

AN32051A

http://www.semicon.panasonic.co.jp/en/

7 x 7 Dots Matrix LED Driver LSI

FEATURES

- 7 x 7 LED Matrix Driver
 - (Total LED that can be driven = 49)
- Built-in memory (ROM, RAM)
- LDO : 2-ch
- SPI interface : 1-ch
- LED driver for RGB : 1-ch
- 35 pin Wafer Level Chip Size Package (WLCSP)

DESCRIPTION

AN32051A is a 49 Dots Matrix LED Driver. It can drive up to 16 RGB LEDs.

APPLICATIONS

- Mobile Phone
- Smart Phone
- PCs
- Game Consoles
- Home Appliances etc.

TYPICAL APPLICATION

Note)

The application circuit is an example. The operation of the mass production set is not guaranteed. Sufficient evaluation and verification is required in the design of the mass production set. The Customer is fully responsible for the incorporation of the above illustrated application circuit in the design of the equipment.

CONTENTS

FEATURES	1
DESCRIPTION	1
APPLICATIONS	. 1
TYPICAL APPLICATION	
CONTENTS	2
ABSOLUTE MAXIMUM RATINGS	
POWER DISSIPATION RATING	. 3
RECOMMENDED OPERATING CONDITIONS	4
ELECTRICAL CHARACTERISTICS	
PIN CONFIGURATION	13
PIN FUNCTIONS	
FUNCTIONAL BLOCK DIAGRAM	15
OPERATION	
PACKAGE INFORMATION	
IMPORTANT NOTICE	63

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Rating	Unit	Note
Supply voltage	VB _{MAX}	6.0	V	*1
Supply voltage	VLED _{MAX}	6.5	V	*1
Operating ambience temperature	T _{opr}	– 30 to + 85	°C	*2
Operating junction temperature	Тj	– 30 to + 125	°C	*2
Storage temperature	T _{stg}	– 55 to + 125	°C	*2
Input Voltage Range	LEDCTL, RSTB, CE, CLK, DI	– 0.3 to 3.4	V	_
	LDOCNT	– 0.3 to 6.0	V	_
	INT, DO	– 0.3 to 3.4	V	—
Output Voltage Range	R, G, B, LDO1, LDO2, X0, X1, X2, X3, X4, X5, X6, Y0, Y1, Y2, Y3, Y4, Y5, Y6	– 0.3 to 6.5	v	_
ESD	НВМ	2.0	kV	

Note) This product may sustain permanent damage if subjected to conditions higher than the above stated absolute maximum rating. This rating is the maximum rating and device operating at this range is not guaranteeable as it is higher than our stated recommended operating range.

When subjected under the absolute maximum rating for a long time, the reliability of the product may be affected. *1: $VB_{MAX} = VB$, $VLED_{MAX} = VLED$.

The values under the condition not exceeding the above absolute maximum ratings and the power dissipation.

*2: Except for the power dissipation, operating ambient temperature, and storage temperature, all ratings are for $T_a = 25^{\circ}C$.

POWER DISSIPATION RATING

PACKAGE	θ_{JA}	P _D (Ta=25 °C)	Р _D (Та=85 °С)
35 pin Wafer Level Chip Size Package (WLCSP)	141.5 °C /W	0.706 W	0.304 W

Note) For the actual usage, please refer to the P_D-Ta characteristics diagram in the package specification, follow the power supply voltage, load and ambient temperature conditions to ensure that there is enough margin and the thermal design does not exceed the allowable value.

CAUTION

Although this IC has built-in ESD protection circuit, it may still sustain permanent damage if not handled properly. Therefore, proper ESD precautions are recommended to avoid electrostatic damage to the MOS gates.

RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Min.	Тур.	Max.	Unit	Note
	VB	3.1	3.7	4.6	V	*1
Supply voltage range	VLED	3.1	5.0	5.6	V	*1
Input Voltage Range	LEDCTL, RSTB, CE, CLK, DI	- 0.3	—	3.0	V	
	LDOCNT	- 0.3	—	VB + 0.3	V	*2
	INT, DO	- 0.3	—	3.0	V	
Output Voltage Range	R, G, B, LDO1, LDO2, X0, X1, X2, X3, X4, X5, X6, Y0, Y1, Y2, Y3, Y4, Y5, Y6	- 0.3	_	VLED + 0.3	V	*2

Note) *1: The values under the condition not exceeding the above absolute maximum ratings and the power dissipation. Do not apply external currents and voltages to any pin not specifically mentioned. Voltage values, unless otherwise specified, are with respect to GND. GND is voltage for AGND, RGBGND and PGND. VB is voltage for VB. VLED is voltage for VLED1 and VLED2.

*2: (VB + 0.3) V must not exceed 6 V. (VLED + 0.3) V must not exceed 6.5 V.

ELECTRICAL CHARACTERISTICS

VB = 3.6 V, VLED1 = VLED2 = 4.9 V

Note) T_a = 25 °C \pm 2 °C unless otherwise specified.

	Devementer	Symbol	Condition		Limits		Unit	Note
	Parameter	Symbol	Condition	Min	Тур	Max	Unit	Note
Cu	rrent consumption							
	Current consumption (1)	ICC1	At OFF mode LDOCNT = Low	_	0	1	μA	_
	Current consumption (2)	ICC2	At Standby mode LDOCNT = Low LDO2 is active.		8	12	μA	
	Current consumption (3)	ICC3	LDOCNT = High LDO1 and LDO2 are active.		18	24	μA	
Re	ference voltage							
	Output voltage	VREF	I _{VREF} = 0 μA	1.22	1.25	1.28	V	_
Re	ference current							
	Output voltage	VIREF	I _{IREF} = 0 μA	0.44	0.54	0.64	V	_
Vo	Itage regulator (LDO1)		·					
	Output voltage	VL1	I _{LDO1} = – 30 mA	1.79	1.85	1.91	V	_
	Short circuit protection current	IPT1	LDOCNT = High REG18 = High V _{LDO1} = 0 V, IPT1 = I _{LDO1}	50	100	200	mA	
	Ripple rejection (1)	PSL11	VB = $3.6 V + 0.2 V[p-p]$ f = 1 kHz I _{LDO1} = $-15 mA$ PSL11 = 20log (acV _{LDO1} / 0.2)	_	- 45	- 40	dB	
	Ripple rejection (2)	PSL12	VB = 3.6 V + 0.2 V[p-p] f = 10 kHz I _{LDO1} = - 15 mA PSL12 = 20log (acV _{LDO1} / 0.2)		- 35	- 25	dB	

ELECTRICAL CHARACTERISTICS (continued)

VB = 3.6 V, VLED1 = VLED2 = 4.9 V

Note) $T_a = 25 \ ^\circ C \pm 2 \ ^\circ C$ unless otherwise specified.

	Parameter		Condition		Limits		Unit	Note
	Parameter	Symbol	Condition	Min	Тур	Max	Unit	Note
Vo	Itage regulator (LDO2)							
	Output voltage	VL2	I _{LDO2} = – 30 mA	2.76	2.85	2.94	V	_
	Short circuit protection current	IPT2	LDOCNT = High $V_{LDO2} = 0V$ IPT2 = I _{LDO2}	50	100	300	mA	_
	Ripple rejection (1)	PSL21	VB = $3.6 V + 0.2 V[p-p]$ f = 1 kHz I _{LDO2} = $-15 mA$ PSL21 = 20log (acV _{LDO2} / 0.2)	_	- 40	- 30	dB	_
	Ripple rejection (2)	PSL22	VB = $3.6 V + 0.2 V[p-p]$ f = 10 kHz I _{LDO2} = -15 mA PSL22 = $20\log (acV_{LDO2} / 0.2)$	_	- 25	- 15	dB	_
Os	cillator							
	Oscillation frequency	FDC	_	0.96	1.20	1.44	MHz	_
sc	CAN Switch							
	Resistance at the Switch ON	RSCAN	I _{Y0, Y1, Y2, Y3, Y4, Y5, Y6} = 5 mA RSCAN = V _{Y0, Y1, Y2, Y3, Y4, Y5, Y6} / 5 mA		2	4.8	Ω	_

ELECTRICAL CHARACTERISTICS (continued)

VB = 3.6 V, VLED1 = VLED2 = 4.9 V

Note) $~~T_a$ = 25 $^{\circ}C$ \pm 2 $^{\circ}C$ unless otherwise specified.

	Parameter	Symbol	Condition		Limits		Unit	Noto
	Farameter	Symbol	Condition	Min	Тур	Max	Unit	Note
Cu	rrent generator (For 7×7 dots	s matrix Ll	ED)					
	Output current (1)	IMX1	At 1mA setup $V_{X0, X1, X2, X3, X4, X5, X6} = 1 V$ IMX1 = I _{X0, X1, X2, X3, X4, X5, X6}	0.952	1.035	1.118	mA	*1
	Output current (2)	IMX2	At 2 mA setup V _{x0, x1, x2, x3, x4, x5, x6} = 1 V IMX2 = I _{x0, x1, x2, x3, x4, x5, x6}	1.923	2.090	2.258	mA	*1
	Output current (3)	IMX4	At 4 mA setup $V_{x0, x1, x2, x3, x4, x5, x6} = 1 V$ IMX4 = $I_{x0, x1, x2, x3, x4, x5, x6}$	3.843	4.177	4.512	mA	*1
	Output current (4)	IMX8	At 8 mA setup V _{x0, x1, x2, x3, x4, x5, x6} = 1 V IMX8 = I _{x0, x1, x2, x3, x4, x5, x6}	7.692	8.361	9.030	mA	*1
	Output current (5)	IMX15	At 15 mA setup $V_{x0, x1, x2, x3, x4, x5, x6} = 1 V$ IMX15 = I _{x0, x1, x2, x3, x4, x5, x6}	14.399	15.651	16.903	mA	*1
	Leakage Current when matrix LED turns off	IMXOFF	Current OFF setup V _{x0, x1, x2, x3, x4, x5, x6} = 4.75 V IMXOFF = I _{x0, x1, x2, x3, x4, x5, x6}		_	1	μΑ	_
	The error between channels	IMXCH	The average value of all channels, and the current error of each channel	- 5		5	%	_

*1 : Values when recommended parts (ERJ2RHD273X) are used for IREF terminal. The other current settings are combination of above items.

