 MHz MHz VCO gain 0 Kv 7.000e+007 Hz/V VC0/2 LFitRes 4 Kp 1.600e-006 A/cyc VC0/2 LFitRes 4 Kp 1.250e+005 Hz Calculate
C-BUS Header 1 C C-BUS Heade	r 2 Reset GUI Init Board
	Save State Load State Options Close

Figure 7 The C-BUS Control Tab

6.2.2 Fractional-N Synthesiser Control

There are two instances of this tab, one for each of PLL1 and PLL2. Figure 8 shows the instance for PLL1.

The device 'Registers' section is updated as a result of altering the various controls on the tab. For the 'Dividers' section, register values are only updated when the 'Calculate' button is clicked. When the 'Write Frac-N 1(2)' button is clicked, the values shown in the 'Registers' section are written to the CMX983 in the correct order, as given in the CMX983 datasheet.

ES9830 Evaluation Kit Software					
C-BUS Control Frac-N 1 Frac-N 2 Rx Channel Tx Ch	nannel Rx/Tx Ports Script Handler				
PLL, R/I/F Dividers PLL Enable C 16 bits 24 bits Mode Integer-N div Charge Pump Current 250uA	Bleed Current (\$51) Enable Bleed Current Coarse Fast Lock Fast Lock Timer Coarse Divide Current Multiply				
Utviders VCO Frequency 901.2 MHz MCLK Frequency 19.2 MHz Comparison Freq 4.8 MHz R = 4 dec I = 188 dec F = -4194303 dec	Registers PLL1_CON(\$4E) 0009 PLL1_RDIV(\$52) 04 PLL1_FLCK(\$59) 0000 PLL1_IDIV(\$53) 00BC PLL1_BLEED(\$51) 00 PLL1_FDIV0(\$54) 0001 PLL_CFG(\$CE) 0000 PLL1_FDIV1(\$55) C0				
Write Frac-N 1					
	Save State Load State Options Close				

Figure 8 Fractional-N Synthesiser Control Tab

6.2.3 Receive Channel Control

The device 'Registers' section is updated as a result of altering the various controls on the tab. When the 'Write Rx' button is clicked the values shown in the 'Registers' section are written to the CMX983.

Filter coefficients may be read from files that are in the 'c' header format. Browse to the file and click 'Load' to write the coefficients to the selected coefficient bank on the CMX983. This must be done before the receive channel is enabled.

To load the filter coefficients of the selected filter in 'Coeff Bank' at the same time as the Rx registers are written, tick the 'Auto Load Filter' checkbox.

ES9830 Evaluation Kit Software	
C-BUS Control Frac-N 1 Frac-N 2 Rx Channel Tx Cha	nnel Rx/Tx Ports Script Handler
Channel Input Gain A OdB Invert A Cal Gain B OdB Invert B	FIR Filter Coefficient Load Coeff Bank RX_FIR0
Sinc Filter	FIR filename Load
Sinc num 3 Stg 👻 Sinc len 0	Filter len 0
B 1st Bitsel 0 A 1st Bitsel 0	B Coeff RX_FIR0 V A Coeff RX_FIR0 V
Ver Phase B 0 Ver Phase A 0	B 2nd Bitsel 0 A 2nd Bitsel 0
FIR Filter CR2 150 ks/s	CR3 150 ks/s
	Manual Div 2
Registers RX_INPUT(\$1D) 0000 RX_CON0(\$1F) 08	RX_VERNIER(\$26) 0000 RX_CON3(\$25) 00
RXPORT_CON0(\$40) 02 RX_CON1(\$20) 0010	RX_BITSEL1(\$27) 0000 RX_BITSEL2(\$28) 0000
RXPORT_CON1(\$41) 03 RX_CON2(\$21) 2001	VBIAS_CON(\$10) 00 Port Freq 9600.00 kHz
I▼ Auto Load Filter	Write Rx
	Save State Load State Options Close

Figure 9 Receive Channel Control Tab

6.2.4 Transmit Channel Control

The device 'Registers' section is updated as a result of altering the various controls on the tab. When the 'Write Tx' button is clicked the values shown in the 'Registers' section are written to the CMX983.

