EVERLICH

DATASHEET

4 PIN DIP HIGH VOLTAGE PHOTODARLINGTON PHOTOCOUPLER EL852 Series

Features:

- •High collector- emitter voltage (VCEO=350V)
- Current transfer ratio (CTR: 1000% min. at I_F =1mA, V_{CE} =2V)
- High isolation voltage between input
- and output (Viso=5000 V rms)
- Creepage distance >7.62 mm
- Operating temperature up to +100 °C
- Compact small outline package
- Pb free and RoHS compliant.
- UL approved
- VDE approved
- SEMKO approved
- NEMKO approved
- DEMKO approved
- FIMKO approved

Description

The EL852 series consists an infrared emitting diodes, optically coupled to a high voltage photo Darlington detector.

It is packaged in a 4-pin DIP package and available in wide-lead spacing and SMD option.

Applications

- Telephone set, telephone exchangers
- Sequence controllers
- System appliances, measuring instruments
- Signal transmission between circuits of different potentials and impedances

Pin Configuration

- 1. Anode
- 2. Cathode
- 3. Emitter
- 4. Collector

Absolute Maximum Ratings (Ta=25℃)

	Parameter	Symbol	Rating	Unit
Input	Forward current	I _F	60	mA
	Peak forward current (1us, pulse)	I _{FP}	1	А
	Reverse voltage	V _R	6	V
	Power dissipation No derating required up to $Ta = 100 ^{\circ}C$	P _D	100	mW
Output	Power dissipation	D _	300	mW
	Derating factor (above Ta = 80 ℃)	P _C —	5.8	mW/°C
	Collector current	Ι _C	150	mA
	Collector-Emitter voltage	V_{CEO}	350	V
	Emitter-Collector voltage	V_{ECO}	0.1	V
Total power dissipation		P _{TOT}	320	mW
Isolation voltage *1		V _{ISO}	5000	V rms
Operating temperature		T _{OPR}	-55 ~ +100	°C
Storage temperature		T _{STG}	-55 ~ +125	°C
Soldering	Femperature ^{*2}	T _{SOL}	260	°C

Notes:

*1 AC for 1 minute, R.H.= 40 ~ 60% R.H. In this test, pins 1 & 2 are shorted together, and pins 3 & 4 are shorted together.

*2 For 10 seconds

Electro-Optical Characteristics (Ta=25°C unless specified otherwise)

Input						
Parameter	Symbol	Min.	Тур.*	Max.	Unit	Condition
Forward Voltage	V _F	-	1.2	1.4	V	I _F = 10mA
Reverse Current	I _R	-	-	10	μA	$V_R = 4V$
Input capacitance	C _{in}	-	30	250	pF	V = 0, f = 1kHz
Output						
Parameter	Symbol	Min.	Тур.*	Max.	Unit	Condition
Collector-Emitter dark current	I _{CEO}	-	-	200	nA	$V_{CE} = 200V, I_F = 0mA$
Collector-Emitter breakdown voltage	BV_{CEO}	350	-	-	V	I _C = 0.1mA
Emitter-Collector breakdown voltage	BV_{ECO}	0.1	-	-	V	I _E = 0.1mA
Transfer Characteris	tics					
Parameter	Symbol	Min.	Тур.*	Max.	Unit	Condition
Current Transfer ratio	CTR	1000	-	15000	%	$I_{F} = 1 m A$, $V_{CE} = 2 V$
Collector-Emitter saturation voltage	V _{CE(sat)}	-	-	1.2	V	I _F = 20mA ,I _C = 100mA
Isolation resistance	R _{IO}	5×10 ¹⁰	-	-	Ω	V _{IO} = 500Vdc, 40~60% R.H.
Floating capacitance	C _{IO}	-	0.6	1.0	pF	$V_{IO} = 0, f = 1MHz$
Cut-off frequency	fc	-	7	-	kHz	$V_{CE} = 2V$, $I_C = 20mA$ $R_L = 100\Omega$, -3dB
Rise time	t _r	-	-	300	μs	$-V_{CE} = 2V, I_{C} = 20mA,$
Fall time	t _f	-	-	100	μs	$R_L = 100\Omega$

* Typical values at $T_a = 25 \,^{\circ}\text{C}$

Figure 2. Collector Current vs. **Collector Emitter Voltage** Figure 1. Forward Current vs. Forward Voltage 100 100 I_=10mA Collector Current - I_c (mA) 80 Forward Current - I_F (mA) -=5mA 10 I_=3mA 100° 60 **55°**(=2 5mA (MAX) 25°C I_F=2mA -25°(40 -55°C I_=1.5m 1 =1mA 20 0.1 – 0.5 0 0 2 3 4 5 2.0 1.0 1.5 Collector Emitter Voltage - V_{CE} (V) Forward Voltage - V_F (V) Figure 4. Collector-Emitted Saturation Voltage vs. Figure 3. Collector Emitter Saturation Voltage vs. **Forward Current Ambient Temperature** 5.0 **Collector Emitter Saturation Voltage** 1.6 I_c=5mA I_e = 20mA **Collector Emitter Saturation Voltage** 4.5 I_=10mA I_c = 100mA 1.4 4.0 _=30mA 3.5 1.2 3.5 3.0 2.5 2.0 2.0 L=50mA 0.1 (C) 8.0 (E(sat) - N L=70mA I_c=100mA 1.5 0.6 1.0 0.4 0.5 0.0 0.2 -40 100 0 1 2 3 4 5 -20 0 20 40 60 80 120 -60 Forward Current - I_F (mA) Ambient Temperature - T_A (℃) Figure 6. Normalized Current Transfer Ratio vs. **Ambient Temperature** Figure 5. Current Transfer Ratio vs. Forward Current 1.6 3500 Normalized to Normalized Current Transfer Ratio V_{CE}=2V T_A=25℃ I_F=1mA Current Transfer Ratio - CTR (%) 1.4 3000 V_{CE}=2V 1.2 2500 0.8 - CTR(%) 2000 1500 0.6 1000 0.4 500 0.2 L -60 0 -