ELECTRICAL CHARACTERISTICS (continued)

VB = 3.6 V, VLED1 = VLED2 = 4.9 V

Note) $T_a = 25 \ ^\circ C \pm 2 \ ^\circ C$ unless otherwise specified.

	Parameter	Symbol	Condition		Limits		Unit	Note		
	Farameter	Symbol	Condition	Min	Тур	Max	Unit	Note		
Current generator (For RGB color unit)										
	Output current (1)	IRGB1	At 1mA setup V _{R, G, B} = 1 V	0.949	1.031	1.114	mA	*1		
	Output current (2)	IRGB2	At 2 mA setup V _{R, G, B} = 1 V	1.901	2.066	2.231	mA	*1		
	Output current (3)	IRGB4	At 4 mA setup V _{R, G, B} = 1 V	3.781	4.110	4.438	mA	*1		
	Output current (4)	IRGB8	At 8 mA setup V _{R, G, B} = 1 V	7.554	8.210	8.867	mA	*1		
	Leakage Current when RGB turn off	IRGBOFF	Current OFF setup $V_{R, G, B}$ = 4.75 V IRGBOFF = I _{R, G, B}			1	μA	_		
	The error between channels	IRGBCH	The average value of all channels, and the current error of each channel	- 5		5	%	_		

*1 : Values when recommended parts (ERJ2RHD273X) are used for IREF terminal. The other current settings are combination of above items.

ELECTRICAL CHARACTERISTICS (continued)

VB = 3.6 V, VLED1 = VLED2 = 4.9 V

Note) T_a = 25 °C \pm 2 °C unless otherwise specified.

	Parameter	Symbol	Condition		Limits		Unit	Note
	Farameter	Symbol	Condition	Min	Тур	Max	Unit	Note
SP	I I/F, LEDCTL, RSTB							
	Input voltage range of High- level	VIH	High-level recognition voltage	1.38		LDO2 + 0.3	V	
	Input voltage range of Low- level	VIL	Low-level recognition voltage	-0.3	_	0.4	V	
	Input current of High-level	ШΗ	V _{LEDCTL, RSTB, CE, CLK, DI} = 1.85 V IIH = I _{LEDCTL, RSTB, CE, CLK, DI}	_	0	1	μA	
	Input current of Low-level	IIL	$V_{\text{LEDCTL, RSTB, CSB, CLK, DI}} = 0 V$ IIL = I _{LEDCTL, RSTB, CE, CLK, DI}	_	0	1	μA	
ΙΝ٦	г							
	Output voltage of High-level (1)	VOH1	I _{INT} = – 2 mA VDDSEL = LDO2	LDO2 × 0.8			V	
	Output voltage of Low-level (1)	VOL1	I _{INT} = 2 mA VDDSEL = LDO2 (I _{INT} = 0.5 mA)	_	_	LDO2 × 0.2	V	_
	Output voltage of High-level (2)	VOH2	I _{INT} = – 2 mA VDDSEL = LDO1	LDO1 × 0.8	_	_	V	_
	Output voltage of Low-level (2)	VOL2	I _{INT} = 2 mA VDDSEL = LDO1 (I _{INT} = 0.5 mA)	_		LDO1 × 0.3	V	_

ELECTRICAL CHARACTERISTICS (continued)

VB = 3.6 V, VLED1 = VLED2 = 4.9 V

Note) T_a = 25 °C \pm 2 °C unless otherwise specified.

	Parameter	Symbol	Condition		Limits		Unit	Note
	Farameter			Min	Тур	Max	Unit	Note
LD	OCNT							
	Input voltage range of High-level	VIH	High-level recognition voltage	VB × 0.7	_	VB + 0.3	V	_
	Input voltage range of Low-level	VIL	Low-level recognition voltage	- 0.3		0.4	V	
	Input current of High-level	ШН	$V_{LDOCNT} = 3.6 V$ IIH = I _{LDOCNT}		0	1	μA	_
	Input current of Low-level	IIL	$V_{LDOCNT} = 0 V$ IIL = I _{LDOCNT}	_	0	1	μA	_
DO								
	Output voltage of High-level	VOH	I _{DO} = – 2 mA	LDO1 × 0.8			V	
	Output voltage of Low-level	VOL	I _{DO} = 2 mA			LDO1 × 0.2	V	

ELECTRICAL CHARACTERISTICS (continued)

VB = 3.6 V, VLED1 = VLED2 = 4.9 V

Note) $T_a = 25 \circ C \pm 2 \circ C$ unless otherwise specified.

Parameter	Symbol	Condition		Limits		Unit	Note
Parameter	Symbol	Condition	Min	Тур	Max	Unit	Note
Voltage regulator (LDO1) Output	capacitor	1 μ F, Output capacitor's ESR less t	than 0	.1 Ω			
Rise time	Tsu1	Time until output voltage reaches to 0 V to 90%	_	0.25	_	ms	*2 *3
Fall time	Tsd1	Time until output voltage reaches to 10%	_	5	_	ms	*2 *3
Maximum load current	IOMAX1	_		15		mA	*3
Load transient response (1)	Vtr11	I_{LDO1} = – 50 μ A \rightarrow – 15 mA (1 μ s)		70	_	mV	*3
Load transient response (2)	Vtr12	I_{LDO1} = – 15 mA \rightarrow – 50 μ A (1 μ s)		70		mV	*3
Voltage regulator (LDO2) Output	capacitor	1 μF, Output capacitor's ESR less t	than 0	.1 Ω			
Rise time	Tsu2	Time until output voltage reaches to 0 V to 90%		0.25		ms	*2 *3
Fall time	Tsd2	Time until output voltage reaches to 10%	_	5	_	ms	*2 *3
Maximum load current	IOMAX2	_	_	15		mA	*3
Load transient response (1)	Vtr21	I_{LDO2} = – 50 μ A \rightarrow – 15 mA (1 μ s)		70		mV	*3
Load transient response (2)	Vtr22	I_{LDO2} = – 15 mA \rightarrow – 50 μ A (1 μ s)		70	_	mV	*3
TSD (Thermal shutdown circuit)							
Detection temperature	Tdet	Temperature which LDO1, LDO2, Constant current circuit, Matrix SW and RGB turns off.	_	160	_	°C	*3 *4
Return temperature	Tsd11	Returning temperature	_	110	_	°C	*3 *5

*2 : Rise time and Fall time are defined as below. Note)

Actual evaluation result of rise time : LDO1 : 290 to 400 µs, LDO2 : 220 to 310 μs Actual evaluation result of fall time : LDO1: 6.2 to 8.5 ms, LDO2 : 5.8 to 7.9 ms

*3 : Typical Design Value

*4 : LDO1, LDO2, Constant current circuit, and Matrix SW and RGB are turned off when TSD is High.

When TSD is High, the register is set as 14hD1 = 1. However, data can be read only when the register is read immediately after INT occurs since internal regulator is turned off.

*5 : Only LDO1 and LDO2 return after ON state of TSD. A logic part will be in Reset state.

ELECTRICAL CHARACTERISTICS (continued)

VB = 3.6 V, VLED1 = VLED2 = 4.9 V

Note) T_a = 25 °C \pm 2 °C unless otherwise specified.

Devenueder	Gumbal	Condition		Limits		11	Nata
Parameter	Symbol	Condition	Min	Тур	Мах	Unit	Note
Microcomputer interface character	stic (Vdd =	= 1.85 V ± 3 %) Write a	ccess Ti	ming			
CLK cycle time	tscyc1	—	_	125		ns	*3
CLK cycle time High period	twhc1	_	—	60	_	ns	*3
CLK cycle time Low period	twlc1		_	60		ns	*3
Serial-data setup time	tss1		_	62		ns	*3
Serial-data hold time	tsh1		_	62		ns	*3
Transceiver interval	tcsw1		_	62		ns	*3
Chip enable setup time	tcss1		_	5		ns	*3
Chip enable hold time	tcgh1		_	5		ns	*3
Microcomputer interface character	stic (Vdd =	1.85 V ± 3 %) Read ad	ccess Ti	ming			
CLK cycle time	tscyc1	_	_	125	_	ns	*3
CLK cycle time High period	twhc1		_	60		ns	*3
CLK cycle time Low period	twlc1		_	60		ns	*3
Serial-data setup time	tss1		_	62		ns	*3
Serial-data hold time	tsh1	_	_	62	_	ns	*3
Transceiver interval	tcsw1	_	_	62		ns	*3
Chip enable setup time	tcss1		_	5		ns	*3
Chip enable hold time	tcgh1			5		ns	*3
DC delay time	tdodly1	Only read mode		25		ns	*3

Note) *3 : Typical Design Value

Timing chart

PIN CONFIGURATION

PIN FUNCTIONS

Pin No.	Pin name	Туре	Description
B2	VB	Power supply	Power supply for Bandgap circuit and LDO circuit
A2	LDO1	Output	LDO1(1.85 V)output pin
C4	RSTB	Input	Reset input (Active : High)
A3	IREF	Output	Resistor connection pin for constant current setup
B3	LDOCNT	Input	ON/OFF control pin for LDO1 and LDO2
A4	VREFD	Output	Bandgap circuit output
B4	AGND	Ground	GND for analog block
A5	Y6	Output	Constant current circuit, output pin of PWM control
	10	Output	It connects with the G column of matrix LED.
B5	Y5	Output	Constant current circuit, output pin of PWM control
	10	Output	It connects with the F column of matrix LED.
B6	Y4	Output	Constant current circuit, output pin of PWM control
ВО	14	Output	It connects with the E column of matrix LED.
C5	Y3	Quitout	Constant current circuit, output pin of PWM control
05	13	Output	It connects with the D column of matrix LED.
C6	Y2	Output	Constant current circuit, output pin of PWM control
0	12	Output	It connects with the C column of matrix LED.