Filter coefficients may be read from files that are in the 'c' header format. Browse to the file and click 'Load' to write the coefficients to the selected coefficient bank on the CMX983. This must be done before the transmit channel is enabled. CT1 and CT2 MUST be assigned before loading filter values.

To load the filter coefficients of the selected filter in 'Coeff Bank' at the same time as the Tx registers are written, tick the 'Auto Load Filter' checkbox.

ES9830 Evaluation Kit Software						
C-BUS Control Frac-N 1 Frac-N 2 Rx Channel Tx Char	nnel Rx/Tx Ports Script Handler					
Input B Enable CT1 150 ks/s	FIR Filter Load Coeff Bank TX_FIL0					
FIR Filter Image: Triangle in the stage bypass FIR Filter 2 Filter len Image: Triangle in the stage in the sta	FIR filename Load Modulator CT3 2.4 Ms/s Output Gain A 0.0dB Gain B 0.0dB Tx Port Divider					
Registers TX_CON0(\$30 TX_GAIN(\$35) 0000 VBIAS_CON(\$10) 00 TX_CON2(\$34	Manual Div 2 0 08 TXPORT_CON0(\$48) 02 1 8401 TXPORT_CON1(\$49) 03 1 0000 Tx Port Freq 9600.00 kHz					
Auto Load Filter Write Tx						
	Save State Load State Options Close					

Figure 10 Transmit Channel Control Tab

6.2.5 Rx/Tx Ports Tab

The Rx/Tx Port tab allows the capture of, or writing of, samples over the receive and transmit serial ports respectively of the EV9830. To make use of this tab a micro SD card is required to be plugged into the socket on the underside of the PE0003. See Section 6.3.2 for card requirements and preparation details. If the micro SD card is not prepared, the program can still run but pre-existing data stored in the SD card might be corrupted.

The controls are divided into four operations, one for each button:

- Receive button Receive the samples and store them into the micro SD card.
- Transmit button Read the samples from the micro SD card and transmit them.
- Save button Read the received samples from the micro SD card and write them to a file in the PC.
- Load button Read a file from the PC and store the samples for transmission in the micro SD card.

The file format is a '.csv' comma delimited, with "Isample, Qsample" per line, in ASCII. The file can be processed in Excel.

In the event of a problem with the micro SD card, the GUI shows a message indicating the nature of the problem, see Section 6.4.2.

🕮 ES9830 Evaluation Kit Software	
C-BUS Control Frac-N 1 Frac-N 2 Rx Channel Tx Char Rx Port	nnel Rx/Tx Ports Script Handler
Number of Samples 500000	Number of Samples 500000
Enable Rx Input Trigger (PE0003 GPIO0)	Enable Tx Output Trigger (PE0003 GPIO1)
Receive	Transmit
Rx PC	Tx PC
File	File
Save	Load
	Save State Load State Options Close

Figure 11 Rx/Tx Ports Control Tab

The optional receive input trigger and transmit output trigger signals can be found on the PE0003 as shown below:

Figure 12 Receive and Transmit Trigger Locations

6.2.6 The Script Handler Tab

The Script Handler Tab (shown in Figure 13) allows the execution of script files consisting of register write, read, and delay commands. These are plain text files on the PC, which are compiled via the GUI but executed by the Microprocessor on the PE0003 board. The script language is documented separately in the "Script Language Reference" document, which can be downloaded with the PE0003 support package from the CML website. The script handler may be used for additional features that are not covered in the other tabs, e.g. the auxiliary circuits of the CMX983.

🕮 ES9830 Evaluation Kit Sc	oftware				• X
C-BUS Control Frac-N 1 F	Frac-N 2 Rx Channel Tx (Channel Script H	landler		
Select Script >					
Run Script					
Clear Results					
Save Results					
See Trace					
		Caus State	Load State	Ontiona	Class
		pave prate	Load State	Options	Close

Figure 13 Script Handler Tab

To select a script file click on the 'Select Script' button. The Open File Dialog is displayed. Browse and select the script file. The folder that contains the script file will be the working folder of the script (i.e. all the files referenced in the script will be searched in this folder). Alternatively, select a script file from the recent files list. Click on the '>' button to display the list.