Typical Electro-Optical Characteristics Curves

4 Copyright © 2010, Everlight All Rights Reserved. Release Date : May 27, 2014. Issue No: DPC-0000056 Rev. 6 www.everlight.com

10

1 Forward Current - I_F (mA) -40

-20

0

20

40

Ambient Temperature - T_A (℃)

60

80

100

120

EVERLIGHT

R_=1KΩ

Frequency - f (kHz)

100

1000

10

Voltage Gain - Av (dB)

-15

-20

-25

1

Order Informatio Part Number

Note

- X = Lead form option (S, S1, M or none)
- Y = Tape and reel option (TA, TB, TU, TD or none).
- V = VDE safety (optional).

Option	Description	Packing quantity
None	Standard DIP-4	100 units per tube
М	Wide lead bend (0.4 inch spacing)	100 units per tube
S (TA)	Surface mount lead form + TA tape & reel option	1000 units per reel
S (TB)	Surface mount lead form + TB tape & reel option	1000 units per reel
S1 (TA)	Surface mount lead form (low profile) + TA tape & reel option	1000 units per reel
S1 (TB)	Surface mount lead form (low profile) + TB tape & reel option	1000 units per reel
S (TU)	Surface mount lead form + TU tape & reel option	1500 units per reel
S (TD)	Surface mount lead form + TD tape & reel option	1500 units per reel
S1 (TU)	Surface mount lead form (low profile) + TU tape & reel option	1500 units per reel
S1 (TD)	Surface mount lead form (low profile) + TD tape & reel option	1500 units per reel

EVERLIGHT

Package Dimension (Dimensions in mm)

Standard DIP Type

Option M Type

Option S Type

Option S1 Type

Recommended pad layout for surface mount leadform

Device Marking

Notes

EL	denotes EVERLIGHT
852	denotes Device Number
Y	denotes 1 digit Year code
WW	denotes 2 digit Week code
V	denotes VDE optional

EVERLIGHT

Tape & Reel Packing Specifications

Tape dimensions

Dimension No.	Α	В	Do	D1	Е	F
Dimension (mm) S	10.5±0.1	4.65±0.1	1.5±0.1	1.50±0.1	1.75±0.1	7.5±0.1
Dimension (mm) S1	10.5±0.1	4.65±0.1	1.5±0.1	1.50±0.1	1.75±0.1	7.5±0.1
Dimension No.	Ро	P1	P2	t	W	К
Dimension No. Dimension (mm) S	Po 4.0±0.1	P1 12.0±0.1	P2 2.0±0.1	t 0.4±0.1	W 16.0±0.3	К 5.05±0.1

Tape & Reel Packing Specifications

Tape dimensions

Dimension No.	Ao	Во	Do	D1	E	F
Dimension (mm) S.S1	4.90±0.1	10.40±0.1	1.5±0.1	1.50±0.1	1.75±0.1	7.50±0.1
Dimension No.	Ро	P1	P2	t	W	Ко
Dimension (mm) S.S1	4.00±0.1	8.00±0.	2.00±0.1	0.40±0.1	16.00±0.3	4.60±0.1

Precautions for Use

- 1. Soldering Condition
 - 1.1 (A) Maximum Body Case Temperature Profile for evaluation of Reflow Profile

Note:

Preheat

Temperature min (T_{smin}) Temperature max (T_{smax}) Time (T_{smin} to T_{smax}) (t_s) Average ramp-up rate (T_{smax} to T_p)

Other

.

Liquidus Temperature (T_L) Time above Liquidus Temperature (t_L) Peak Temperature (T_P) Time within 5 °C of Actual Peak Temperature: $T_P - 5$ °C Ramp- Down Rate from Peak Temperature Time 25 °C to peak temperature Reflow times

Reference: IPC/JEDEC J-STD-020D

150 ℃ 200 ℃ 60-120 seconds 3 ℃/second max

217 ℃ 60-100 sec 260 ℃ 30 s 6 ℃ /second max. 8 minutes max. 3 times

DISCLAIMER

- 1. Above specification may be changed without notice. EVERLIGHT will reserve authority on material change for above specification.
- 2. When using this product, please observe the absolute maximum ratings and the instructions for using outlined in these specification sheets. EVERLIGHT assumes no responsibility for any damage resulting from use of the product which does not comply with the absolute maximum ratings and the instructions included in these specification sheets.
- 3. These specification sheets include materials protected under copyright of EVERLIGHT corporation. Please don't reproduce or cause anyone to reproduce them without EVERLIGHT's consent.