PIN FUNCTIONS (Continued)

Pin No.	Pin name	Туре	Description
D6 A6	VLED1 VLED2	Power supply	Power supply connection pin for matrix LED
D5	Y1	Output	Constant current circuit, output pin of PWM control It connects with the B column of matrix LED.
E6	Y0	Output	Constant current circuit, output pin of PWM control It connects with the A column of matrix LED.
D4	LEDCTL	Input	ON/OFF operation control of LED lighting (by serial address 0Ah)
F6	X0	Output	Constant current circuit, output pin of PWM control It connects with the 1st row of matrix LED.
E5	X1	Output	Constant current circuit, output pin of PWM control It connects with the 2nd row of matrix LED.
F5	X2	Output	Constant current circuit, output pin of PWM control It connects with the 3rd row of matrix LED.
E4	Х3	Output	Constant current circuit, output pin of PWM control It connects with the 4th row of matrix LED.
F4	PGND	Ground	GND for matrix LED
E3	X4	Output	Constant current circuit, output pin of PWM control It connects with the 5th row of matrix LED.
F3	X5	Output	Constant current circuit, output pin of PWM control It connects with the 6th row of matrix LED.
F2	X6	Output	Constant current circuit, output pin of PWM control It connects with the 7th row of matrix LED.
F1	R	Output	LED connection pin
E2	RGBGND	Ground	GND for RGB pin
E1	G	Output	LED connection pin
D1	В	Output	LED connection pin
D2	DO	Output	SPI interface data output
D3	DI	Input	SPI interface data input
C1	CLK	Input	SPI interface clock input
C2	CE	Input	SPI interface chip enable (Active : High)
C3	INT	Output	Interrupt output
A1	LDO2	Output	LDO2 (2.85 V) output

FUNCTIONAL BLOCK DIAGRAM

Notes: This block diagram is for explaining functions. Part of the block diagram may be omitted, or it may be simplified.

OPERATION

1. Explanation of each mode (Power supply startup sequence)

Mode	LDOCNT	REG18	REG28	Note
OFF mode	Low	0	0	- LDOCNT should be set to High in order to recover from OFF mode.
OFF mode	Low \rightarrow High	0/1	0/1	 Serial signal is not received at LDOCNT = Low and REG28 = [0] or REG18 = [0]. This LSI shifts to Standby mode at LDOCNT = Low, REG28 = [1] and REG18 = [0]. Serial signal is not received at Standby mode. (Downs supplies for logic are LDO1 and LDO2.)
→ Normal mode	High	0/1	0/1	 (Power supplies for logic are LDO1 and LDO2.) Therefore, Standby mode cannot be released by serial signal. When LDOCNT is changed from Low to High, it is impossible to shift Standby mode to Normal mode. It is impossible to shift Standby mode to OFF mode. Once returning to Normal mode, shift to OFF mode.
Normal mode → OFF mode	High	0	0	 At LDOCNT = High, LDO1 turns on regardless of REG18. At LDOCNT = High, LDO2 turns on regardless of REG28. At RSTB = Low, serial signal is not received. It is possible to receive the serial signal at 5 ms or more after LDOCNT is set to High. The Low interval of RSTB should be one internal clock or more. Don't input a signal except rectangle wave to RSTB pin.
Normal mode → Standby mode	High → Low	0	1	 All register's settings become default values if RSTB is set to Low. (The default value of REG18 and REG28 bit is [1]. Note that LDO1 and LDO2 don't turn off when RSTB is set to Low before LDOCNT is set to Low.) All register's settings are reset when LDO2 turns off. (Register setting initialization) The setup step to OFF mode is as follows. REG18, 28 = [0] → LDOCNT = Low → RSTB = Low

1. Explanation of each mode (Power supply startup sequence) (continued)

Note) The above waveform is under the condition that the register setup is reset in standby mode. Maintain the state of RSTB = High to hold the register setup.

1. Explanation of each mode (Power supply startup sequence) (continued)

Shift to OFF mode from Normal mode

1. Explanation of each mode (Power supply startup sequence) (continued)

Mode which is specified by VBAT / LDOCNT

VBAT	LDOCNT	MODE
Low	Low	OFF
Low	High	Prohibition
High	Low	OFF
High	High	ON

Note) "Low" in column of VBAT and LDOCNT means 0 V.

"High" in column of VBAT and LDOCNT means 3.1 V to 4.6 V (operation supply voltage range).

Logic pin conditions

The following setting is common for OFF, Standby and Normal mode. The pin setting when RSTB = Low, under Normal mode is as follows.

Pin name	Pin state	Logic state*
INT	Output	Low
CE	Input	Low
CLK	Input	Low
DI	Input	Low
DO	Output	Low
LEDCTL	Input	Low
LDOCNT	Input	Depends on each mode setup

Note)*: Logic state for pins indicated as "Output" under Pin state shows the output level.

Logic state for pins indicated as "Input" under Pin state shows the input level to be set to the pins.

2. Explanation of operation

Matrix part operation waveform

The following waveform is a timing chart example at operation.

It is controlled by internal 1.2 MHz clock under the default condition.

Y side switches from Y0 to Y6 in that order. The ON period of each pin is constant 945clk (787.5 μ s). The ON period includes an 8clk(6.67 μ s) interval.

In the case of the following figure, "*" mark shows ON period. Therefore, D3 and D4 are OFF period.

 7×7 matrix display is controlled by the lines of X1 to X6.

The following waveforms are internal signals. The actual waveform of Yx pin becomes Hi-Z at Yx = Xx = Low.

3. Block configuration

RESET part block configuration

3. Block configuration (continued)

Explanation of matrix LED part, matrix LED's number

LED matrix driver can display characters and patterns by controlling 7 \times 7 matrix LED individually. In this product standards, LED's number controlled by each pin is as the following figure.

An internal logic circuit is controlled by internal clock.

In scroll mode, the display of character specified in the following arrangement is moved from right to left.

3. Block configuration (continued)

Equivalent circuit example of constant current driver

In case of X0 pin

The constant current equivalent circuit example (X0 pin) for LED driver is shown in the above figure. The reference current for constant current driver is calculated by the following formula.

 $V(IREF) / R(IREF) = 0.54 V / 27 k\Omega = 20 \mu A$

The LED driver current can be set to the range of 0 mA to 30 mA by setting the mirror ratio between Q1 and Q2 by DAC via serial interface.

The constant current can be changed by the resistor connected to IREF pin, but the accuracy in case of this setting is not guaranteed.

It is recommended that ERJ2RHD273X is used as R(IREF) to keep the accuracy of constant current of LED driver.

4. Register and Address

Register map

Sub		Dete nome					Data			
address	R/W	Data name	D7	D6	D5	D4	D3	D2	D1	D0
01h	W	POWERCNT	—				_	OSCEN		—
02h	W	LDOCNT	—				_	—	REG18	REG28
03h					For	test				
04h					For	test				
05h					For	test				
06h					For	test				
07h					For	test				
08h					For	test				
09h					For	test				
0Ah	W	LEDCTL	LEDACT		_	_	_	DISMTX	DISRGB	—
1										
10h					For	test				
11h					For	test				
12h					For	test				
13h					For	test				
14h	R	IOFACTOR	FACGD1	_	_	_	RAM ACT	FRMINT	CPUWRER	TSD
15h					For	test	·	•		
16h					For	test				
17h					For	test				
18h					For	test				
19h					For	test				
1Ah	W/R	VDDSEL	INTVSEL		_	_		_		

4. Register and Address (continued)

Register map (continued)

		Dete memor					Data			
Sub address	R/W	Data name	D7	D6	D5	D4	D3	D2	D1	D0
20h	R/W	MTXON	_		_	_		_	—	MTXON
21h	R/W	MTXDATA				MTX	(DATA[7	: 0]		
22h	R/W	FFROM						_	ROM	77[1 : 0]
23h	R/W	ROMSEL				SEI	_ROM[7	: 0]		
24h	R/W	RAMCOPY	_		_	_		_	SELRAM	COPY START
25h	R/W	SETFROM				SET	FROM[7	: 0]	11	
26h	R/W	SETTO				SE	ETTO[7 :	0]		
27h	R/W	REPON							_	REPON
28h	R/W	SETTIME						_	SETTI	ME[1 : 0]
29h	R/W	RAMRST						_	RAM1	RAM2
2Ah	R/W	SCROLL	_		_	_	_	_	_	SCLON
2Bh					For	test				
2Ch	R/W	RGBON						_	—	RGBON
2Dh	R/W	RGBDATA					RG	BDATA[5 : 0]	
2Eh					For	test				
30h	R/W	RAMNUM						_	_	RAMNUM
6Bh					For	test				
6Dh					For	test				
6Fh					For	test				
70h					For	test				
71h					For	test				
72h					For	test				
73h					For	test				
74h					For	test				
75h					For	test				
76h					For	test				
77h					For	test				

AN32051A

OPERATION (continued)

4. Register and Address (continued)

RAM address map

Sub	Data				Da	ta			
address	name	D7	D6	D5	D4	D3	D2	D1	D0
31h	A1		BLA1	[3 : 0]		FRA1[1:0] DLA1[1:0]			1 : 0]
32h	A2		BLA2	2[3 : 0]		FRA2[1:0] DLA2[1:0			1 : 0]
33h	A3		BLAS	3[3 : 0]		FRA	3[1 : 0]	DLA3[1:0]
34h	A4		BLA4	! [3 : 0]		FRA	4[1:0]	DLA4[1:0]
35h	A5		BLAS	5[3 : 0]		FRA	5[1:0]	DLA5[1:0]
36h	A6		BLA	6[3:0]		FRA	6[1:0]	DLA6[1:0]
37h	A7		BLA7	'[3 : 0]		FRA	7[1:0]	DLA7[1:0]
38h	B1		BLB1	[3 : 0]		FRB	1[1 : 0]	DLB1[1:0]
39h	B2		BLB2	2[3 : 0]		FRB	2[1:0]	DLB2[1:0]
3Ah	B3		BLB3	8[3 : 0]		FRB	3[1:0]	DLB3[1:0]
3Bh	B4		BLB4	I[3 : 0]		FRB	4[1:0]	DLB4[1:0]
3Ch	B5		BLB	5[3 : 0]		FRB5[1:0] DLB5[1:			1:0]
3Dh	B6		BLB6	6[3 : 0]		FRB6[1:0] DLB6[1:0]			1:0]
3Eh	B7		BLB7	'[3 : 0]		FRB7[1:0] DLB7[1:0]			1:0]
3Fh	C1		BLC	[3 : 0]		FRC1[1:0] DLC			1:0]
40h	C2		BLC2	2[3 : 0]		FRC	2[1:0]	DLC2[1:0]
41h	C3		BLC	3[3 : 0]		FRC	3[1:0]	DLC3[1:0]
42h	C4		BLC4	I[3 : 0]		FRC	4[1:0]	DLC4[1:0]
43h	C5		BLC	5[3 : 0]		FRC	5[1:0]	DLC5[1:0]
44h	C6		BLC	6[3 : 0]		FRC	6[1:0]	DLC6[1:0]
45h	C7		BLC7	7[3:0]		FRC	7[1:0]	DLC7[1:0]
46h	D1		BLD	[3 : 0]		FRD	1[1 : 0]	DLD1[1:0]
47h	D2		BLD2	2[3 : 0]		FRD	2[1 : 0]	DLD2[1:0]
48h	D3		BLD	3[3 : 0]		FRD	3[1 : 0]	DLD3[1 : 0]
49h	D4		BLD4	I [3 : 0]		FRD	DLD4[1:0]	
4Ah	D5		BLD	5[3 : 0]		FRD	5[1 : 0]	DLD5[1:0]
4Bh	D6		BLD6	6[3 : 0]		FRD6[1:0] DLD6[1:0]			1:0]
4Ch	D7		BLD7	7[3:0]		FRD	7[1 : 0]	DLD7[1:0]