The results window displays the values returned by the script. These results can be saved to a text file or discarded by clicking on the 'Save Results' or 'Clear Results' buttons, respectively. When a script file is being executed the 'Run Script' button will change to the 'Abort' button, the rest of the tab will be disabled and the other tabs cannot be selected.

After a script has finished running, and when trace data is available, the 'See Trace...' button will be enabled. Up to 131072 C-BUS transactions can be logged in the PE0003 board. Click in the 'See Trace...' button to display the Trace dialog box. Note that the C-BUS transactions are only logged if the feature has been enabled in the script. See the "PE0003 Script Language Reference" document for details.

6.3 Application Information

See Section 3 for details of board setup and operation of the EV9830.

6.3.1 Filter Coefficients

If using the ES9830 GUI, filter coefficients can be loaded into the receive and transmit channels when coefficients are supplied in a 'c' header file format.

Example 'c' header file format for filter coefficients:

```
/*
FIR filter
fixed point precision: 16 bits
*/
#define FILTER TAP NUM 115
static int filter taps[FILTER TAP NUM] = {
        138,
        -256.
        -198,
        -183.
        // Until `FILTER TAP NUM' number of coefficents have been included,
        // one coefficient value per line.
        -183,
        -198,
        -256,
        138
        };
```

6.3.2 SD Card Preparation

Note: A class 10 micro SD card should be used.

6.3.2.1 Introduction

When using the PE0003 board to receive or transmit data in real-time the SD card is accessed directly in raw-mode. A file system cannot be used as the file storage is often non-linear and fragmented which can significantly impede reads or writes resulting in loss of data. A file system may still be required to coexist on the card for example to store Function Images. This is possible by shrinking the first partition containing the file system leaving enough space for the raw mode data storage.

Note: The SD card must have a standard master boot record (MBR) and partition table installed. The partition table is read by PE0003 and used to determine if any space exists on the card. It is usual for manufacturers to supply cards with an MBR preinstalled, however in instances where a card has been completely re-formatted it is possible for the MBR to be replaced with a FAT or NTFS boot sector. In such cases the MBR and partition table should be reinstalled which can be done using the fdisk or parted tool on Linux or the Diskpart tool on Windows.

Warning: Failure to create space for the raw-mode data storage may result in corruption of the file system and loss of data!

In order to maximise performance, SD card manufacturers often arrange the start of the first partition to be aligned with a significant boundary (4MB is typical). Also the file system allocation unit or cluster size is optimised to suit the memory architecture. The following procedure tries to ensure that these settings are maintained.

6.3.2.2 Shrink Partition Using Linux

There are many options available such as the graphical tool GParted. It is highly recommended to back up all the files on the SD card before proceeding in case something should go wrong with the resizing. The following instructions use commonly installed command line tools.

- 1) Backup the files on the SD card by copying them to a separate drive.
- 2) Open a command line interface and type **sudo fdisk** –I. Identify the disk device node for the SD card e.g. /dev/sdd.
- 3) Identify the file system cluster size on the first partition using fsck e.g. **sudo fsck /dev/sdd1 –vp**.

Figure 14 SD Card – Linux - fsck

- 4) Run the Parted tool on the disk device node identified in Figure 14Error! Reference source not found., e.g. sudo parted /dev/sdd. Double check that the correct device is selected as the wrong one could result in loss of data.
- 5) Shrink the partition keeping the same start address and file system using the resize command. The following example shrinks by 500MB (Note: Parted version 2.3 was found to fail when resizing a FAT file system, if this is the case use the **resizepart** command instead and then reformat using **mkfs**).

```
sudo parted /dev/sdd
GNU Parted 2.2
Using /dev/sdd
Welcome to GNU Parted! Type 'help' to view a list of commands.
(parted)
resize
WARNING: you are attempting to use parted to operate on (resize) a
file system.
parted's file system manipulation code is not as robust as what
you'll find in
dedicated, file-system-specific packages like e2fsprogs. We
recommend
you use parted only to manipulate partition tables, whenever
possible.
Support for performing most operations on most types of file
systems
will be removed in an upcoming release.
Partition number?
1
Start? [4194kB]?
End? [4036MB]? 3536
```

Figure 15 SD Card – Linux - parted

6) Copy the files onto the SD card from the backup.

