36-Mbit (1M × 36) Flow-Through SRAM ### **Features** - Supports 133-MHz bus operations - 1M × 36 common I/O - 2.5-V core power supply - 2.5-V I/O power supply - Fast clock-to-output times □ 6.5 ns (133-MHz version) - Provide high performance 2-1-1-1 access rate - User selectable burst counter supporting interleaved or linear burst sequences - Separate processor and controller address strobes - Synchronous self timed write - Asynchronous output enable - CY7C1441KV25 available in Pb-free 165-ball FBGA package. - JTAG boundary scan for FBGA package - ZZ sleep mode option ## **Functional Description** The CY7C1441KV25 is a 2.5 V, 1M × 36 synchronous flow-through SRAM, designed to interface with high-speed microprocessors with minimum glue logic. Maximum access delay from clock rise is 6.5 ns (133-MHz version). A 2-bit on-chip counter captures the first address in a burst and increments the address automatically for the rest of the burst access. All synchronous inputs are gated by registers controlled by a positive edge-triggered Clock (CLK) input. The synchronous inputs include all addresses, all data inputs, address pipelining Chip Enable ($\overline{\text{CE}}_1$), depth expansion Chip Enables ($\overline{\text{CE}}_2$ and $\overline{\text{CE}}_3$), Burst Control inputs ($\overline{\text{ADSC}}$, ADSP, and $\overline{\text{ADV}}$), Write Enables ($\overline{\text{BW}}_x$ and $\overline{\text{BWE}}$), and Global Write ($\overline{\text{GW}}$). Asynchronous inputs include the Output Enable ($\overline{\text{OE}}$) and the ZZ pin. The CY7C1441KV25 allows either interleaved or linear burst sequences, selected by the MODE input pin. A HIGH selects an interleaved burst sequence and a LOW selects a linear burst sequence. Burst accesses can be initiated with the Processor Address Strobe (ADSP) or the cache Controller Address Strobe (ADSC) inputs. Address advancement is controlled by the Address Advancement (ADV) input. Addresses and chip enables are registered at rising edge of clock when either ADSP or ADSC are active. Subsequent burst addresses can be internally generated as controlled by the ADV. The CY7C1441KV25 operates from a +2.5 V core power supply while all outputs may operate with either a +2.5 V supply. All inputs and outputs are JEDEC-standard JESD8-5 compatible. ## Selection Guide | Description | 133 MHz | Unit | | |---------------------------|---------|------|----| | Maximum Access Time | | 6.5 | ns | | Maximum Operating Current | × 36 | 170 | mA | Cypress Semiconductor Corporation Document Number: 001-94722 Rev. *E # Logic Block Diagram - CY7C1441KV25 ## **Contents** | Pin Configurations | 4 | |---|----| | Pin Definitions | | | Functional Overview | | | Single Read Accesses | 6 | | Single Write Accesses Initiated by ADSP | 6 | | Single Write Accesses Initiated by ADSC | | | Burst Sequences | 7 | | Sleep Mode | 7 | | Interleaved Burst Address Table | 7 | | Linear Burst Address Table | 7 | | ZZ Mode Electrical Characteristics | 7 | | Truth Table | 8 | | Partial Truth Table for Read/Write | 9 | | IEEE 1149.1 Serial Boundary Scan (JTAG) | 10 | | Disabling the JTAG Feature | | | Test Access Port (TAP) | 10 | | Performing a TAP Reset | 10 | | TAP Registers | | | TAP Instruction Set | 11 | | Tap Controller State Diagram | | | Tap Controller Block Diagram | 13 | | TAP Timing | | | TAP AC Switching Characteristics | | | 2.5-V TAP AC Test Conditions | | | 2.5-V TAP AC Output Load Equivalent | 15 | | TAP DC Electrical Characteristics | | | and Operating Conditions | 15 | | Identification Register Definitions | 16 | |---|----| | Scan Register Sizes | 16 | | Identification Codes | 16 | | Boundary Scan Order | 17 | | Maximum Ratings | 18 | | Operating Range | 18 | | Neutron Soft Error Immunity | 18 | | Electrical Characteristics | 18 | | Capacitance | 19 | | Thermal Resistance | 19 | | AC Test Loads and Waveforms | 19 | | Switching Characteristics | 20 | | Timing Diagrams | | | Ordering Information | 25 | | Ordering Code Definitions | 25 | | Package Diagram | | | Acronyms | 27 | | Document Conventions | | | Units of Measure | | | Document History Page | 28 | | Sales, Solutions, and Legal Information | 29 | | Worldwide Sales and Design Support | 29 | | Products | 29 | | PSoC®Solutions | | | Cypress Developer Community | | | Technical Support | 29 | # **Pin Configurations** Figure 1. 165-ball FBGA (15 × 17 × 1.4 mm) Pinout ## CY7C1441KV25 (1M × 36) | | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | |---|------------------|--------|--------------------|-------------------|-------------------|-----------------|----------|-----------------|--------------------|--------|------------------| | Α | NC/288M | Α | Œ ₁ | \overline{BW}_C | \overline{BW}_B | CE ₃ | BWE | ADSC | ADV | Α | NC | | В | NC/144M | Α | CE ₂ | \overline{BW}_D | \overline{BW}_A | CLK | GW | OE | ADSP | Α | NC/576M | | С | DQP _C | NC | V_{DDQ} | V_{SS} | V_{SS} | V_{SS} | V_{SS} | V_{SS} | V_{DDQ} | NC/1G | DQPB | | D | DQ_C | DQ_C | V_{DDQ} | V_{DD} | V_{SS} | V_{SS} | V_{SS} | V_{DD} | V_{DDQ} | DQ_B | DQ_B | | E | DQ_C | DQ_C | V_{DDQ} | V_{DD} | V_{SS} | V_{SS} | V_{SS} | V_{DD} | V_{DDQ} | DQ_B | DQ_B | | F | DQ_C | DQ_C | V_{DDQ} | V_{DD} | V_{SS} | V_{SS} | V_{SS} | V_{DD} | V_{DDQ} | DQ_B | DQ_B | | G | DQ_C | DQ_C | V_{DDQ} | V_{DD} | V_{SS} | V_{SS} | V_{SS} | V_{DD} | V_{DDQ} | DQ_B | DQ_B | | Н | NC | NC | NC | V_{DD} | V_{SS} | V_{SS} | V_{SS} | V_{DD} | NC | NC | ZZ | | J | DQ_D | DQ_D | V_{DDQ} | V_{DD} | V_{SS} | V_{SS} | V_{SS} | V_{DD} | V_{DDQ} | DQ_A | DQ_A | | K | DQ_D | DQ_D | V_{DDQ} | V_{DD} | V_{SS} | V_{SS} | V_{SS} | V_{DD} | V_{DDQ} | DQ_A | DQ_A | | L | DQ_D | DQ_D | V_{DDQ} | V_{DD} | V_{SS} | V_{SS} | V_{SS} | V_{DD} | V_{DDQ} | DQ_A | DQ_A | | M | DQ_D | DQ_D | V_{DDQ} | V_{DD} | V_{SS} | V_{SS} | V_{SS} | V_{DD} | V_{DDQ} | DQ_A | DQ_A | | N | DQP _D | NC | V_{DDQ} | V _{SS} | NC | Α | NC | V _{SS} | V_{DDQ} | NC | DQP _A | | Р | NC | NC/72M | Α | Α | TDI | A1 | TDO | Α | Α | Α | Α | | R | MODE | Α | Α | Α | TMS | A0 | TCK | Α | Α | Α | Α | ## **Pin Definitions** | Name | I/O | Description | |--|--------------------|--| | A ₀ , A ₁ , A | Input-Synchronous | Address Inputs. <u>Used to select one of the address locations.