4. Register and Address (continued)

RAM address map (continued)

Sub	Data				Da	ta			
address	name	D7	D6	D5	D4	D3	D2	D1	D0
4Dh	E1		BLE1	[3 : 0]		FRE1[1:0] DLE1[1:0			[1:0]
4Eh	E2		BLE2	2[3 : 0]		FRE2	2[1 : 0]	DLE2[1:0]
4Fh	E3		BLE3	8[3 : 0]		FRE	3[1:0]	DLE3[1:0]
50h	E4		BLE4	[3 : 0]		FRE4	I [1 : 0]	DLE4[[1:0]
51h	E5		BLE5	i[3 : 0]		FRE	5[1:0]	DLE5[[1:0]
52h	E6		BLE6	6[3 : 0]		FRE	6[1:0]	DLE6[[1:0]
53h	E7		BLE7	'[3 : 0]		FRE7	' [1:0]	DLE7[[1:0]
54h	F1		BLF1	[3 : 0]		FRF1	[1:0]	DLF1[1:0]
55h	F2		BLF2	[3 : 0]		FRF2	2[1:0]	DLF2[1:0]	
56h	F3		BLF3	[3 : 0]		FRF3[1:0]		DLF3[1:0]	
57h	F4		BLF4	[3 : 0]		FRF4[1:0]		DLF4[1:0]	
58h	F5		BLF5	i[3 : 0]		FRF5[1:0]		DLF5[1:0]	
59h	F6		BLF6	6[3:0]		FRF6[1:0]		DLF6[1:0]
5Ah	F7		BLF7	[3:0]		FRF7	'[1:0]	DLF7[1:0]
5Bh	G1		BLG1	[3 : 0]		FRG1[1 : 0]		DLG1	[1 : 0]
5Ch	G2		BLG2	2[3 : 0]		FRG2	2[1 : 0]	DLG2	[1 : 0]
5Dh	G3		BLG	8[3 : 0]		FRG	3[1:0]	DLG3	[1 : 0]
5Eh	G4		BLG4	I [3 : 0]		FRG4	4[1:0]	DLG4	[1 : 0]
5Fh	G5		BLG	5[3 : 0]		FRG	5[1:0]	DLG5	[1 : 0]
60h	G6		BLG6	6[3 : 0]		FRG	6[1:0]	DLG6	[1 : 0]
61h	G7		BLG7	7[3:0]		FRG7[1:0]		DLG7	[1 : 0]
62h	LEDR		BLLED	PR[3 : 0]		FRLEDR[1:0]		DLLED	R[1:0]
63h	LEDG		BLLED	G[3 : 0]		FRLED)G[1 : 0]	DLLEDG[1:0]	
64h	LEDB		BLLED)B[3 : 0]		FRLED)B[1:0]	DLLEDI	B[1 : 0]

4. Register and Address (continued)

ROM address map

[00000000] – [10010101] : ROM (Luminance only) 7 × 7 pattern No.0 (default) to pattern No.149

Pattern No.	Contents of pattern	Display	Pattern No.	Contents of pattern	Display
0	All lights out	Nothing	31	Alphabetic character	U
1	Number	0	32	Alphabetic character	V
2	Number	1	33	Alphabetic character	W
3	Number	2	34	Alphabetic character	Х
4	Number	3	35	Alphabetic character	Y
5	Number	4	36	Alphabetic character	Z
6	Number	5	37	Alphabetic character	а
7	Number	6	38	Alphabetic character	b
8	Number	7	39	Alphabetic character	С
9	Number	8	40	Alphabetic character	d
10	Number	9	41	Alphabetic character	е
11	Alphabetic character	А	42	Alphabetic character	f
12	Alphabetic character	В	43	Alphabetic character	g
13	Alphabetic character	С	44	Alphabetic character	h
14	Alphabetic character	D	45	Alphabetic character	i
15	Alphabetic character	E	46	Alphabetic character	j
16	Alphabetic character	F	47	Alphabetic character	k
17	Alphabetic character	G	48	Alphabetic character	I
18	Alphabetic character	Н	49	Alphabetic character	m
19	Alphabetic character	I	50	Alphabetic character	n
20	Alphabetic character	J	51	Alphabetic character	0
21	Alphabetic character	К	52	Alphabetic character	р
22	Alphabetic character	L	53	Alphabetic character	q
23	Alphabetic character	М	54	Alphabetic character	r
24	Alphabetic character	N	55	Alphabetic character	S
25	Alphabetic character	0	56	Alphabetic character	t
26	Alphabetic character	Р	57	Alphabetic character	u
27	Alphabetic character	Q	58	Alphabetic character	v
28	Alphabetic character	R	59	Alphabetic character	w
29	Alphabetic character	S	60	Alphabetic character	х
30	Alphabetic character	Т	61	Alphabetic character	У

4. Register and Address (continued)

ROM address map (continued)

[00000000] - [10010101] : ROM (Luminance only) 7 × 7 pattern No.0 (default) to pattern No.149

Pattern No.	Contents of pattern	Display	Pattern No.	Contents of pattern	Display
62	Alphabetic character	Z	93	Number	30
63	Number	00	94	Number	31
64	Number	01	95	Number	32
65	Number	02	96	Number	33
66	Number	03	97	Number	34
67	Number	04	98	Number	35
68	Number	05	99	Number	36
69	Number	06	100	Number	37
70	Number	07	101	Number	38
71	Number	08	102	Number	39
72	Number	09	103	Number	40
73	Number	10	104	Number	41
74	Number	11	105	Number	42
75	Number	12	106	Number	43
76	Number	13	107	Number	44
77	Number	14	108	Number	45
78	Number	15	109	Number	46
79	Number	16	110	Number	47
80	Number	17	111	Number	48
81	Number	18	112	Number	49
82	Number	19	113	Number	50
83	Number	20	114	Number	51
84	Number	21	115	Number	52
85	Number	22	116	Number	53
86	Number	23	117	Number	54
87	Number	24	118	Number	55
88	Number	25	119	Number	56
89	Number	26	120	Number	57
90	Number	27	121	Number	58
91	Number	28	122	Number	59
92	Number	29	123	Number	60

4. Register and Address (continued)

ROM address map (continued)

[00000000] - [10010101] : ROM (Luminance only) 7 × 7 pattern No.0 (default) to pattern No.149

Pattern No.	Contents of pattern	Display	Pattern No.	Contents of pattern	Display
124	Symbol	Zero antenna			
125	Symbol	One antenna	144	Symbol	
126	Symbol	Two antenna			
127	Symbol	Three antenna	145	Symbol	
128	Symbol	►		Gymbol	
129	Symbol				
130	Symbol	II	146	Symbol	
131	Symbol	>>			
132	Symbol	<<	147	Symbol	
133	Symbol	:			
134	Symbol	!			
135	Symbol	?	148	Symbol	
136	Symbol				
137	Symbol	▼	149	Symbol	
138	Symbol	←	149	Symbol	
139	Symbol	\rightarrow			
140	Symbol	+			
141	Symbol	-			
142	Symbol	/			
143	Symbol				

4. Register and Address (continued)

ROM address map (continued)

[10010110] - [11010000] : ROM (Luminance + Cycle + Delay) 7 × 7 pattern No.150 to pattern No.208

Pattern No.	Contents of pattern	Display	Pattern No.	Contents of pattern	Display
150	Symbol	Firefly display	159	Symbol	Firefly display
151	Symbol	Firefly display	160	Symbol	Firefly display
152	Symbol	Firefly display	161	Symbol	Firefly display
153	Symbol	Firefly display	162	Symbol	Firefly display
154	Symbol	Firefly display	163	Symbol	Firefly display
155	Symbol	Firefly display	164	Symbol	Firefly display
156	Symbol	Firefly display	165	Symbol	Firefly display
157	Symbol	Firefly display	166	Symbol	Firefly display
158	Symbol	Firefly display	167	Symbol	Firefly display

4. Register and Address (continued)

ROM address map (continued)

[10010110] - [11010000] : ROM (Luminance + Cycle + Delay) 7 × 7 pattern No.150 to pattern No.208

Pattern No.	Contents of pattern	Display	Pattern No.	Contents of pattern	Display
168	Symbol	Firefly display	177	Symbol	Firefly display
169	Symbol	Firefly display	178	Symbol	Firefly display
170	Symbol	Firefly display	179	Symbol	Firefly display
171	Symbol	Firefly display	180	Symbol	Firefly display
172	Symbol	Firefly display	181	Symbol	Firefly display
173	Symbol	Firefly display	182	Symbol	Firefly display
174	Symbol	Firefly display	183	Symbol	Firefly display
175	Symbol	Firefly display	184	Symbol	Firefly display
176	Symbol	Firefly display	185	Symbol	Firefly display

4. Register and Address (continued)

ROM address map (continued)

[10010110] - [11010000] : ROM (Luminance + Cycle + Delay) 7 × 7 pattern No.150 to pattern No.208

Pattern No.	Contents of pattern	Display	Pattern No.	Contents of pattern	Display
186	Symbol	Firefly display	195	Symbol	Firefly display
187	Symbol	Firefly display	196	Symbol	Firefly display
188	Symbol	Firefly display	197	Symbol	Firefly display
189	Symbol	Firefly display	198	Symbol	Firefly display
190	Symbol	Firefly display	199	Symbol	Firefly display
191	Symbol	Firefly display	200	Symbol	Firefly display
192	Symbol	Firefly display	201	Symbol	Firefly display
193	Symbol	Firefly display	202	Symbol	Firefly display
194	Symbol	Firefly display	203	Symbol	Firefly display

4. Register and Address (continued)

ROM address map (continued)

[10010110] – [11010000] : ROM (Luminance + Cycle + Delay) 7 × 7 pattern No.150 to pattern No.208

Pattern No.	Contents of pattern	Display
204	Symbol	Firefly display
205	Symbol	Firefly display
206	Symbol	Firefly display
207	Symbol	Firefly display
208	Symbol	Firefly display

4. Register and Address (continued)

Register list which needs a clock

The following addresses can be read / written even if there is not an internal clock or an external clock. However, it is impossible to achieve the operation finally needed.