6.3.2.3 Shrink Partition on Windows

Note: If the diskpart tool is unable to shrink the volume it is likely that the card is installed with a boot sector rather than a master boot record. In this case see section 6.3.2.3.1 for instructions on installing one.

The standard Disk Management that is preinstalled on a Windows machine does not allow shrinking of partitions on removable drives. Other third party tools are available to do this, however it is still possible to achieve the same outcome using the command line Diskpart tool as follows:

- 1. Backup the files on the SD card by copying them to a separate drive.
- 2. At a command prompt, type: diskpart.
- 3. List the volumes available using the **LIST VOLUME** command. Identify the volume that the SD card is mounted as. The following example shows a 4GB SD card mounted as volume E.

C:\Windows\system32\DISKPART.exe							
Microsoft DiskPart version 6.1.7601 Copyright (C) 1999-2008 Microsoft Corporation.							▲ Ⅲ
DISKPART> LIS	ST VOL	UME					
Volume ###	Ltr	Labe 1	Fs	Туре	Size	Status	Info
Volume Ø Volume 1 Volume 2	 D С	System Res	e NTFS	DVD-ROM Partition Partition	0 B 100 MB 99 GB	No Media Healthy Healthy	 System Boot
Volume 3	E		FAT32	Removable	3845 MB	Healthy	
DISKPART>	I			VEHIOVANIE		no fieuta	~

Figure 16 SD Card – Windows Diskpart - List Volumes

- 4. Use the SELECT VOLUME command to select the SD card e.g. SELECT VOLUME E.
- 5. Double check that the correct disk is selected by using the **LIST VOLUME** command again. The selected volume should have a * character in front of it. This step is very important as the wrong selection could result in corruption and data loss of other drives.

C:\Windows\system32\DISKPART.exe							
DISKPART> LIS	T VOL	UME					A
Volume ###	Ltr	Label	Fs	Туре	Size	Status	Info 🗉
Volume Ø Volume 1 Volume 2 Volume 3 Volume 4	D C E I	System Rese	NTFS NTFS FAT32	DUD-ROM Partition Partition Removable Removable	0 B 100 MB 99 GB 3845 MB 0 B	No Media Healthy Healthy Healthy No Media	System Boot
DISKPART> SEL	ECT V	OLUME E					
Volume 3 is the selected volume.							
DISKPART> LIST VOLUME							
Volume ###	Ltr	Labe 1	Fs	Туре	Size	Status	Info
Volume Ø Volume 1 Nolume 2	D C	System Rese	NTFS	DUD-ROM Partition Partition	0 B 100 MB 99 GB	No Media Healthy Healthy	System Boot
* Volume 3	E		FAT32	Removable	3845 MB	Healthy	
DISKPART>	1			Nemovable	40	No neula	Ŧ

Figure 17 SD Card – Windows Diskpart - Selected Volume

6. List details about the file system using FILESYSTEM command. Make a note of the type and the allocation unit size, e.g.

C:\Windows\system32\DISKPART.exe	×
DISKPART> FILESYSTEM	^
Current File System	
Type : FAT32 Allocation Unit Size : 32K Flags : 0000000	
File Systems Supported for Formatting	
Type : NTFS Allocation Unit Sizes: 512, 1024, 2048, 4096 (Default), 8192, 16K, 32K, 64K	
Type : FAT Allocation Unit Sizes: 64K (Default)	
Type : FAT32 (Default) Allocation Unit Sizes: 1024, 2048, 4096, 8192, 16K, 32K (Default)	
Type : exFAT Allocation Unit Sizes: 512, 1024, 2048, 4096, 8192, 16K, 32K (Default), 64K, 1 28K, 256K, 512K, 1024K, 2048K, 4096K, 8192K, 16384K, 32768K	
DISKPART>	-

Figure 18 SD Card – Windows Diskpart - FileSystem

- 7. Reformat the file system to NTFS using the command **FORMAT fs=NTFS QUICK** (skip this step if the type is already NTFS). The Diskpart tool can only shrink NTFS file systems.
- 8. Shrink the partition by the required amount where the size is specified in Megabytes e.g. to shrink by 500MB use **SHRINK DESIRED=500**.