</u> Sampled at the rising edge of the CLK if ADSP or ADSC is active LOW, and \overline{CE}_1 , \overline{CE}_2 , and \overline{CE}_3 are sampled active. $A_{[1:0]}$ feed the 2-bit counter. | | $\overline{\underline{BW}}_{A}$, $\overline{\overline{BW}}_{B}$, $\overline{\overline{BW}}_{C}$, $\overline{\overline{BW}}_{D}$ | Input-Synchronous | Byte Write Select Inputs, Active LOW. Qualified with $\overline{\text{BWE}}$ to conduct byte writes to the SRAM. Sampled on the rising edge of CLK. | | GW | Input-Synchronous | Global Write Enable Input, Active LOW. When asserted LOW on the rising edge of $\underline{\text{CLK}}$, a global write is conducted (ALL bytes are written, regardless of the values on $\overline{\text{BW}_X}$ and $\overline{\text{BWE}}$). | | CLK | Input-Clock | Clock Input . Used to capture all synchronous inputs to the device. Also used to increment the burst counter when ADV is asserted LOW during a burst operation. | | CE ₁ | Input-Synchronous | Chip Enable 1 Input, Active LOW. Sampled on the rising edge of CLK. Used in conjunction with CE_2 and CE_3 to select or deselect the device. ADSP is ignored if $\overline{CE_1}$ is HIGH. $\overline{CE_1}$ is sampled only when a new external address is loaded. | | CE ₂ | Input-Synchronous | Chip Enable 2 Input, Active HIGH. Sampled on the rising edge of CLK. Used in conjunction with $\overline{\text{CE}}_1$ and $\overline{\text{CE}}_3$ to select or deselect the device. $\overline{\text{CE}}_2$ is sampled only when a new external address is loaded. | | CE ₃ | Input-Synchronous | Chip Enable 3 Input, Active LOW. Sampled on the rising edge of CLK. Used in conjunction with $\overline{\text{CE}}_1$ and $\overline{\text{CE}}_2$ to select or deselect the device. $\overline{\text{CE}}_3$ is sampled only when a new external address is loaded. | | ŌĒ | Input-Asynchronous | Output Enable, Asynchronous Input, Active LOW. Controls the direction of the I/O pins. When LOW, the I/O pins behave as outputs. When deasserted HIGH, I/O pins are tri-stated and act as input data pins. OE is masked during the first clock of a read cycle when emerging from a deselected state. | | ADV | Input-Synchronous | Advance Input Signal. Sampled on the rising edge of CLK. When asserted, it automatically increments the address in a burst cycle. | | ADSP | Input-Synchronous | Address Strobe from Processor. Sampled on the rising edge of CLK, active LOW. When asserted LOW, addresses presented to the device are captured in the address registers. A [1:0] are also loaded into the burst counter. When $\overline{\text{ADSP}}$ and
$\overline{\text{ADSC}}$ are both asserted, only $\overline{\text{ADSP}}$ is recognized. $\overline{\text{ASDP}}$ is ignored when $\overline{\text{CE}}_1$ is deasserted HIGH. | | ADSC | Input-Synchronous | Address Strobe from Controller. Sampled on the rising edge of CLK, active LOW. When asserted LOW, addresses presented to the device are captured in the address registers. A _[1:0] are also loaded into the burst counter. When ADSP and ADSC are both asserted, only ADSP is recognized. | | BWE | Input-Synchronous | Byte Write Enable Input, Active LOW. Sampled on the rising edge of CLK. This signal must be asserted LOW to conduct a byte write. | | ZZ | Input-Asynchronous | ZZ Sleep Input, Active HIGH . When asserted HIGH places the device in a non time-critical "sleep" condition with data integrity preserved. For normal operation, this pin must be LOW or left floating. ZZ pin has an internal pull down. | | DQs | I/O-Synchronous | Bidirectional Data I/O Lines . As inputs, they feed into an on-chip data register that is triggered by the rising edge of CLK. As outputs, they deliver the data contained in the memory location specified by the <u>addresses presented during</u> the read cycle. The direction of the pins is controlled by OE. When OE is asserted LOW, the pins behave as outputs. When HIGH, DQs and DQPX are placed in a tri-state condition. The outputs are automatically tri-stated during the data portion of a write sequence, during the first clock when emerging from a deselected state, and when the device is deselected, regardless of the state of OE. | | DQP _X | I/O-Synchronous | | ## Pin Definitions (continued) | Name | I/O | Description | |--|-----------------------------------|---| | MODE | Input-Static | Selects Burst Order . When tied to GND selects linear burst sequence. When tied to V_{DD} or left floating selects interleaved burst sequence. This is a strap pin and should remain static during device operation. Mode pin has an internal pull up. | | V_{DD} | Power Supply | Power Supply Inputs to the Core of the Device. | | $V_{\rm DDQ}$ | I/O Power Supply | Power Supply for I/O Circuitry. | | V _{SS} | Ground | Ground for the Core of the Device. | | V_{SSQ} | I/O Ground | Ground for I/O Circuitry. | | TDO | JTAG Serial Output
Synchronous | Serial Data-Out to the JTAG Circuit . Delivers data on the negative edge of TCK. If the JTAG feature is not utilized, this pin should be left unconnected. | | TDI | JTAG Serial Input
Synchronous | Serial Data-In to the JTAG Circuit . Sampled on the rising edge of TCK. If the JTAG feature is not utilized, this pin can be left floating or connected to V _{DD} through a pull up resistor. | | TMS | JTAG Serial Input
Synchronous | Serial Data-In to the JTAG Circuit . Sampled on the rising edge of TCK. If the JTAG feature is not utilized, this pin can be disconnected or connected to V _{DD} . | | TCK | JTAG-Clock | Clock Input to the JTAG Circuitry. If the JTAG feature is not utilized, this pin must be connected to V_{SS} . | | NC | _ | No Connects. Not internally connected to the die. | | NC/72M, NC/144M,
NC/288M,
NC/576M, NC/1G | - | No Connects . Not internally connected to the die. NC/72M, NC/144M, NC/288M, NC/576M, and NC/1G are address expansion pins and are not internally connected to the die. | ## **Functional Overview** All synchronous inputs pass through input registers controlled by the rising edge of the clock. Maximum access delay from the clock rise (t_{CDV}) is 6.5 ns (133 MHz device). The CY7C1441KV25 supports secondary cache in systems utilizing either a linear or interleaved burst sequence. The interleaved burst order supports Pentium processors. The burst order is user selectable and is determined by sampling the MODE input. Accesses are initiated with either ADSP or ADSC. Address advancement through the burst sequence is controlled by the ADV input. A two-bit on-chip wraparound burst counter captures the first address in a burst sequence and automatically increments the address for the rest of the burst access. Byte write operations are qualified with the Byte Write Enable (BWE) and Byte Write Select (BW $_{\rm X}$) inputs. A Global Write Enable (GW) overrides all byte write inputs and writes data to all four bytes. All writes are simplified with on-chip synchronous self timed write circuitry. Three synchronous chip selects $(\overline{CE}_1, CE_2, \overline{CE}_3)$ and an asynchronous output enable (\overline{OE}) provide for easy bank selection and output tri-state control. \overline{ADSP} is ignored if \overline{CE}_1 is HIGH. ### Single Read Accesses A single read access is initiated when the following conditions are satisfied at clock rise: (1) \overline{CE}_1 , CE_2 , and \overline{CE}_3 are all asserted active and (2) \overline{ADSP} or \overline{ADSC} is asserted LOW (if the access is initiated by \overline{ADSC} , the write inputs must be deasserted during this first cycle). The address presented to the address inputs is latched into the address register and the burst counter or control logic and presented to the memory core. If the \overline{OE} input is asserted LOW, the requested