Sub Address	R/W	W Data Name	DATA							
	FK/VV		D7	D6	D5	D4	D3	D2	D1	D0
01h	W	POWERCNT	_	_		_	_	OSCEN	_	—
14h	R	IOFACTOR	FACG D1	_		_	RAM ACT	FRMINT	CPU WRER	TSD
20h	R/W	MTXON	—	_	_	_		_	_	MTXON
21h	R/W	MTXDATA					MTXDA	TA[7:0]		
22h	R/W	FFROM	_	_	_	_	—	—	ROM7	77[1:0]
23h	R/W	ROMSEL	SELROM[7:0]							
24h	R/W	RAMCOPY	_	_	_	_	_	_	SELRAM	COPY START
25h	R/W	SETFROM	SETFROM[7:0]							
26h	R/W	SETTO					SETT	O[7:0]		
27h	R/W	REPON	_	_	_	_	_	_	_	REPON
28h	R/W	SETTIME	—	_	_	_	—	—	SETTIME[1:0]	
29h	R/W	RAMRST	—	_	_	_	—	—	RAM1	RAM2
2Ah	R/W	SCROLL	—	_	_	_	_	_	_	SCLON
2Bh	R/W	SCLTIME	_	_	_	_	_			VE[1:0]
2Ch	R/W	RGBON	_	_	_	_	_	_	_	RGBON
2Dh	R/W	RGBDATA	— — RGBDATA[5:0]							
30h	R/W	RAMNUM	—	_	_	_	_	_	_	RAMNUM

4. Register and Address (continued)

Register list which needs a clock (continued)

The following addresses can not be read / written if there is not an internal clock or an external clock.

Sub	Dete nome	Data								
address	Data name	D7 D6 D5 D4		D3	D2	D1	D0			
31h	A1		FRA1	[1:0]	DLA1[1:0]					
32h	A2		BLA2	2[3 : 0]	FRA2	2[1:0]	DLA2[1:0]			
33h	A3	BLA3[3 : 0]					8[1:0]	DLA3[1 : 0]		
34h	A4	BLA4[3 : 0]					[1:0]	DLA4	DLA4[1:0]	
35h	A5		BLA5	5[3 : 0]		FRA5	5[1:0]	DLA	DLA5[1:0]	
36h	A6		BLA6	6[3:0]		FRA6	5[1:0]	DLA	8[1:0]	
37h	A7		BLA7	'[3 : 0]		FRA7	'[1 : 0]	DLA	7[1:0]	
38h	B1		BLB1	[3 : 0]		FRB1	[1:0]	DLB1	[1:0]	
39h	B2		BLB2	2[3 : 0]		FRB2	2[1:0]	DLB2	2[1:0]	
3Ah	B3		BLB3	8[3 : 0]		FRB3	8[1:0]	DLB	DLB3[1:0]	
3Bh	B4		BLB4	[3 : 0]		FRB4	[1:0]	DLB4[1 : 0]		
3Ch	B5	BLB5[3 : 0]				FRB5	j[1 : 0]	DLB5[1:0]		
3Dh	B6	BLB6[3 : 0]				FRB6	6[1:0]	DLB6	DLB6[1 : 0]	
3Eh	B7	BLB7[3 : 0]				FRB7	'[1 : 0]	DLB7	7[1:0]	
3Fh	C1		BLC1	[3 : 0]		FRC1	[1:0]	DLC	I[1:0]	
40h	C2		BLC2	2[3 : 0]		FRC2	2[1:0]	DLC2	2[1:0]	
41h	C3		BLC3	8[3:0]		FRC3	8[1:0]	DLC	3[1:0]	
42h	C4		BLC4	I [3 : 0]		FRC4	[1:0]	DLC4	4[1:0]	
43h	C5		BLC5	5[3 : 0]		FRC5	5[1:0]	DLC	5[1:0]	
44h	C6		BLC6	6[3:0]		FRC6	6[1:0]	DLC6[1:0]		
45h	C7	BLC7[3 : 0]			FRC7	'[1 : 0]	DLC7[1:0]			
46h	D1	BLD1[3 : 0]			FRD1	[1:0]	DLD	I[1 : 0]		
47h	D2	BLD2[3 : 0]			FRD2	2[1:0]	DLD2[1:0]			
48h	D3	BLD3[3 : 0]			FRD3	8[1:0]	DLD3[1:0]			
49h	D4	BLD4[3 : 0]			FRD4	[1:0]	DLD4[1:0]			
4Ah	D5	BLD5[3 : 0]			FRD5	5[1:0]	DLD5[1:0]			
4Bh	D6		BLD6	6[3:0]		FRD6[1:0] DLI			6[1:0]	
4Ch	D7		FRD7	FRD7[1:0] D						

4. Register and Address (continued)

Register list which needs a clock (continued)

The following addresses can not be read / written if there is not an internal clock or an external clock.

Sub	Dete nome				D	Jata			
address	Data name	D7	D6	D5	D4	D3	D2	D1	D0
4Dh	E1		BLE1	[3 : 0]		FRE1	[1 : 0]	DLE1	[1:0]
4Eh	E2		BLE2	2[3 : 0]		FRE2	2[1:0]	DLE2	[1:0]
4Fh	E3		BLE3	8[3 : 0]		FRE3	8[1:0]	DLE3	5[1:0]
50h	E4		BLE4	[3 : 0]		FRE4	[1:0]	DLE4[1:0]	
51h	E5		BLE5	ə[3 : 0]		FRE5	i[1 : 0]	DLE5	i[1 : 0]
52h	E6		BLE6	6[3:0]		FRE6	6[1:0]	DLE6	[1 : 0]
53h	E7		BLE7	'[3 : 0]		FRE7	′[1 : 0]	DLE7	[1:0]
54h	F1		BLF1[3 : 0]			FRF1	[1:0]	DLF1	[1:0]
55h	F2	BLF2[3:0]				FRF2	[1:0]	DLF2[1:0]	
56h	F3	BLF3[3 : 0]			FRF3[1:0]		DLF3[1:0]		
57h	F4		BLF4	[3 : 0]		FRF4	[1 : 0]	DLF4[1:0]	
58h	F5		BLF5	[3 : 0]		FRF5	[1:0]	DLF5	[1:0]
59h	F6		BLF6	[3 : 0]		FRF6	[1:0]	DLF6[1:0]	
5Ah	F7		BLF7	[3:0]		FRF7	[1:0]	DLF7[1:0]	
5Bh	G1		BLG1	[3 : 0]		FRG1	[1 : 0]	DLG1	[1:0]
5Ch	G2		BLG2	2[3 : 0]		FRG2	2[1:0]	DLG2	2[1:0]
5Dh	G3		BLG	3[3 : 0]		FRG3	8[1:0]	DLG3	8[1:0]
5Eh	G4		BLG4	I [3 : 0]		FRG4	[1:0]	DLG4	[1:0]
5Fh	G5		BLG	5[3 : 0]		FRG5	5[1:0]	DLG5	ō[1 : 0]
60h	G6		BLG6	6[3 : 0]		FRG6	6[1:0]	DLG6	6[1:0]
61h	G7		BLG7	' [3 : 0]		FRG7	' [1 : 0]	DLG7	'[1:0]
62h	LEDR	BLLEDR[3:0]		BLLEDR[3:0]		FRLEDR[1:0]		DLLEDR[1:0]	
63h	LEDG		BLLED	G[3 : 0]		FRLEDG[1:0]		0] DLLEDG[1:0]	
64h	LEDB		BLLED)B[3 : 0]		FRLEDB[1:0] DLLEDB[B[1:0]

4. Register and Address (continued)

Register map detail descriptions

	ub address		Data										
5	ub address	D7	D6	D5	D4	D3	D2	D1	D0				
	Data Name	_	_	—	_	—	OSCEN	_	—				
01h	Default	0	0	0	0	0	0	0	0				
	Mode	W	W	W	W	W	W	W	W				

D2 : OSCEN ON/OFF bit for internal oscillator

- [0] : Internal oscillator is OFF (default)
- [1] : Internal oscillator is ON

• The frequency variation of an internal oscillator is 0.96 MHz to 1.44 MHz.

• The internal clock variation of an internal oscillator is 694.4 ns to 1042 ns.

S.u	h Address		DATA										
Su	b Address	D7	D6	D5	D4	D3	D2	D1	D0				
	Data Name	_	_	_	—	_	_	REG18	REG28				
02h	Default	0	0	0	0	0	0	1	1				
	mode	W	W	W	W	W	W	W	W				

D1 : REG18 The ON/OFF control for LDO1(When LDOCNT terminal is Low)

[0] : LDO1 OFF

[1] : LDO1 ON (default)

D0 : REG28 The ON/OFF control for LDO2(When LDOCNT terminal is Low)

[0] : LDO2 OFF

[1] : LDO2 ON (default)

When LDOCNT terminal is High, regardless of the state of REG18, LDO1 will be activated.

• When LDOCNT terminal is High, regardless of the state of REG28, LDO2 will be activated.

· Set LDOCNT to Low after setting REG28 to Low to put into OFF mode.