C:\Windows\system32\DISKPART.exe					
Type : NTFS Allocation Unit Sizes: 512, 1024, 2048, 4096 (Default), 8192, 16K, 32K, 64K					
Type : FAT Allocation Unit Sizes: 64K (Default)					
Type : FAT32 (Default) Allocation Unit Sizes: 1024, 2048, 4096, 8192, 16K, 32K (Default)					
Type : exFAT Allocation Unit Sizes: 512, 1024, 2048, 4096, 8192, 16K, 32K (Default), 64K, 1 28K, 256K, 512K, 1024K, 2048K, 4096K, 8192K, 16384K, 32768K					
DISKPART> FORMAT fs=NTFS QUICK					
100 percent completed					
DiskPart successfully formatted the volume.					
DISKPART> SHRINK DESIRED=500					
DiskPart successfully shrunk the volume by: 500 MB					
DISKPART>	<i>r</i>				

Figure 19 SD Card – Windows Diskpart - Shrink

 Reformat to the required file system type (this is not necessary for NTFS). Use the allocation unit size as noted above e.g. to format as FAT32 with a cluster size of 32kb use FORMAT fs=FAT32 unit=32K.

- 10. Exit the diskpart tool using the **EXIT** command.
- 11. Copy the files onto the SD card from the backup.

6.3.2.3.1 Install a Master Boot Record and Partition Table using Windows

The following instructions show how to install a new master boot record with a shrunken primary partition and format it using the Diskpart tool.

- 1) Backup the files on the SD card by copying them to a separate drive.
- 2) At a command prompt, type: diskpart.
- 3) List the disks available using the **LIST DISK** command. Identify the disk number that the SD card is mounted as.
- Having identified the disk number use the SELECT DISK command to select the SD card disk e.g. SELECT DISK 3.
- 5) Double check the correct disk is selected by using the **LIST DISK** command again. The selected disk should have * character in front of it. This step is very important as the wrong selection could result in corruption and data loss of other drives.
- 6) Use the **CLEAN** command to clear all the information off the disk (all data will be lost).
- 7) Create a new partition using **CREATE PARTITION PRIMARY** command.
- 8) Select the partition using **SELECT PARTITION 1**.
- 9) Shrink the partition by the required amount where the size is specified in Megabytes e.g. to shrink by 500MB use **SHRINK DESIRED=500**.
- 10) Format the partition as required e.g. **FORMAT fs=FAT32 unit=32k**.
- 11) Exit the diskpart tool using the **EXIT** command.
- 12) Copy the files onto the SD card from the backup.

6.4 Troubleshooting

6.4.1 Modification State

The modification state (mod state) of the EV9830 can be determined from the 'Board Mod' box printed on the PCB silkscreen. The highest number in the box that is blacked out gives the mod state. The following examples indicate a mod state of 2.

Figure 20 Examples of Mod State Identification

6.4.2 SD Card

In order to improve the performance of the micro SD card operations, the use of a filesystem is discarded. PE0003 uses non-allocated memory as storage, this unallocated memory should be after the first partition. If no such space is detected, PE0003 uses some specific micro SD card memory positions (512MB, by default). Therefore if any data is stored in these positions, they will get corrupted.

Figure 21 shows the warning that will be displayed if no unallocated memory is detected.

Figure 21 Warning Message for No Unallocated SD Card Memory Detected

If the SD card write cycle is too slow for the rate at which samples are read from the EV9830 board, an overrun in internal buffers will occur. In transmit, a similar underrun error will occur if the SD card read cycle is too slow. Either of these events will produce the error shown in Figure 22.

Info ES9830
Failed - SD Card too slow.
ОК

_

7 Performance Specification

7.1 Electrical Performance

7.1.1 Absolute Maximum Ratings

Exceeding these maximum ratings can result in damage to the evaluation kit.

	Min.	Max.	Units	
Supply (+V – 0V)	-0.3	9.0 ¹	V	
Supply (-V – 0V)	0.3	-9.0	V	
Voltage on any connector pin (excluding supply pins) to V_{SS}	-0.3	3.6	V	
Current into or out of +V and V _{SS} pins	0	+0.45	A	
Current into or out of any other connector pin	-20	+20	mA	

7.1.2 Operating Limits

Correct operation of the Evaluation Kit outside these limits is not implied.