data is available as the data outputs a maximum to t_{CDV} after clock rise. \overline{ADSP} is ignored if \overline{CE}_1 is HIGH. ## Single Write Accesses Initiated by ADSP This access is initiated when the following conditions are satisfied at clock rise: (1) \overline{CE}_1 , \overline{CE}_2 , \overline{CE}_3 are all asserted active and (2) \overline{ADSP} is asserted LOW. The addresses presented are loaded into the address register and the burst inputs (\overline{GW} , \overline{BWE} , and \overline{BW}_X) are ignored during this first clock cycle. If the write inputs are asserted active (see Truth Table on page 8 for appropriate states that indicate a write) on the next clock rise, the appropriate data is latched and written into the device. Byte writes are allowed. All I/Os are tri-stated during a byte write. Because this is a common I/O device, the asynchronous \overline{OE} input signal must be deasserted and the I/Os must be tri-stated prior to the presentation of data to DQs. As a safety precaution, the data lines are tri-stated when a write cycle is detected, regardless of the state of \overline{OE} . ## Single Write Accesses Initiated by ADSC This write access is initiated when the following conditions are satisfied at clock rise: (1) \overline{CE}_1 , CE_2 , and \overline{CE}_3 are all asserted active, (2) \overline{ADSC} is asserted LOW, (3) \overline{ADSP} is deasserted HIGH, and (4) the write input signals (\overline{GW} , \overline{BWE} , and \overline{BW}_X) indicate a write access. \overline{ADSC} is ignored if \overline{ADSP} is active LOW. The addresses presented are loaded into the address register and the burst counter or control logic and delivered to the memory core. The information presented to DQ_S is written into the specified address location. Byte writes are allowed. All I/Os are tri-stated when a write is detected, even a byte write. Because this is a common I/O device, the asynchronous $\overline{\mathsf{OE}}$ input signal must be deasserted and the I/Os must be tri-stated prior to the presentation of data to DQs. As a safety precaution, the data lines are tri-stated when a write cycle is detected, regardless of the state of $\overline{\mathsf{OE}}$. ## **Burst Sequences** The CY7C1441KV25 provides an on-chip two-bit wraparound burst counter inside the SRAM. The burst counter is fed by $A_{[1:0]}$, and can follow either a linear or interleaved burst order. The burst order is determined by the state of the MODE input. A LOW on MODE selects a linear burst sequence. A HIGH on MODE selects an interleaved burst order. Leaving MODE unconnected causes the device to default to a interleaved burst sequence. ### Sleep Mode The ZZ input pin is an asynchronous input. Asserting ZZ places the SRAM in a power conservation sleep mode. Two clock cycles are required to enter into or exit from this sleep mode. When in this mode, data integrity is guaranteed. Accesses pending when entering the sleep mode are not considered valid nor is the completion of the operation guaranteed. The <u>device must be deselected prior</u> to entering the sleep mode. \overline{CE}_1 , CE_2 , \overline{CE}_3 , \overline{ADSP} , and \overline{ADSC} must remain inactive for the duration of t_{ZZREC} after the ZZ input returns LOW. ## **Interleaved Burst Address Table** (MODE = Floating or V_{DD}) | First
Address
A1:A0 | Second
Address
A1:A0 | Third
Address
A1:A0 | Fourth
Address
A1:A0 | | | |---------------------------|----------------------------|---------------------------|----------------------------|--|--| | 00 | 01 | 10 | 11 | | | | 01 | 00 | 11 | 10 | | | | 10 | 11 | 00 | 01 | | | | 11 | 10 | 01 | 00 | | | ## **Linear Burst Address Table** (MODE = GND) | First
Address
A1:A0 | Second
Address
A1:A0 | Third
Address
A1:A0 | Fourth
Address
A1:A0 | | | |---------------------------|----------------------------|---------------------------|----------------------------|--|--| | 00 | 01 | 10 | 11 | | | | 01 | 10 | 11 | 00 | | | | 10 | 11 | 00 | 01 | | | | 11 | 00 | 01 | 10 | | | ### **ZZ Mode Electrical Characteristics** | Parameter | Description | Test Conditions | Min | Max | Unit | |--------------------|-----------------------------------|---------------------------------|-------------------|-------------------|------| | I _{DDZZ} | Sleep mode standby
current | $ZZ \ge V_{DD} - 0.2 V$ | _ | 75 | mA | | t _{ZZS} | Device operation to ZZ | $ZZ \ge V_{DD} - 0.2 \text{ V}$ | _ | 2t _{CYC} | ns | | t _{ZZREC} | ZZ recovery time | ZZ ≤ 0.2 V | 2t _{CYC} | _ | ns | | t_{ZZI} | ZZ active to sleep current | This parameter is sampled | _ | 2t _{CYC} | ns | | t_{RZZI} | ZZ Inactive to exit sleep current | This parameter is sampled | 0 | _ | ns | Document Number: 001-94722 Rev. *E ## **Truth Table** The truth table for CY7C1441KV25 follows. [1, 2, 3, 4, 5] | Cycle Description | Address Used | CE ₁ | CE ₂ | CE ₃ | ZZ | ADSP | ADSC | ADV | WRITE | OE | CLK | DQ | |------------------------------|--------------|-----------------|-----------------|-----------------|----|------|------|-----|-------|----|-----|-----------| | Deselected Cycle, Power Down | None | Н | Х | Х | L | Х | L | Х | Х | Х | L–H | Tri-State | | Deselected Cycle, Power Down | None | L | L | Х | L | L | Х | Х | Χ | Х | L–H | Tri-State | | Deselected Cycle, Power Down | None | L | Х | Н | L | L | Х | Х | Χ | Χ | L–H | Tri-State | | Deselected Cycle, Power Down | None | L | L | Х | L | Н | L | Х | Х | Χ | L–H | Tri-State | | Deselected Cycle, Power Down | None | Х | Х | Н | L | Н | L | Х | Χ | Χ | L–H | Tri-State | | Sleep Mode, Power Down | None | Х | Х | Х | Н | Х | Х | Х | Х | Χ | Х | Tri-State | | Read Cycle, Begin Burst | External | L | Н | L | L | L | Х | Х | Х | L | L–H | Q | | Read Cycle, Begin Burst | External | L | Н | L | L | L | Х | Х | Х | Н | L–H | Tri-State | | Write Cycle, Begin Burst | External | L | Н | L | L | Н | L | Х | L | Χ | L–H | D | | Read Cycle, Begin Burst | External | L | Н | L | L | Н | L | Х | Н | L | L–H | Q | | Read Cycle, Begin Burst | External | L | Н | L | L | Н | L | Х | Н | Н | L–H | Tri-State | | Read Cycle, Continue Burst | Next | Х | Х | Х | L | Н | Н | L | Н | L | L–H | Q | | Read Cycle, Continue Burst | Next | Х | Х | Х | L | Н | Н | L | Н | Н | L–H | Tri-State | | Read Cycle, Continue Burst | Next | Н | Х | Х | L | Х | Н | L | Н | L | L–H | Q | | Read Cycle, Continue Burst | Next | Н | Х | Х | L | Х | Н | L | Н | Н | L–H | Tri-State | | Write Cycle, Continue Burst | Next | Х | Х | Х | L | Н | Н | L | L | Χ | L–H | D | | Write Cycle, Continue Burst | Next | Н | Х | Х | L | Х | Н | L | L | Χ | L–H | D | | Read Cycle, Suspend Burst | Current | Х | Х | Х | L | Н | Н | Н | Н | L | L–H | Q | | Read Cycle, Suspend Burst | Current | Х | Х | Х | L | Н | Н | Н | Н | Н | L–H | Tri-State | | Read Cycle, Suspend Burst | Current | Н | Х | Х | L | Х | Н | Н | Н | L | L–H | Q | | Read Cycle, Suspend Burst | Current | Н | Х | Х | L | Х | Н | Н | Н | Н | L–H | Tri-State | | Write