4. Register and Address (continued)

Register map detail descriptions (continued)

0	h adduces				Da	ata				
Su	ıb address	D7	D6	D5	D4	D3	D2	D1	D0	
	Data name				For	test				
03h	Default	0	0	0	0	0	0	0	0	
	Mode	W	W	w	W	W	W	W	W	
C	ıb address				Da	ata				
Su		D7	D6	D5	D4	D3	D2	D1	D0	
	Data name				For	test				
04h	Default	0	0	0	0	0	0	0	0	
	Mode	R	R	R	R	R	R	R	R	
S	ıb address		Data							
Su	id address	D7	D7 D6 D5 D4 D3 D2 D1 D0							
	Data name				For	test				
05h	Default	0	0	0	0	0	0	0	0	
	Mode	W	W	W	W	W	W	W	W	
S	ıb address				Da	ata				
Su		D7	D6	D5	D4	D3	D2	D1	D0	
	Data name				For	test				
06h	Default	0	0	0	0	0	0	0	0	
	Mode	W	W	W	W	W	W	W	W	
S	ıb address		Data							
30		D7	D6	D5	D4	D3	D2	D1	D0	
	Data name		For test							
07h	Default	0	0	0	0	0	0	0	0	
	Mode	W	W	W	W	W	W	W	W	

• Don't access to the address 03h to 07h because these addresses are for test.

4. Register and Address (continued)

Register map detail descriptions (continued)

	b Address		DATA									
Su	D7 D6 D5 D4 D3 D2 D1						D1	D0				
	Data Name		For test									
08h	Default	0	0	0	0	0	0	0	0			
	mode	W	W	W	W	W	W	W	W			

C	ıb Address		DATA										
Su	id Address	D7	D6	D5	D4	D3	D2	D1	D0				
	Data Name		For test										
09h	Default	0	0	0	0	0	0	0	0				
	mode	W	W	W	W	W	W	W	W				

*Don't access to address from 08h to 09h.

C	ıb Address		DATA										
Su	id Address	D7	D6	D5	D4	D3	D2	D1	D0				
	Data Name	LEDACT	—	—	—	_	DISMTX	DISRGB	—				
0Ah	Default	0	0	0	0	0	0	0	0				
	mode	W	W	W	W	W	W	W	W				

D7 : LEDACT A putting-out-lights setup of LED by LEDCTL terminal.

[0] : The light is switched on at LEDCTL = Low(default)

[1] : The light is switched on at LEDCTL = High

D2 : DISMTX A putting-out-lights ON/OFF setup of 7 \times 7 dots matrix LED by LEDCTL terminal.

[0] : Putting-out-lights control OFF by LEDCTL terminal. (default)

[1] : Putting-out-lights control ON by LEDCTL terminal.

D1 : DISRGB A putting-out-lights ON/OFF setup of R, G and B terminal by LEDCTL terminal.

[0] : Putting-out-lights control OFF by LEDCTL terminal. (default)

[1] : Putting-out-lights control ON by LEDCTL terminal.

4. Register and Address (continued)

Register map detail descriptions (continued)

Curl	h address				Da	ata			
Su	b address	D7	D6	D5	D4	D3	D2	D1	D0
	Data name				Test	mode			
10h	Default	0	0	0	0	0	0	0	0
	Mode	W/R	W/R	W/R	W/R	W/R	W/R	W/R	W/R
					Da	ata			
Su	b address	D7	D6	D5	D4	D3	D2	D1	D0
	Data name				Test	mode	·	·	
11h	Default	0	0	0	0	0	0	0	0
	Mode	W/R	W/R	W/R	W/R	W/R	W/R	W/R	W/R
0.1	h				Da	ata			
Sui	b address	D7	D6	D5	D4	D3	D2	D1	D0
	Data name				Test	mode			
12h	Default	0	0	0	0	0	0	0	0
	Mode	W/R	W/R	W/R	W/R	W/R	W/R	W/R	W/R
					Da	ata			
Sul	b address	D7 D6 D5 D4 D3 D2 D1 I							D0
	Data name				Test	mode			
13h	Default	0	0	0	0	0	0	0	0
	Mode	W/R	W/R	W/R	W/R	W/R	W/R	W/R	W/R

• Don't access to the address 10h to 13h because these addresses are for test.

4. Register and Address (continued)

Register map detail descriptions (continued)

6.	ıb address		Data											
30	in address	D7	D6	D5	D4	D3	D2	D1	D0					
	Data name	FACGD1	—	_	_	RAMACT	FRMINT	CPUWRER	TSD					
14h	Default	0	0	0	0	0	0	0	0					
	Mode	R	R	R	R	R	R	R	R					

D7 : FACGD1

[0] : Normal operation (default)

[1] : No read clearance

D3 : RAMACT Internal RAM access judgment

- [0] : RAM is not accessed. (default)
- [1] : RAM is accessed.

D2 : FRMINT Frame display end judgment during scroll display

- [0] : Under frame display (default)
- [1] : Frame display end

D1 : CPUWRER CPU access error judgment

- [0] : CPU access error does not occur. (default)
- [1] : CPU access error occurs.

D0 : TSD Abnormal detection of TSD error

- [0] : TSD abnormal detection does not occur. (default)
- [1] : TSD abnormal detection occurs.
- When CPU writes the data to RAM1 or RAM2 (31h to 64h) during copying to RAM1 or RAM2 from ROM, CPUWRER indicates the error, and [1] is read.
- The contents written by CPU are not reflected in this LSI at CPUWRER = [1]. The write by CPU should be performed again.
- The interval of FACGD1 = [1] is maximum 1.93 μ s (at internal clock operation) after data is updated.
- At FACGD1 = [0], if data of address 14h is read, data of D0 to D6 are cleared.
- At RAMACT = [1], RAM access cannot be performed.
- When each register of address 14h is set to [1], the pulse with a cycle of 4 ms is output.
- The pulse from INT continues to be output until address 14h is read.
- Set RSTB pin to Low in order to stop the INT pulse output in the case that a serial read function is not used.
- The state at RAMACT = [1] is as follows.
 - (1) While copying to RAM from ROM
 - (2) While clearing RAM

4. Register and Address (continued)

Register map detail descriptions (continued)

C	h addraaa				Da	ata						
Su	b address	D7	D6	D5	D4	D3	D2	D1	D0			
	Data name				Test	mode						
15h	Default	0	0	0	0	0	0	0	0			
	Mode	R	R	R	R	R	R	R	R			
					Da	ata						
Su	b address	D7	D6	D5	D4	D3	D2	D1	D0			
	Data name				Test	mode						
16h	Default	0	0	0	0	0	0	0	0			
	Mode	W/R	W/R	W/R	W/R	W/R	W/R	W/R	W/R			
			Data									
Su	b address	D7	D7 D6 D5 D4 D3 D2 D1									
	Data name	Test mode										
17h	Default	0	0	0	0	0	0	0	0			
	Mode	W/R	W/R	W/R	W/R	W/R	W/R	W/R	W/R			
			Data									
Su	b address	D7	D6	D5	D4	D3	D2	D1	D0			
	Data name				Test	mode						
18h	Default	0	0	0	0	0	0	0	0			
	Mode	W/R	W/R	W/R	W/R	W/R	W/R	W/R	W/R			
0	h a dalaman		Data									
Su	b address	D7	D6	D5	D4	D3	D2	D1	D0			
	Data name				Test	mode						
19h	h Default 0 0 0 0 0 0 0 0 0						0					
	Mode	W/R	W/R	W/R	W/R	W/R	W/R	W/R	W/R			

• Don't access to the address 15h to 19h because these addresses are for test.

4. Register and Address (continued)

Register map detail descriptions (continued)

CI			Data										
Sur	o address	D7	D6	D5	D4	D3	D2	D1	D0				
	Data name	INTVSEL	_	_	—	_	—	_	—				
1Ah	Default	0	0	0	0	0	0	0	0				
	Mode	W/R	W/R	W/R	W/R	W/R	W/R	W/R	W/R				

D7 : INTVSEL Voltage setup of INT pin

[0] : 1.85 V (default)

[1] : 2.85 V

4. Register and Address (continued)

Register map detail descriptions (continued)

C	ub addraaa		Data										
50	ıb address	D7	D6	D5	D4	D3	D2	D1	D0				
	Data name	_	_	_	_	_	—	_	MTXON				
20h	Default	0	0	0	0	0	0	0	0				
	Mode	W/R	W/R	W/R	W/R	W/R	W/R	W/R	W/R				

D0 : MTXON ON/OFF setup of matrix LED control

[0] : OFF (default)

[1] : ON

- During MTXON = [1], the control contents to subsequent ROM, RAM, and registers are sequentially processed and lit up.
- Set MTXON to [1] at 5 ms after OSCEN (address 01h) is set to [1].
- To display the matrix part, set MTXON to [1], and then set the other addresses.

.	h addraaa		Data									
Su	ıb address	D7	D6	D5	D4	D3	D2	D1	D0			
	Data name	MTXDATA[7:0]										
21h	Default	0	0	0	0	0	0	0	0			
	Mode	W/R	W/R	W/R	W/R	W/R	W/R	W/R	W/R			

D7-0 : MTXDATA[7 : 0] Address setup of ROM / RAM which read the data

[00000000] - [10010101] : ROM (Luminance only)

 7×7 pattern 0 (default) to pattern No.149

[10010110] - [11010000] : ROM (Luminance + Cycle + Delay)

 7×7 pattern No.150 to No.208

[11010001] - [11010010] : RAM (Luminance + Cycle + Delay)

 7×7 pattern RAM No.1, 2

• The pattern No.0 of ROM is all [0] data of matrix LED.

• Access to 21h is disabled while copying to RAM from ROM (COPYSTART 24h = [1]).

4. Register and Address (continued)

Register map detail descriptions (continued)

.	b address		Data										
Su			D6	D5	D4	D3	D2	D1	D0				
	Data name	_	_	_	_	_	_	ROM7	7[1:0]				
22h	Default	0	0	0	0	0	0	0	0				
	Mode	W/R	W/R	W/R	W/R	W/R	W/R	W/R	W/R				

D1-0 : ROM77[1 : 0] Lighting control of 7 × 7(LED number : A1 to G7) fixed pattern of RPM

[00] : ROM data is displayed.

[01] : ROM data is displayed by firefly lighting in 1 s.

[10] : ROM data is displayed by firefly lighting in 2 s.

[11] : ROM data is displayed by firefly lighting in 3 s.

• During repetition display (REPON = [1]), ROM77 must not be changed.