	Notes	Min.	Max.	Units
Supply (+V – 0V)		5.5	6.5	V
Supply $(-V - 0V)$		-5.5	-6.5	V
External Clock Frequency		5.0	30	MHz

¹ If the PE0003 is used with the EV9830 then the maximum supply voltage is 6.8V.

^{© 2014} CML Microsystems PIc

7.1.3 Operating Characteristics

For the following conditions unless otherwise specified:

Evaluation device clock frequency = 19.2MHz, +V = 6.0V, -V = -6.0V, $T_{AMB} = +25$ °C.

For CMX983 parameters, see relevant CMX983 datasheet.

	Notes	Min.	Тур.	Max.	Units
DC Parameters					
I _{DD}	1, 2	-	225	-	mA
- I _{DD}	1, 2	-	70	-	mA
VDD		-	1.8	-	V
RFVDD		-	1.8	-	V
IOVDD		-	3.3	-	V
AVDD		-	3.3	-	V
+3V3-VCO		-	3.3	-	V
+5V0		-	5.0	-	V
+5V0-VCO		-	5.0	-	V
-5V0		-	-5.0	-	V
Analogue Parameters					
Input Impedances					
RXI/Q P/N	3				
RXI/Q	4	-	51	-	Ω
Output Impedances					
TXI/Q P/N	3				
TXI/Q	4	-	51	-	Ω
External Clock Input					
'High' Pulse Width	5	16	-	-	ns
'Low' Pulse Width		16	-	-	ns
Input Impedance		10	-	-	MΩ
VCO Tuning Range					
900MHz	6	875	-	960	MHz
2100MHz	6	2060	-	2125	MHz

Notes:

- 1. PCB current consumption, not the current consumption of the CMX983.
- 2. Not including any current drawn from pins by external circuitry.
- 3. CMX983 parameter, see relevant datasheet.
- 4. Small signal impedance.
- 5. If external buffer selected by jumpers on J1, otherwise see CMX983 datasheet.
- 6. Charge pump supplies set to 5.0 volts at jumpers JP6 and JP7.

7.1.4 Operating Characteristics - Timing Diagrams

Please refer to the CMX983 datasheet for details.

CML does not assume any responsibility for the use of any circuitry described. No IPR or circuit patent licences are implied. CML reserves the right at any time without notice to change the said circuitry and any part of this product specification. Evaluation kits and demonstration boards are supplied for the sole purpose of demonstrating the operation of CML products and are supplied without warranty. They are intended for use in a laboratory environment only and are not for re-sale, end-use or incorporation into other equipments. Operation of these kits and boards outside a laboratory environment is not permitted within the European Community. All software/firmware is supplied "as is" and is without warranty. It forms part of the product supplied and is licensed for use only with this product, for the purpose of demonstrating the operation of CML products. Whilst all reasonable efforts are made to ensure that software/firmware contained in this product is virus free, CML accepts no responsibility whatsoever for any contamination which results from using this product and the onus for checking that the software/firmware is virus free is placed on the purchaser of this evaluation kit or development board.

CML Microcircuits (UK) Ltd COMMUNICATION SEMICONDUCTORS	CML Microcircuits (USA) Inc. COMMUNICATION SEMICONDUCTORS	CML Microcircuits (Singapore) Pte Ltd COMMUNICATION SEMICONDUCTORS	
Tel:	Tel:	Tel:	
+44 (0)1621 875500	+1 336 744 5050	+65 62 888129	
Fax:	800 638 5577	Fax:	
+44 (0)1621 875600	Fax:	+65 62 888230	
Sales:	+1 336 744 5054	Sales:	
sales@cmlmicro.com	Sales: us.sales@cmlmicro.com	sg.sales@cmlmicro.com	
Tech Support:	Tech Support:	Tech Support:	
techsupport@cmlmicro.com	us.techsupport@cmlmicro.com	sg.techsupport@cmlmicro.com	
- www.cmlmicro.com -			