Cycle, Suspend Burst | Current | Х | Х | Х | L | Н | Н | Н | L | Х | L–H | D | | Write Cycle, Suspend Burst | Current | Н | Х | Х | L | Х | Н | Н | L | Х | L–H | D | ### Notes X = "Don't Care." H = Logic HIGH, L = Logic LOW. WRITE = L when any one or more Byte Write enable signals and BWE = L or GW = L. WRITE = H when all Byte write enable signals, BWE, GW = H. The DQ pins are controlled by the current cycle and the OE signal. OE is asynchronous and is not sampled with the clock. The SRAM always initiates a read cycle when ADSP is asserted, regardless of the state of GW, BWE, or BW_X. Writes may occur only on subsequent clocks after the ADSP or with the assertion of ADSC. As a result, OE must be driven HIGH prior to the start of the write cycle to allow the outputs to tri-state. OE is a don't care for the remainder of the write cycle. OE is asynchronous and is not sampled with the clock rise. It is masked internally during write cycles. During a read cycle all data bits are Tri-State when OE is inactive or when the device is deselected, and all data bits behave as output when OE is active (LOW). ## **Partial Truth Table for Read/Write** The partial truth table for read/write for CY7C1441KV25 follows. [6, 7] | Function (CY7C1441KV25) | GW | BWE | $\overline{\text{BW}}_{\text{D}}$ | BW _C | BW _B | BWA | |---|----|-----|-----------------------------------|-----------------|-----------------|-----| | Read | Н | Н | Х | Х | Х | Х | | Read | Н | L | Н | Н | Н | Н | | Write Byte A (DQ _A , DQP _A) | Н | L | Н | Н | Н | L | | Write Byte B(DQ _B , DQP _B) | Н | L | Н | Н | L | Н | | Write Bytes A, B (DQ _A , DQ _B , DQP _A , DQP _B) | Н | L | Н | Н | L | L | | Write Byte C (DQ _C , DQP _C) | Н | L | Н | L | Н | Н | | Write Bytes C, A (DQ _C , DQ _{A,} DQP _C , DQP _A) | Н | L | Н | L | Н | L | | Write Bytes C, B (DQ _C , DQ _{B,} DQP _C , DQP _B) | Н | L | Н | L | L | Н | | Write Bytes C, B, A (DQ_C , DQ_B , DQ_{A} , DQP_C , DQP_B , DQP_A) | H | L | Н | L | L | L | | Write Byte D (DQ _D , DQP _D) | Н | L | L | Н | Н | Н | | Write Bytes D, A (DQ _D , DQ _{A,} DQP _D , DQP _A) | Н | L | L | Н | Н | L | | Write Bytes D, B (DQ _D , DQ _{A,} DQP _D , DQP _A) | Н | L | L | Н | L | Н | | Write Bytes D, B, A (DQ_D , DQ_B , DQ_{A} , DQP_D , DQP_B , DQP_A) | Н | L | L | Н | L | L | | Write Bytes D, B (DQ _D , DQ _{B,} DQP _D , DQP _B) | Н | L | L | L | Н | Н | | Write Bytes D, B, A (DQ_D , DQ_C , DQ_{A_1} , DQP_D , DQP_C , DQP_A) | Н | L | L | L | Н | L | | Write Bytes D, C, A (DQ_D , DQ_B , DQ_{A_1} , DQP_D , DQP_B , DQP_A) | Н | L | L | L | L | Н | | Write All Bytes | Н | L | L | L | L | L | | Write All Bytes | L | Х | Х | Х | Х | Х | Document Number: 001-94722 Rev. *E A = "Don't Care." H = Logic HIGH, L = Logic LOW. Table only lists a partial listing of the byte write combinations. Any combination of BW_X is valid. Appropriate write is done based on which byte write is active. BWx represents any byte write signal BW_X. To enable any byte write BW_X, a logic LOW signal should be applied at clock rise. Any number of bye writes can be enabled at the same time for any given write. ## IEEE 1149.1 Serial Boundary Scan (JTAG) The CY7C1441KV25 incorporates a serial boundary scan test access port (TAP). This part is fully compliant with 1149.1. The TAP operates using JEDEC-standard 2.5 V I/O logic level. The CY7C1441KV25 contains a TAP controller, instruction register, boundary scan register, bypass register, and ID register. ## Disabling the JTAG Feature It is possible to operate the SRAM without using the JTAG feature. To disable the TAP controller, TCK must be tied LOW (V_{SS}) to prevent clocking of the device. TDI and TMS are internally pulled up and may be unconnected. They may alternately be connected to VDD through a pull up resistor. TDO must be left unconnected. On power up, the device comes up in a reset state, which does not interfere with the operation of the device. ## **Test Access Port (TAP)** ### Test Clock (TCK) The test clock is used only with the TAP controller. All inputs are captured on the rising edge of TCK. All outputs are driven from the falling edge of TCK. ### Test Mode Select (TMS) The TMS input is used to give commands to the TAP controller and is sampled on the rising edge of TCK. This ball can be left unconnected if the TAP is not used. The ball is pulled up internally, resulting in a logic HIGH level. ### Test Data-In (TDI) The TDI ball is used to serially input information into the registers and can be connected to the input of any of the registers. The register between TDI and TDO is chosen by the instruction that is loaded into the TAP instruction register. For information on loading the instruction register, see Tap Controller State Diagram on page 12. TDI is internally pulled up and can be unconnected if the TAP is unused in an application. TDI is connected to the most significant bit (MSB) of any register. ## Test Data-Out (TDO) The TDO output ball is used to serially clock data out from the registers. The output is active depending on the current state of the TAP state machine (see Identification Codes on page 16). The output changes on the falling edge of TCK. TDO is connected to the least significant bit (LSB) of any register. ### Performing a TAP Reset A RESET is performed by forcing TMS HIGH (V_{DD}) for five rising edges of TCK. This RESET does not affect the operation of the SRAM and may be performed while the SRAM is operating. At power-up, the TAP is reset internally to ensure that TDO comes up in a High Z state. ## **TAP Registers** Registers are connected between the TDI and TDO balls and allow data to be scanned into and out of the SRAM test circuitry. Only one register can be selected at a time through the instruction register. Data is serially loaded into the TDI ball on the rising edge of TCK. Data is output on the TDO ball on the falling edge of TCK. ### Instruction Register Three-bit instructions can be serially loaded into the instruction register. This register is loaded when it is placed between the TDI and TDO balls as shown in the Tap Controller Block Diagram on page 13. On power up, the instruction register is loaded with the IDCODE instruction. It is also loaded with the IDCODE instruction if the controller is placed in a reset state as described in the previous section. When the TAP controller is in the Capture-IR state, the two least significant bits are loaded with a binary '01' pattern to allow fault isolation of the board level serial test data path. ## Bypass Register To save time when serially shifting data through registers, it is sometimes advantageous to skip certain chips. The bypass register is a single-bit register that is placed between the TDI and TDO balls. This allows data to be shifted through the SRAM with minimal delay. The bypass register is set LOW (V_{SS}) when the BYPASS instruction is executed. ### Boundary Scan Register The boundary scan register is connected to all the input and bidirectional balls on the SRAM. The boundary scan register is loaded with the contents of the RAM I/O ring when the TAP controller is in the Capture-DR state. It is then placed between the TDI and