4. Register and Address (continued)

Register map detail descriptions (continued)

	h addraaa		Data										
Su	b address	D7	D6	D5	D4	D3	D2	D1	D0				
	Data name		SELROM[7:0]										
23h	Default	0	0	0	0	0	0	0	0				
	Mode	W/R	W/R	W/R	W/R	W/R	W/R	W/R	W/R				

D7-0 : SELROM[7 : 0] Address setup of ROM copied to RAM [0000000] – [10010101] : ROM (Luminance only) 7 × 7 pattern 0 (default) to pattern No.149 [10010110] – [11010000] : ROM (Luminance + Cycle + Delay) 7 × 7 pattern No.150 to No.208

• Access to 23h is disabled while copying to RAM from ROM (COPYSTART 24h = [1]).

6	ub addraaa					Data			
50	ıb address	D7	D6	D5	D4	D3	D2	D1	D0
	Data name	_				—		SELRAM	COPYSTART
24h	Default	0	0	0	0	0	0	0	0
	Mode	W/R	W/R	W/R	W/R	W/R	W/R	W/R	W/R

D1 : SELRAM RAM number setup of copy destination

[0] : RAM No.1

[1] : RAM No.2

D0 : COPYSTART Copy start ON/OFF control of RAM from ROM

[0] : OFF

[1] : The copy set by SELROM and SELRAM is started. (It returns to [0] after internal 51clk)

• Address 24h is only for copying data to RAM. LED display never starts by address 24h. (However, LED display is updated when this RAM is copied during RAM display.)

- The write to address 21h-MTXDATA, 2Ah-SCLON, and 27h-REPON is disabled while copying. (RAMACT flag is raised.)
- Access to SELRAM is disabled while copying to RAM from ROM (COPYSTART 24h = [1]).
- Don't set RAM clear of address 29h while copying.

(The waiting time for over 1 ms is required after COPYSTART.)

4. Register and Address (continued)

Register map detail descriptions (continued)

S			Data									
Sur	b address	D7	D6	D5	D4	D3	D2	D1	D0			
	Data name				SETFRO	DM[7 : 0]						
25h	Default	0	0	0	0	0	0	0	0			
	Mode	W/R	W/R	W/R	W/R	W/R	W/R	W/R	W/R			

D7-0 : SETFROM[7 : 0] ROM frame data address setup when repetition display starts [0000000] – [10010101] : ROM (Luminance only) 7 × 7 pattern 0 (default) to pattern No.149 [10010110] – [11010000] : ROM (Luminance + Cycle + Delay) 7 × 7 pattern No.150 to No.208

• During repetition display (REPON = [1]), SETFROM setup must not be changed.

Suk	o address		Data										
Sui	Jauress	D7	D6	D5	D4	D3	D2	D1	D0				
	Data name		SETTO[7:0]										
26h	Default	0	0	0	0	0	0	0	0				
	Mode	W/R	W/R	W/R	W/R	W/R	W/R	W/R	W/R				

D7-0 : SETTO[7 : 0] ROM frame data address setup when repetition display ends.

[00000000] – [10010101] : ROM (Luminance only) 7 × 7 pattern 0 (default) to pattern No.149 [10010110] – [11010000] : ROM (Luminance + Cycle + Delay) 7 × 7 pattern No.150 to No.208

• During repetition display (REPON = [1]), SETTO setup must not be changed.

4. Register and Address (continued)

Register map detail descriptions (continued)

	Sub address		Data										
Su			D6	D5	D4	D3	D2	D1	D0				
	Data name	—	_	_	_	—	_	_	REPON				
27h	Default	0	0	0	0	0	0	0	0				
	Mode	W/R	W/R	W/R	W/R	W/R	W/R	W/R	W/R				

D0 : REPON

Repetition display ON/OFF control

[0] : Repetition display OFF (default)

[1] : Repetition display ON

• During repetition display, display of setup ROM continues.

- Repetition display starts at MTXON = [1] and REPON = [1].
- Access to 27h is disabled while copying to RAM from ROM (COPYSTART 24h = [1]).
- When SCLON changes to [1] while REPON = [1], REPON changes to [0], and this LSI shifts to a scroll function.
- During repetition display (REPON = [1]), the setting of SETFROM and SETTO must not be changed.

S	h addraaa		Data										
Su	Sub address		D6	D5	D4	D3	D2	D1	D0				
	Data name	_						SETTIN	1E[1:0]				
28h	Default	0	0	0	0	0	0	0	0				
	Mode	W/R	W/R	W/R	W/R	W/R	W/R	W/R	W/R				

D1-0 : SETTIME[1 : 0] Frame display time setup of repetition display

[00] : 1 s (default)

[01] : 2 s

[10] : 3 s

[11] : 4 s

4. Register and Address (continued)

Register map detail descriptions (continued)

e	h addraaa		Data										
Sui	Sub address		D6	D5	D4	D3	D2	D1	D0				
	Data name	_	_	_	_	_	_	RAM1	RAM2				
29h	Default	0	0	0	0	0	0	0	0				
	Mode	W/R	W/R	W/R	W/R	W/R	W/R	W/R	W/R				

D1 : RAM1 The data in 7×7 RAM1 is cleared.

[0] : Overwrite is possible. (default)

[1] : The data in 7×7 RAM1 is cleared. (It returns to [0] by internal 2clk.)

D0 : RAM2 The data in 7×7 RAM2 is cleared.

[0] : Overwrite is possible. (default)

- [1] : The data in 7×7 RAM2 is cleared. (It returns to [0] by internal 2clk.)
- Don't set the RAM-clear operation of RAM1 or RAM2 during scroll display (SCLON = [1]).
- Don't set the RAM-clear operation of address 29h during the copy operation of address 24h. (The waiting time for over 1 ms is required after COPYSTART.)

4. Register and Address (continued)

Register map detail descriptions (continued)

S.u.	Sub address		Data										
Su			D6	D5	D4	D3	D2	D1	D0				
	Data name	_	_	_	_	_	_	_	SCLON				
2Ah	Default	0	0	0	0	0	0	0	0				
	Mode	W/R	W/R	W/R	W/R	W/R	W/R	W/R	W/R				

D0 : SCLON

ON/OFF setup of scroll display

[0] : OFF (default) [1] : ON

- Scroll display displays the data in RAM No.1 to 2 of 7 × 7 in order of A to G column. The display travel time of columns is a setup value of SCLTIME.
- During the scroll display, data can be written to RAM without specifying RAM number.

(The write to empty RAM is performed.)

- The scroll display is started in the state of MTXON = [1] and SCLON.
- Access to 2Ah is disabled while copying to RAM from ROM (COPYSTART 24h = [1]).
- When REPON changes to [1] at SCLON = [1], SCLON changes to [0], and the scroll display shifts to repetition display function.
- During scroll display (SCLON = [1]), don't clear RAM (RAM1, RAM2).
- To restart the scroll display after the scroll display stops at SCLON= [0] or MTXON= [0], RSTB pin should be set to Low and be reset.

6.	ıb address		Data										
50	in address	D7	D6	D5	D4	D3	D2	D1	D0				
	Data name	_	_	_	_	_	_	SCLTIN	1E[1 : 0]				
2Bh	Default	0	0	0	0	0	0	0	0				
	Mode	W/R	W/R	W/R	W/R	W/R	W/R	W/R	W/R				

D1-0 : SCLTIME[1 : 0] Frame display time setup of scroll display

[00] : 0.1 s (default)

[01] : 0.2 s

[10]: 0.4 s

[11] : 0.8 s

• The display travel time of the column is the setup value of SCLTIME.

4. Register and Address (continued)

Register map detail descriptions (continued)

.	Sub address		Data										
31			D6	D5	D4	D3	D2	D1	D0				
	Data name	_	_	_	_		_	_	RGBON				
2Ch	Default	0	0	0	0	0	0	0	0				
	Mode	W/R	W/R	W/R	W/R	W/R	W/R	W/R	W/R				

D0 : RGBON ON/OFF setup of RGB lighting

[0] : OFF (default)

[1] : ON

• Set RGBON to [1] at 5 ms after address 01h OSCEN is set to [1].

Sub address		Data										
		D7	D6	D5	D4	D3	D2	D1	D0			
	Data name	_	—	RGBDATA[5:0]								
2Dh	Default	0	0	0	0	0	0	0	0			
	Mode	W/R	W/R	W/R	W/R	W/R	W/R	W/R	W/R			

 $\mathsf{D5-0}:\mathsf{RGBDATA[5:0]}\ \mathsf{Address\ setup\ of\ ROM\ and\ register\ which\ read\ RGB\ data}$

[000000] : Register display

[000001] - [101010] : ROM (RGB pattern, Luminance + Cycle + Delay) pattern No.1 to No.42

Sub address		Data									
		D7	D6	D5	D4	D3	D2	D1	D0		
	Data name	Test mode									
2Eh	Default	0	0	0	0	0	0	0	0		
	Mode	R	R	R	R	R	R	R	R		

• Don't access to this address because it is for test.

4. Register and Address (continued)

Register map detail descriptions (continued)

Sub address		Data									
		D7	D6	D5	D4	D3	D2	D1	D0		
	Data name	_			_				RAMNUM		
30h	Default	0	0	0	0	0	0	0	0		
	Mode	W/R	W/R	W/R	W/R	W/R	W/R	W/R	W/R		

D0 : RAMNUM RAM number setup at CPU access (read, write)

[0] : RAM No.1

[1] : RAM No.2

• Access to 30h is disabled during scroll display (SCLON 2Ah = [1]).

4. Register and Address (continued)

Register map detail descriptions (continued)

Sub address		Data									
		D7	D6	D5	D4	D3	D2	D1	D0		
	Data name		BLA1	[3 : 0]		FRA1[1:0]		DLA1[1:0]			
31h	Default	0	0	0	0	0	0	0	0		
	Mode	W/R	W/R	W/R	W/R	W/R	W/R	W/R	W/R		

А

В

С

Е F G

LED's number

D7-4 : BLA1[3 : 0] Luminance setup of LED No. A1

[0000] : 0 mA (default)

[0001] : 1 mA [0010] : 2 mA [0011]: 3 mA [0100] : 4 mA [0101] : 5 mA [0110] : 8 mA [0111] : 11 mA [1000] : 15 mA [1001] : 17 mA [1010] : 19 mA [1011] : 21 mA [1100] : 24 mA [1101] : 26 mA [1110] : 28 mA [1111] : 30 mA

D3-2 : FRA1[1 : 0] Firefly operation and cycle setup of LED No.A1

- [00] : Always lighting mode (default)
- [01] : Firefly lighting cycle 1 s
- [10] : Firefly lighting cycle 2 s
- [11] : Firefly lighting cycle 3 s

D1-0 : DLA1[1 : 0] Firefly operation delay setup of LED No.A1

- [00] : No delay (default)
- [01] : Delay 25%
- [10] : Delay 50%
- [11] : Delay 75%
- As for the addresses to 61h, the operation corresponding to each LED number is the same as above.
- The waiting time for 2 or more internal clocks (2 µs or more) is required after the data from address 31h to 61h is written in. Please input other serial commands after that.

