

CoreLED P/N 12003-STAR-E17

- 74° side emitting optic
- Nichia E17 LED source
- 20mm Starboard for easy prototyping and evaluation

SMO Product Description:

The SMO product family is a series of injection molded high-temperature silicone miniature lenses that attach directly to PCB with solder clip using standard reflow method. These components achieve high light collection efficiency, a variety of engineered beam patterns, and are supplied for high volume pick and place electronics assembly.

Key Features:

- Optical lens is reflow mounted at the same time as LED assembly
- \circ Supplied in tape and reel
- Increased control of light output
- \circ Precision alignment (within ±0.1mm)
- \circ $\;$ Family of optical beam patterns that will work using IR reflow
- Reflow solder clip directly attached to lens
- Standard pick and place equipment
- Manufactured without the need for additional components to attach the optics

STARBOARD mounted optics are meant for PROTOTYPE and EVALUATION purposes only

Emitted Pattern Profile

IES files and Raytrace models are available upon request from CoreLed Engineering.

Mechanical Profile: SMO Side Emitter

Mechanical design features shown with solder clip

CAD files available upon request from CoreLed Engineering

LED Information

NCSWE17AT

• Pb-free Reflow Soldering Application

RoHS Compliant

SPECIFICATIONS

(1) Absolute Maximum Ratings

Item	Symbol	Absolute Maximum Rating	Unit
Forward Current	I _F	700	mA
Pulse Forward Current	Ipp	1000	mA
Reverse Voltage	VR	5	v
Power Dissipation	Pp	2.31	W
Operating Temperature	Toor	-40~100	°C
Storage Temperature	Tstg	-40~100	°C
Junction Temperature	T ₂	135	°C

* Absolute Maximum Ratings at T_c =25°C.

* $I_{\mu\nu}$ conditions with pulse width ${\leq}10\text{ms}$ and duty cycle ${\leq}10\%.$

(2) Initial Electrical/Optical Characteristics

Item		Symbol	Condition	Тур	Max	Unit
Forward Voltage		VF	I _F =350mA	3.0	-	v
Reverse Current		Ig	$V_R = 5V$	-	-	μA
R70	Luminous Flux	Φv	I _F =350mA	158	-	lm
	Color Rendering Index	Ra	I _F =350mA	72	-	-
R8000	Luminous Flux	Φ,	I _F =350mA	148	-	Im
	Color Rendering Index	Ra	I _F =350mA	82	-	-
R9050	Luminous Flux	Φv	I _F =350mA	125	-	lm
	Color Rendering Index	Ra	I _F =350mA	92	-	-
R9080	Luminous Flux	Φ,	I _F =350mA	118	-	lm
	Color Rendering Index	Ra	I _F =350mA	92	-	-
Chromaticity Coordinate	x	-	I _F =350mA	0.3447	-	-
	v	-	I _F =350mA	0.3553	-	-
Thermal Resistance		Rec	-	0.5	1.0	°C/W

* Characteristics at T_C=25°C.

* Luminous Flux value as per CIE 127:2007 standard.

* Chromaticity Coordinates as per CIE 1931 Chromaticity Chart.

* The thermal resistance value (R_{BUC}) is used to perform logical analysis (e.g. computer-based thermal analysis simulation) and represents a thermal resistance between the die to the T_C measurement point (PCB used: Aluminum PCB t=1.5mm, Insulating layer t=0.12mm).

* For more details on thermal resistance, see CAUTIONS, (6) Thermal Management.

Starboard Schematic

STARBOARD mounted optics are meant for PROTOTYPE and EVALUATION purposes only

Electrical:

From LED Data sheet: recommended operation is Typical 3.0V at 350mA (1 Watt to provide 150 lumens).

Thermal:

Recommended attachment to heat sink to dissipate 1W (3.0V at 350mA). LED is rated higher and can be run up to 700mA with appropriate heatsinking provided.

Packaging:

Individually packaged in static controlled bag.