TDO balls when the controller is moved to the Shift-DR state. The EXTEST, SAMPLE/PRELOAD and SAMPLE Z instructions are used to capture the contents of the I/O ring. The Boundary Scan Order tables show the order in which the bits are connected. Each bit corresponds to one of the bumps on the SRAM package. The MSB of the register is connected to TDI and the LSB is connected to TDO. ## Identification (ID) Register The ID register is loaded with a vendor specific, 32-bit code during the Capture-DR state when the IDCODE command is loaded in the instruction register. The IDCODE is hardwired into the SRAM and can be shifted out when the TAP controller is in the Shift-DR state. The ID register has a vendor code and other information described in the Identification Register Definitions on page 16. ## **TAP Instruction Set** ### Overview Eight different instructions are possible with the three bit instruction register. All combinations are listed in the Identification Codes on page 16. Three of these instructions are listed as RESERVED and should not be used. The other five instructions are described in detail below. Instructions are loaded into the TAP controller during the Shift-IR state when the instruction register is placed between TDI and TDO. During this state, instructions are shifted through the instruction register through the TDI and TDO balls. To execute the instruction after it is shifted in, the TAP controller must be moved into the Update-IR state. ### **IDCODE** The IDCODE instruction causes a vendor specific, 32-bit code to be loaded into the instruction register. It also places the instruction register between the TDI and TDO balls and allows the IDCODE to be shifted out of the device when the TAP controller enters the Shift-DR state. The IDCODE instruction is loaded into the instruction register on power up or whenever the TAP controller is given a test logic reset state. ### SAMPLE Z The SAMPLE Z instruction causes the boundary scan register to be connected between the TDI and TDO pins when the TAP controller is in a Shift-DR state. The SAMPLE Z command puts the output bus into a High Z state until the next command is given during the "Update IR" state. ### SAMPLE/PRELOAD SAMPLE/PRELOAD is a 1149.1 mandatory instruction. When the SAMPLE/PRELOAD instructions are loaded into the instruction register and the TAP controller is in the Capture-DR state, a snapshot of data on the inputs and output pins is captured in the boundary scan register. The user must be aware that the TAP controller clock can only operate at a frequency up to 20 MHz, while the SRAM clock operates more than an order of magnitude faster. Because there is a large difference in the clock frequencies, it is possible that during the Capture-DR state, an input or output may undergo a transition. The TAP may then try to capture a signal while in transition (metastable state). This does not harm the device, but there is no guarantee as to the value that is captured. Repeatable results may not be possible. To guarantee that the boundary scan register captures the correct value of a signal, the SRAM signal must be stabilized long enough to meet the TAP controller's capture setup plus hold times (t_{CS} and t_{CH}). The SRAM clock input might not be captured correctly if there is no way in a design to stop (or slow) the clock during a SAMPLE/PRELOAD instruction. If this is an issue, it is still possible to capture all other signals and simply ignore the value of the clock captured in the boundary scan register. When the data is captured, it is possible to shift out the data by putting the TAP into the Shift-DR state. This places the boundary scan register between the TDI and TDO pins. PRELOAD allows an initial data pattern to be placed at the latched parallel outputs of the boundary scan register cells prior to the selection of another boundary scan test operation. The shifting of data for the SAMPLE and PRELOAD phases can occur concurrently when required – that is, while data captured is shifted out, the preloaded data can be shifted in. ### **BYPASS** When the BYPASS instruction is loaded in the instruction register and the TAP is placed in a Shift-DR state, the bypass register is placed between the TDI and TDO pins. The advantage of the BYPASS instruction is that it shortens the boundary scan path when multiple devices are connected together on a board. ### **FXTFST** The EXTEST instruction enables the preloaded data to be driven out through the system output pins. This instruction also selects the boundary scan register to be connected for serial access between the TDI and TDO in the Shift-DR controller state. ### EXTEST OUTPUT BUS TRI-STATE IEEE Standard 1149.1 mandates that the TAP controller be able to put the output bus into a tri-state mode. The boundary scan register has a special bit located at bit #89 (for 165-ball FBGA package). When this scan cell, called the "extest output bus tri-state", is latched into the preload register during the Update-DR state in the TAP controller, it directly controls the state of the output (Q-bus) pins when the EXTEST is entered as the current instruction. When HIGH, it enables the output buffers to drive the output bus. When LOW, this bit places the output bus into a High Z condition. This bit can be set by entering the SAMPLE/PRELOAD, or EXTEST command and then shifting the desired bit into that cell during the Shift-DR state. During Update-DR, the value loaded into that shift register cell latches into the preload register. When the EXTEST instruction is entered, this bit directly controls the output Q-bus pins. Note that this bit is preset HIGH to enable the output when the device is powered up and also when the TAP controller is in the Test-Logic-Reset" state. ## Reserved These instructions are not implemented but are reserved for future use. Do not use these instructions. # **TAP Controller State Diagram** The 0/1 next to each state represents the value of TMS at the rising edge of TCK. # **TAP Controller Block Diagram** # **TAP Timing** Figure 2. TAP Timing # **TAP AC Switching Characteristics** Over the Operating Range | Parameter [9, 10] | Parameter | Min | Max | Unit | |-------------------|-------------------------------|----------|-----|------| | Clock | | • | • | | | t _{TCYC} | TCK Clock Cycle Time | 50 | _ | ns | | t _{TF} | TCK Clock Frequency | _ | 20 | MHz | | t _{TH} | TCK Clock HIGH time | 20 | _ | ns | | t _{TL} | TCK Clock LOW time | 20 | _ | ns | | Output Times | | <u>.</u> | | | | t _{TDOV} | TCK Clock LOW to TDO Valid | _ | 10 | ns | | t _{TDOX} | TCK Clock LOW to TDO Invalid | 0 | _ | ns | | Setup Times | | <u>.</u> | | | | t _{TMSS} | TMS Setup to TCK Clock Rise | 5 | _ | ns | | t _{TDIS} | TDI Setup to TCK Clock Rise | 5 | _ | ns | | t _{CS} | Capture SetUp to TCK Rise | 5 | _ | ns | | Hold Times | | <u>.