4. Register and Address (continued)

Register map detail descriptions (continued)

Sub address		Data									
		D7	D6	D5	D4	D3	D2	D1	D0		
	Data name		BLLED	R[3 : 0]		FRLEDR[1:0]		DLLEDR[1:0]			
62h	Default	0	0	0	0	0	0	0	0		
	Mode	W/R	W/R	W/R	W/R	W/R	W/R	W/R	W/R		

D7-4 : BLLEDR[3 : 0] Luminance setup of LED which is connected to R pin

[0000] : 0 mA (default) [0001] : 1 mA [0010] : 2 mA : : [1110] : 14 mA [1111] : 15 mA

D3-2 : FRLEDR[1 : 0] Firefly operation and cycle setup of LED which is connected to R pin

- [00] : Always lighting mode (default)
- [01] : Firefly lighting cycle 1 s
- [10] : Firefly lighting cycle 2 s
- [11] : Firefly lighting cycle 3 s

D1-0 : DLLEDR[1 : 0] Firefly operation delay setup of LED which is connected to R pin

- [00] : No delay (default)
- [01] : Delay 25%
- [10] : Delay 50%
- [11] : Delay 75%
- As for the addresses to 62h, the operation corresponding to G and B pin is the same as above.
- The waiting time for 2 or more internal clocks (2 μs or more) is required after the data from address 62h to 64h is written in. Please input other serial commands after that.

4. Register and Address (continued)

Register map detail descriptions (continued)

Sub address		Data								
		D7	D6	D5	D4	D3	D2	D1	D0	
	Data name	For test								
6Bh	Default	0	0	0	0	0	0	0	0	
	Mode	W/R	W/R	W/R	W/R	W/R	W/R	W/R	W/R	

Address from 6Bh onwards are registers for test. Don't write into these addresses.

5. Serial interface format

SPI format

- The interface with microcomputer consists of 16-bit serial register (8-bit of command, 8-bit of address), address decoder and transmitting register (8-bit).
- Serial interface consists of 4pins, which are serial clock pin (CLK), serial data input pin (DI), serial data output pin (DO) and chip enable input pin (CE).

(1) Write operation

- Data is taken into an internal shift register at the rising edge of CLK. (CTL frequency can be used within 13 MHz.)
- The reception of data becomes enable in High interval of CE. (active : High)
- Data is transmitted at MSB first in order of control register address (8-bit) and control command (8-bit).

Write access timing

(2) Transmission operation

 Data is taken into an internal shift register at the rising edge of CLK. (CLK frequency can be used within 6 MHz.)
* RAM cannot be read.

- The reception of data becomes enable in High interval of CE. (active : High)
- Data is transmitted at MSB first in order of register address (8-bit) and control command (max 8-bit).

6. Signal distribution diagram

Power supply distribution diagram

Note) * : CLK, CE, DI, DO, LEDCTL

6. Signal distribution diagram (continued)

Control / Clock distribution diagram

7. Firefly lighting example

Firefly lighting example 1

- 1. Normally, it is not possible to control data when RGBGND pin voltage is undefined. Therefore, please keep the RGBGND pin voltage at the lowest voltage.
- 2. Please check the input waveform to the CLK pin. When inputting clock into the CLK pin, if the input clock is ringing with input voltage between 0.4 V to LDO1 × 0.8 V (input voltage indefinite range), it will result in serial data not able to be written to or be read out from a register. (It is recommended to smooth the rising and falling edge of the input clock by connecting input capacitance (a capacitor, etc.) to the CLK pin.)

PACKAGE INFORMATION (Reference Data)

Panasonic

IMPORTANT NOTICE

- 1. When using the LSI for new models, verify the safety including the long-term reliability for each product.
- 2. When the application system is designed by using this LSI, please confirm the notes in this book.
- Please read the notes to descriptions and the usage notes in the book.
- 3. This LSI is intended to be used for general electronic equipment.

Consult our sales staff in advance for information on the following applications: Special applications in which exceptional quality and reliability are required, or if the failure or malfunction of this LSI may directly jeopardize life or harm the human body.

Any applications other than the standard applications intended.

- (1) Space appliance (such as artificial satellite, and rocket)
- (2) Traffic control equipment (such as for automobile, airplane, train, and ship)
- (3) Medical equipment for life support
- (4) Submarine transponder
- (5) Control equipment for power plant
- (6) Disaster prevention and security device
- (7) Weapon
- (8) Others : Applications of which reliability equivalent to (1) to (7) is required

Our company shall not be held responsible for any damage incurred as a result of or in connection with the LSI being used for any special application, unless our company agrees to the use of such special application.

4. This LSI is neither designed nor intended for use in automotive applications or environments unless the specific product is designated by our company as compliant with the ISO/TS 16949 requirements. Our company shall not be held responsible for any damage incurred by customers or any third party as a result of or in

Concerning shall not be need responsible for any damage incurred by customers of any third party as a result of or in connection with the LSI being used in automotive application, unless our company agrees to such application in this book.
Please use this product in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Our company shall not be held responsible for any damage

- Pay attention to the direction of LSI. When mounting it in the wrong direction onto the PCB (printed-circuit-board), it might emit
- 6. Pay attention to the direction of LSI. When mounting it in the wrong direction onto the PCB (printed-circuit-board), it might emit smoke or ignite.
- 7. Pay attention in the PCB (printed-circuit-board) pattern layout in order to prevent damage due to short circuit between pins. In addition, refer to the Pin Description for the pin configuration.
- 8. Perform visual inspection on the PCB before applying power, otherwise damage might happen due to problems such as solder-bridge between the pins of the semiconductor device. Also, perform full technical verification on the assembly quality, because the same damage possibly can happen due to conductive substances, such as solder ball, that adhere to the LSI during transportation.
- 9. Take notice in the use of this product that it might be damaged or occasionally emit smoke when an abnormal state occurs such as output pin-VCC short (Power supply fault), output pin-GND short (Ground fault), or output-to-output-pin short (load short). Safety measures such as installation of fuses are recommended because the extent of the above-mentioned damage and smoke emission will depend on the current capability of the power supply.
- The protection circuit is for maintaining safety against abnormal operation. Therefore, the protection circuit should not work during normal operation.
 Especially for the thermal protection circuit, if the area of safe operation or the absolute maximum rating is momentarily

exceeded due to output pin to VCC short (Power supply fault), or output pin to GND short (Ground fault), the LSI might be damaged before the thermal protection circuit could operate.

- 11. Unless specified in the product specifications, make sure that negative voltage or excessive voltage are not applied to the pins because the device might be damaged, which could happen due to negative voltage or excessive voltage generated during the ON and OFF timing when the inductive load of a motor coil or actuator coils of optical pick-up is being driven.
- 12. Verify the risks which might be caused by the malfunctions of external components.
- 13. Due to the unshielded structure of this LSI, functions and characteristics of the product cannot be guaranteed under the exposure of light. During normal operation or even under testing condition, please ensure that the LSI is not exposed to light.
- 14. Please ensure that your design does not have metal shield parts touching the chip surface as the surface potential is GND voltage.

Request for your special attention and precautions in using the technical information and semiconductors described in this book

- (1) If any of the products or technical information described in this book is to be exported or provided to non-residents, the laws and regulations of the exporting country, especially, those with regard to security export control, must be observed.
- (2) The technical information described in this book is intended only to show the main characteristics and application circuit examples of the products. No license is granted in and to any intellectual property right or other right owned by Panasonic Corporation or any other company. Therefore, no responsibility is assumed by our company as to the infringement upon any such right owned by any other company which may arise as a result of the use of technical information de-scribed in this book.
- (3) The products described in this book are intended to be used for general applications (such as office equipment, communications equipment, measuring instruments and household appliances), or for specific applications as expressly stated in this book.

Please consult with our sales staff in advance for information on the following applications, moreover please exchange documents separately on terms of use etc.: Special applications (such as for in-vehicle equipment, airplanes, aerospace, automotive equipment, traffic signaling equipment, combustion equipment, medical equipment and safety devices) in which exceptional quality and reliability are required, or if the failure or malfunction of the products may directly jeopardize life or harm the human body.

Unless exchanging documents on terms of use etc. in advance, it is to be understood that our company shall not be held responsible for any damage incurred as a result of or in connection with your using the products described in this book for any special application.

- (4) The products and product specifications described in this book are subject to change without notice for modification and/or improvement. At the final stage of your design, purchasing, or use of the products, therefore, ask for the most upto-date Product Standards in advance to make sure that the latest specifications satisfy your requirements.
- (5) When designing your equipment, comply with the range of absolute maximum rating and the guaranteed operating conditions (operating power supply voltage and operating environment etc.). Especially, please be careful not to exceed the range of absolute maximum rating on the transient state, such as power-on, power-off and mode-switching. Otherwise, we will not be liable for any defect which may arise later in your equipment. Even when the products are used within the guaranteed values, take into the consideration of incidence of break down and failure mode, possible to occur to semiconductor products. Measures on the systems such as redundant design, arresting the spread of fire or preventing glitch are recommended in order to prevent physical injury, fire, social damages, for example, by using the products.
- (6) Comply with the instructions for use in order to prevent breakdown and characteristics change due to external factors (ESD, EOS, thermal stress and mechanical stress) at the time of handling, mounting or at customer's process. We do not guarantee quality for disassembled products or the product re-mounted after removing from the mounting board. When using products for which damp-proof packing is required, satisfy the conditions, such as shelf life and the elapsed time since first opening the packages.
- (7) When reselling products described in this book to other companies without our permission and receiving any claim of request from the resale destination, please understand that customers will bear the burden.
- (8) This book may be not reprinted or reproduced whether wholly or partially, without the prior written permission of our company.