</u> | | | | t _{TMSH} | TMS Hold after TCK Clock Rise | 5 | _ | ns | | t _{TDIH} | TDI Hold after Clock Rise | 5 | _ | ns | | t _{CH} | Capture Hold after Clock Rise | 5 | _ | ns | ^{9.} t_{CS} and t_{CH} refer to the setup and hold time requirements of latching data from the boundary scan register. 10. Test conditions are specified using the load in TAP AC test Conditions. $t_R/t_F = 2 \text{ V/ns}$ (Slew Rate). ## 2.5-V TAP AC Test Conditions | Input pulse levels | V _{SS} to 2.5 V | |---------------------------------------|--------------------------| | Input rise and fall times (Slew Rate) | 2 V/ns | | Input timing reference levels | 1.25 V | | Output reference levels | 1.25 V | | Test load termination supply voltage | 1.25 V | # 2.5-V TAP AC Output Load Equivalent # **TAP DC Electrical Characteristics and Operating Conditions** (0 °C < T_A < +70 °C; V_{DD} = 2.5 V \pm 0.125 V unless otherwise noted) | Parameter [11] | Description | Description | Conditions | Min | Max | Unit | |------------------|---------------------|------------------------------|--------------------------|------------|-----------------------|------| | V _{OH1} | Output HIGH Voltage | I _{OH} = -1.0 mA | V _{DDQ} = 2.5 V | 1.7 | _ | V | | V _{OH2} | Output HIGH Voltage | I _{OH} = -100 μA | V _{DDQ} = 2.5 V | 2.1 | - | V | | V _{OL1} | Output LOW Voltage | I _{OL} = 1.0 mA | V _{DDQ} = 2.5 V | - | 0.4 | V | | V_{OL2} | Output LOW Voltage | I _{OL} = 100 μA | V _{DDQ} = 2.5 V | _ | 0.2 | V | | V _{IH} | Input HIGH Voltage | | V _{DDQ} = 2.5 V | 1.7 | V _{DD} + 0.3 | V | | V _{IL} | Input LOW Voltage | | V _{DDQ} = 2.5 V | -0.3 | 0.7 | V | | I _X | Input Load Current | $GND \le V_{IN} \le V_{DDQ}$ | | - 5 | 5 | μA | ^{11.} All voltages referenced to V_{SS} (GND). # **Identification Register Definitions** | Instruction Field | Bit Configuration
CY7C1441KV25 (1M × 36) | Description | |--------------------------------------|---|--| | Revision Number (31:29) | 000 | Describes the version number. | | Device Depth (28:24) | 01011 | Reserved for internal use. | | Architecture and Memory Type (23:18) | 000001 | Defines memory type and architecture. | | Bus Width and Density (17:12) | 100111 | Defines width and density. | | Cypress JEDEC ID Code (11:1) | 00000110100 | Allows unique identification of SRAM vendor. | | ID Register Presence Indicator (0) | 1 | Indicates the presence of an ID register. | # **Scan Register Sizes** | Register Name | Bit Size (× 36) | |---|-----------------| | Instruction Bypass | 3 | | Bypass | 1 | | ID | 32 | | Boundary Scan Order (165-ball FBGA package) | 89 | # **Identification Codes** | Instruction | Code | Description | |----------------|------|--| | EXTEST | 000 | Captures I/O ring contents. | | IDCODE | 001 | Loads the ID register with the vendor ID code and places the register between
TDI and TDO. This operation does not affect SRAM operations. | | SAMPLE Z | 010 | Captures I/O ring contents. Places the boundary scan register between TDI and TDO. Forces all SRAM output drivers to a High Z state. | | RESERVED | 011 | Do Not Use: This instruction is reserved for future use. | | SAMPLE/PRELOAD | 100 | Captures I/O ring contents. Places the boundary scan register between TDI and TDO. Does not affect SRAM operation. | | RESERVED | 101 | Do Not Use: This instruction is reserved for future use. | | RESERVED | 110 | Do Not Use: This instruction is reserved for future use. | | BYPASS | 111 | Places the bypass register between TDI and TDO. This operation does not affect SRAM operations. | Document Number: 001-94722 Rev. *E # **Boundary Scan Order** 165-ball FBGA [12, 13] ## CY7C1441KV25 (1M × 36) | Bit # | Ball ID | |-------|---------| | 1 | N6 | | 2 | N7 | | 3 | N10 | | 4 | P11 | | 5 | P8 | | 6 | R8 | | 7 | R9 | | 8 | P9 | | 9 | P10 | | 10 | R10 | | 11 | R11 | | 12 | H11 | | 13 | N11 | | 14 | M11 | | 15 | L11 | | 16 | K11 | | 17 | J11 | | 18 | M10 | | 19 | L10 | | 20 | K10 | | 21 | J10 | | 22 | H9 | | 23 | H10 | | 24 | G11 | | 25 | F11 | | Bit # | Ball ID | |-------|---------| | 26 | E11 | | 27 | D11 | | 28 | G10 | | 29 | F10 | | 30 | E10 | | 31 | D10 | | 32 | C11 | | 33 | A11 | | 34 | B11 | | 35 | A10 | | 36 | B10 | | 37 | A9 | | 38 | В9 | | 39 | C10 | | 40 | A8 | | 41 | В8 | | 42 | A7 | | 43 | В7 | | 44 | В6 | | 45 | A6 | | 46 | B5 | | 47 | A5 | | 48 | A4 | | 49 | B4 | | 50 | В3 | | Bit# | Ball ID | |------|---------| | 51 | A3 | | 52 | A2 | | 53 | B2 | | 54 | C2 | | 55 | B1 | | 56 | A1 | | 57 | C1 | | 58 | D1 | | 59 | E1 | | 60 | F1 | | 61 | G1 | | 62 | D2 | | 63 | E2 | | 64 | F2 | | 65 | G2 | | 66 | H1 | | 67 | H3 | | 68 | J1 | | 69 | K1 | | 70 | L1 | | 71 | M1 | | 72 | J2 | | 73 | K2 | | 74 | L2 | | 75 | M2 | | Bit # | Ball ID | |-------|----------| | 76 | N1 | | 77 | N2 | | 78 | P1 | | 79 | R1 | | 80 | R2 | | 81 | P3 | | 82 | R3 | | 83 | P2 | | 84 | R4 | | 85 | P4 | | 86 | N5 | | 87 | P6 | | 88 | R6 | | 89 | Internal | Notes 12. Balls which are NC (No Connect) are preset LOW. 13. Bit# 89 is preset HIGH. # **Maximum Ratings** Exceeding maximum ratings may impair the useful life of the device. These user guidelines are not tested. | device. These user guidelines are not lested. | | |--|------------------| | Storage Temperature65 °C to +15 | 50 °C | | Ambient Temperature with Power Applied–55 °C to +12 | 25 °C | | Supply Voltage on V_{DD} Relative to GND0.5 V to + | 3.6 V | | Supply Voltage on $\rm V_{\rm DDQ}$ Relative to GND $$ –0.5 V to | +V _{DD} | | DC Voltage Applied to Outputs | | | in Tri-State0.5 V to V _{DDQ} + | 0.5 V | | DC Input Voltage0.5 V to V _{DD} + | 0.5 V | | Current into Outputs (LOW)2 | 0 mA | | Static Discharge Voltage | | | (per MIL-STD-883, Method 3015)> 20 |)01 V | | Latch Up Current> 20 | 0 mA | | | | # **Operating Range** | Range | Ambient
Temperature | V _{DD} | V_{DDQ} | |------------|------------------------|-------------------|----------------------------------| | Industrial | –40 °C to +85 °C | 2.5 V <u>+</u> 5% | 2.5 V – 5%
to V _{DD} | # **Neutron Soft Error Immunity** | Parameter | Description | Test
Conditions | Тур | Max* | Unit | |-----------|---------------------------------|--------------------|-----|------|-------------| | LSBU | Logical
Single-Bit
Upsets | 25 °C | <5 | 5 | FIT/
Mb | | LMBU | Logical
Multi-Bit
Upsets | 25 °C | 0 | 0.01 | FIT/
Mb | | SEL | Single Event
Latch up | 85 °C | 0 | 0.1 | FIT/
Dev | ^{*} No LMBU or SEL events occurred during testing; this column represents a statistical χ^2 , 95% confidence limit calculation. For more details refer to Application Note AN54908 "Accelerated Neutron SER Testing and Calculation of Terrestrial Failure Detail". ## **Electrical Characteristics** Over the Operating Range | Parameter ^[14, 15] | Description | Test Conditions | | Min | Max | Unit | |-------------------------------|--|--|--------------------------|-------|-------------------------|------| | V_{DD} | Power Supply Voltage | - | | 2.375 | 2.625 | V | | V_{DDQ} | I/O Supply Voltage | for 2.5 V I/O | | 2.375 | V_{DD} | V | | V _{OH} | Output HIGH Voltage | for 2.5 V I/O, I _{OH} = -1.0 mA | | 2.0 | _ | V | | V_{OL} | Output LOW Voltage | for 2.5 V I/O, I _{OL} = 1.0 mA | | - | 0.4 | V | | V _{IH} | Input HIGH Voltage [14] | for 2.5 V I/O | | 1.7 | V _{DD} + 0.3 V | V | | V _{IL} | Input LOW Voltage [14] | for 2.5 V I/O | | -0.3 | 0.7 | V | | I _X | Input Leakage Current except ZZ and MODE | $GND \leq V_I \leq V_{DDQ}$ | | -5 | 5 | μА | | | | Input = V _{SS} | | -30 | _ | μΑ | | | | Input = V _{DD} | | _ | 5 | μΑ | | | Input Current of ZZ | Input = V _{SS} | | -5 | _ | μΑ | | | | Input = V _{DD} | | _ | 30 | μΑ | | I _{OZ} | Output Leakage Current | $GND \le V_I \le V_{DDQ}$, Output Disabled | | -5 | 5 | μΑ | | I _{DD} | V _{DD} Operating Supply Current | V_{DD} = Max, I_{OUT} = 0 mA,
f = f _{MAX} = 1/t _{CYC} | 7.5 ns cycle,
133 MHz | - | 170 | mA | ### Notes ^{14.} Overshoot: $V_{IH(AC)} < V_{DD} + 1.5 \text{ V}$ (Pulse width less than $t_{CYC}/2$), undershoot: $V_{IL(AC)} > -2 \text{ V}$ (Pulse width less than $t_{CYC}/2$). 15. $T_{Power-up}$: Assumes a linear ramp from V to $V_{DD(min)}$ within 200 ms. During this time $V_{IH} < V_{DD}$ and $V_{DDQ} \le V_{DD}$. # **Electrical Characteristics** (continued) Over the Operating Range | Parameter ^[14, 15] | Description | Test Conditions | Test Conditions | | Max | Unit | |-------------------------------|--|---|--------------------------|---|-----|------| | I _{SB1} | Automatic CE Power Down
Current – TTL Inputs | $\begin{aligned} &\text{Max V}_{DD}, \text{ Device Deselected,} \\ &\text{V}_{IN} \geq \text{V}_{IH} \text{ or V}_{IN} \leq \text{V}_{IL}, f = f_{MAX}, \\ &\text{Inputs Switching} \end{aligned}$ | 7.5 ns cycle,
133 MHz | - | 90 | mA | | I _{SB2} | Automatic CE Power Down
Current – CMOS Inputs | | 7.5 ns cycle,
133 MHz | _ | 80 | mA | | I _{SB3} | Automatic CE Power Down
Current – CMOS Inputs | | 7.5 ns cycle,
133 MHz | _ | 90 | mA | | I _{SB4} | Automatic CE Power Down
Current – TTL Inputs | | 7.5 ns cycle,
133 MHz | - | 80 | mA | # Capacitance | Parameter [16] | Description | Test Conditions | 165-ball FBGA
Max | Unit | |------------------|--------------------------|---|----------------------|------| | C _{IN} | Input capacitance | $T_A = 25 ^{\circ}\text{C}, f = 1 \text{MHz},$ | 5 | pF | | C _{CLK} | Clock input capacitance | $V_{DD} = 2.5 \text{ V}, V_{DDQ} = 2.5 \text{ V}$ | 5 | pF | | C _{I/O} | Input/Output capacitance | | 5 | pF | ## **Thermal Resistance** | Parameter [16] | Description | Test Condition | ns | 165-ballFBGA
Package | Unit | |-------------------|--|---|-----------------------|-------------------------|------| | Θ_{JA} | Thermal resistance | Test conditions follow standard test | , , | 14.24 | °C/W | | | (junction to ambient) | methods and procedures for measuring thermal impedance. | With Air Flow (1 m/s) | 12.47 | °C/W | | | | | With Air Flow (3 m/s) | 11.40 | °C/W | | $\Theta_{\sf JC}$ | Thermal resistance (junction to case) | | - | 3.92 | °C/W | | Θ_{JB} | Thermal resistance (junction to board) | | | 7.19 | °C/W | # **AC Test Loads and Waveforms** Figure 3. AC Test Loads and Waveforms ### Note Document Number: 001-94722 Rev. *E ^{16.} Tested initially and after any design or process change that may affect these parameters. ## **Switching Characteristics** Over the Operating Range | Parameter [17, 18] | D | -1 | -133 | | | |---------------------|---|----------|------|------|--| | Parameter [117, 19] | Description | Min | Max | Unit | | | t _{POWER} | V _{DD} (typical) to the first access ^[19] | 1 | _ | ms | | | Clock | | | • | _ | | | t _{CYC} | Clock cycle time | 7.5 | _ | ns | | | t _{CH} | Clock HIGH | 2.5 | _ | ns | | | t _{CL} | Clock LOW | 2.5 | _ | ns | | | Output Times | | <u>.</u> | | | | | t _{CDV} | Data output valid after CLK rise | - | 6.5 | ns | | | t _{DOH} | Data output hold after CLK rise | 2.5 | _ | ns | | | t _{CLZ} | Clock to low Z [20, 21, 22] | 2.5 | _ | ns | | | t _{CHZ} | Clock to high Z [20, 21, 22] | - | 3.8 | ns | | | t _{OEV} | OE LOW to output valid | - | 3.0 | ns | | | t _{OELZ} | OE LOW to output low Z [20, 21, 22] | 0 | _ | ns | | | t _{OEHZ} | OE HIGH to output high Z [20, 21, 22] | - | 3.0 | ns | | | Setup Times | | <u>.</u> | | | | | t _{AS} | Address setup before CLK rise | 1.5 | _ | ns | | | t _{ADS} | ADSP, ADSC setup before CLK rise | 1.5 | _ | ns | | | t _{ADVS} | ADV setup before CLK rise | 1.5 | _ | ns | | | t _{WES} | GW, BWE, BW _X setup before CLK rise | 1.5 | _ | ns | | | t _{DS} | Data input setup before CLK rise | 1.5 | _ | ns | | | t _{CES} | Chip enable setup | 1.5 | _ | ns | | | Hold Times | | | • | | | | t _{AH} | Address hold after CLK rise | 0.5 | _ | ns | | | t _{ADH} | ADSP, ADSC hold after CLK rise | 0.5 | _ | ns | | | t _{WEH} | GW, BWE, BW _X hold after CLK rise | 0.5 | _ | ns | | | t _{ADVH} | ADV hold after CLK rise | 0.5 | _ | ns | | | t _{DH} | Data input hold after CLK rise | 0.5 | _ | ns | | | t _{CEH} | Chip enable hold after CLK rise | 0.5 | _ | ns | | Document Number: 001-94722 Rev. *E ^{17.} Timing reference level is 1.25 V when V_{DDQ} = 2.5 V and 0.9 V. 18. Test
conditions shown in (a) of Figure 3 on page 19 unless otherwise noted. 19. This part has a voltage regulator internally; t_{POWER} is the time that the power needs to be supplied above V_{DD(minimum)} initially, before a read or write operation can be initiated. ^{20.} t_{CHZ}, t_{CLZ}, t_{OELZ}, and t_{OEHZ} are specified with AC test conditions shown in part (b) of Figure 3 on page 19. Transition is measured ±200 mV from steady-state voltage. 21. At any given voltage and temperature, t_{OEHZ} is less than t_{OELZ} and t_{CHZ} is less than t_{CLZ} to eliminate bus contention between SRAMs when sharing the same data bus. These specifications do not imply a bus contention condition, but reflect parameters guaranteed over worst case user conditions. Device is designed to achieve High Z prior to Low Z under the same system conditions. 22. This parameter is sampled and not 100% tested. # **Timing Diagrams** Figure 4. Read Cycle Timing [23] 23. In this diagram, when \overline{CE} is LOW: \overline{CE}_1 is LOW, \overline{CE}_2 is HIGH, and \overline{CE}_3 is LOW. When \overline{CE} is HIGH: \overline{CE}_1 is HIGH or \overline{CE}_2 is LOW or \overline{CE}_3 is HIGH. Note # Timing Diagrams (continued) Figure 5. Write Cycle Timing [24, 25] ### Notes 24. In this diagram, when \overline{CE} is LOW: \overline{CE}_1 is LOW, \overline{CE}_2 is HIGH, and \overline{CE}_3 is LOW. When \overline{CE} is HIGH: \overline{CE}_1 is HIGH or \overline{CE}_2 is LOW or \overline{CE}_3 is HIGH. 25. Full width write is initiated by either \overline{GW} LOW; or by \overline{GW} HIGH, \overline{BWE} LOW, and \overline{BW}_X LOW. # Timing Diagrams (continued) Figure 6. Read/Write Cycle Timing $^{[26,\ 27,\ 28]}$ Notes 26. In this diagram, when \overline{CE} is LOW: \overline{CE}_1 is LOW, CE_2 is HIGH, and \overline{CE}_3 is LOW. When \overline{CE} is HIGH: \overline{CE}_1 is HIGH or CE_2 is LOW or \overline{CE}_3 is HIGH. 27. The data bus (Q) remains in high Z following a WRITE cycle, unless a new read access is initiated by \overline{ADSP} or \overline{ADSC} . 28. \overline{GW} is HIGH. # Timing Diagrams (continued) Figure 7. ZZ Mode Timing $^{[29,\ 30]}$ ## Notes ^{29.} Device must be deselected when entering ZZ mode. See Truth Table on page 8 for all possible signal conditions to deselect the device. 30. DQs are in high Z when exiting ZZ sleep mode. ## **Ordering Information** Table 1 lists the ordering codes. The table contains only the parts that are currently available. If you do not see what you are looking for, contact your local sales representative. For more information, visit the Cypress website at www.cypress.com/products. If you do not see what you are looking for, contact your local sales representative. For more information, visit the Cypress website at www.cypress.com/products. **Table 1. Ordering Information** | Speed (MHz) | Ordering Code | Package Diagram | Part and Package Type | Operating Range | |-------------|----------------------|-----------------|--|-----------------| | 133 | CY7C1441KV25-133BZXI | 51-85195 | 165-ball FBGA (15 × 17 × 1.4 mm) Pb-free | Industrial | ## **Ordering Code Definitions** # **Package Diagram** Figure 8. 165-ball FBGA ((15 × 17 × 1.40 mm) 0.50 Ball Diameter) Package Outline, 51-85195 51-85195 *D # **Acronyms** Table 2. Acronyms Used in this Document | Acronym | Description | | |---------|--|--| | CE | Chip Enable | | | CMOS | Complementary Metal Oxide Semiconductor | | | EIA | Electronic Industries Alliance | | | FBGA | Fine-Pitch Ball Grid Array | | | I/O | Input/Output | | | JEDEC | Joint Electron Devices Engineering Council | | | JTAG | Joint Test Action Group | | | ŌĒ | Output Enable | | | SRAM | Static Random Access Memory | | | TAP | Test Access Port | | | TCK | Test Clock | | | TDI | Test Data-In | | | TDO | Test Data-Out | | | TMS | Test Mode Select | | | TTL | Transistor-Transistor Logic | | # **Document Conventions** ## **Units of Measure** Table 3. Units of Measure | Symbol | Unit of Measure | | |--------|-----------------|--| | °C | degree Celsius | | | MHz | megahertz | | | μΑ | microampere | | | mA | milliampere | | | mm | millimeter | | | ms | millisecond | | | mV | millivolt | | | ns | nanosecond | | | Ω | ohm | | | % | percent | | | pF | picofarad | | | V | volt | | | W | watt | | # **Document History Page** | | Document Title: CY7C1441KV25, 36-Mbit (1M × 36) Flow-Through SRAM
Document Number: 001-94722 | | | | |----------|---|--------------------|--------------------|---| | Revision | ECN | Orig. of
Change | Submission
Date | Description of Change | | *B | 4680529 | PRIT | 04/10/2015 | Changed status from Preliminary to Final. | | *C | 4757974 | DEVM | 05/07/2015 | Updated Functional Overview: Updated ZZ Mode Electrical Characteristics: Changed maximum value of I _{DDZZ} parameter from 89 mA to 75 mA. | | *D | 5333501 | PRIT | 07/01/2016 | Updated Truth Table. Updated Neutron Soft Error Immunity: Updated values in "Typ" and "Max" columns corresponding to LSBU parameter. Updated to new template. | | *E | 6006641 | AESATMP9 | 01/03/2018 | Updated logo and copyright. | ## Sales, Solutions, and Legal Information ## Worldwide Sales and Design Support Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations. ## **Products** Arm® Cortex® Microcontrollers cypress.com/arm Automotive cypress.com/automotive Clocks & Buffers cypress.com/clocks Interface cypress.com/interface Internet of Things cypress.com/iot Memory cypress.com/memory Microcontrollers cypress.com/mcu **PSoC** cypress.com/psoc Power Management ICs cypress.com/pmic Touch Sensing cypress.com/touch USB Controllers cypress.com/usb Wireless Connectivity cypress.com/wireless ## **PSoC®Solutions** PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP | PSoC 6 MCU ## **Cypress Developer Community** Community | Projects | Video | Blogs | Training | Components ## **Technical Support** cypress.com/support © Cypress Semiconductor Corporation, 2014-2018. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including Spansion LLC ("Cypress"). This document, including any software or firmware included or referenced in this document ("Software"), is owned by Cypress under the intellectual property laws and treaties of the United States and other countries worldwide. Cypress reserves all rights under such laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use of the Software, then Cypress hereby grants you a personal, non-exclusive, nontransferable license (without the right to sublicense) (1) under its copyright rights in the Software (a) for Software provided in source code form, to modify and reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form externally to end users (either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress's patents that are infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for use with Cypress hardware products. Any other use, reproduction, modification, translation, or compilation of the Software is prohibited. TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. No computing device can be absolutely secure. Therefore, despite security measures implemented to Cypress hardware or software products. Cypress does not assume any liability arising out of any security breach, such as unauthorized access to or use of a Cypress product. In addition, the products described in these materials may contain design defects or errors known as errata which may cause the product to deviate from published specifications. To the extent permitted by applicable law, Cypress reserves the right to make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any product or circuit described in this document. Any information provided in this document, including any sample design information or programming code, is provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. Cypress products are not designed, intended, or authorized for use as critical components in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, life-support devices or systems, other medical devices or systems (including resuscitation equipment and surgical implants), pollution control or hazardous substances management, or other uses where the failure of the device or system could cause personal injury, death, or properly damage ("Unintended Uses"). A critical component is any component
of a device or system whose failure to perform can be reasonably expected to cause the failure of the device or system, or to affect its safety or effectiveness. Cypress is not l Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, WICED, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of Cypress in the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners. Document Number: 001-94722 Rev. *E Revised January 3, 2018 Page 29 of 29