ATC 100 C Series Porcelain High RF Power Multilayer Capacitors

- Case C Size (.250" x .250")
- Capacitance Range 1 pF to 2700 pF
- High Q
- Low ESR/ESL
- Ultra-Stable Performance
- High RF Current/Voltage
- High RF Power
- High Reliability
- Available with Encapsulation Option*
- Extended WVDC up to 3600 VDC

ATC, the industry leader, offers new improved ESR/ESL performance for the 100 C Series RF Capacitors. This high Q multilayer capacitor is ultra-stable under high RF current and voltage applications. High density Porcelain construction provides a rugged, hermetic package.

ATC offers an encapsulation option for applications requiring extended protection against arc-over and corona.

Typical functional applications: Bypass, Coupling, Tuning, Impedance Matching and DC Blocking.

Typical circuit applications: VHF/UHF RF Power Amplifiers, Antenna Tuning, Plasma Chambers and Medical (MRI coils). *For leaded styles only.

ENVIRONMENTAL TESTS

ATC 100 C Series Capacitors are designed and manufactured to meet and exceed the requirements of EIA-198, MIL-PRF-55681 and MIL-PRF-123.

THERMAL SHOCK:

MIL-STD-202, Method 107, Condition A.

MOISTURE RESISTANCE:

MIL-STD-202, Method 106.

LOW VOLTAGE HUMIDITY:

MIL-STD-202, Method 103, Condition A, with 1.5 Volts DC applied while subjected to an environment of 85°C with 85% relative

humidity for 240 hours min.

LIFE TEST:

MIL-STD-202, Method 108, for 2000 hours, at 125°C. Voltage applied.

200% of WVDC for capacitors rated at 500 volts DC or less. 120% of WVDC for capacitors rated at 1250 volts DC or less. 100% of WVDC for capacitors rated above 1250 volts DC.

ELECTRICAL AND MECHANICAL SPECIFICATIONS

QUALITY FACTOR (Q):

Greater than 10,000 (1.0 pF to 1000 pF) @ 1 MHz. Greater than 10,000 (1100 pF to 2700 pF) @ 1 KHz.

TEMPERATURE COEFFICIENT OF CAPACITANCE (TCC):

+90 ±30 PPM/°C (-55°C to +125°C)

INSULATION RESISTANCE (IR):

 pF to 2700 pF: 10⁵ Megohms min. @ +25°C at rated WVDC. 10⁴ Megohms min. @ +125°C at rated WVDC. Max. test voltage is 500 VDC.

WORKING VOLTAGE (WVDC): See Capacitance Values Table, p 2.

DIELECTRIC WITHSTANDING VOLTAGE (DWV):

250% of WVDC for capacitors rated at 500 volts DC or less for 5 seconds. 150% of WVDC for capacitors rated at 1250 volts DC or less for 5 seconds. 120% of WVDC for capacitors rated above 1250 volts DC for 5 seconds.

RETRACE: Less than ±(0.02% or 0.02 pF), whichever is greater.

AGING EFFECTS: None

PIEZOELECTRIC EFFECTS: None

(No capacitance variation with voltage or pressure).

CAPACITANCE DRIFT: ±(0.02% or 0.02 pF), whichever is greater.

OPERATING TEMPERATURE RANGE:

From -55°C to +125°C (No derating of working voltage).

TERMINATION STYLES:

Available in various surface mount and leaded styles. See Mechanical Configurations, page 3.

TERMINAL STRENGTH: Terminations for chips and pellets withstand a pull of 10 lbs. min., 20 lbs. typical, for 5 seconds in direction perpendicular to the termination surface of the capacitor. Test per MIL-STD-202, method 211.

AMERICAN

ATC North America sales@atceramics.com TECHNICAL ATC Europe saleseur@atceramics.com CERAMICS

ATC Asia sales@atceramics-asia.com

THE ENGINEERS' CHOICE™

www.atceramics.com

ATC 100 C Capacitance Values

CAP.	CAP.	TOL.	RATED	WVDC	CAP.	CAP.	TOL.	RATED	WVDC	CAP.	CAP.	TOL.	RATED	WVDC	CAP.	CAP.	TOL.	RATED	WVDC
CODE	(pF)	TUL.	STD.	EXT.	CODE-	(pF)	TUL.	STD.	EXT.	CODE	(pF)	TUL.	STD.	EXT.	CODE	(pF)	TUL.	STD.	EXT.
1R0	1.0				5R1	5.1				390	39				301	300			
1R1	1.1			ЗE	5R6	5.6			ЗE	430	43				331	330			1.10Λ
1R2	1.2			TA(6R2	6.2			TAC	470	47			Ë	361	360			
1R3	1.3			VOLTAGE	6R8	6.8	B, C,		VOLTAGE	510	51			TAG	391	390		1500	2000
1R4	1.4				7R5	7.5	D			560	56			VOLTAGE	431	430			EXT.
1R5	1.5			DEL	8R2	8.2			DEL	620	62			3600	471	470			Ē
1R6	1.6			EXTENDED	9R1	9.1			EXTENDED	680	68				511	510			
1R7	1.7			EXI	100	10		1	EXI	750	75			EXTENDED	561	560			
1R8	1.8				110	11				820	82			TEI	621	620			4 <i>GE</i>
1R9	1.9				120	12				910	91	F, G, J		ΕX	681	680	F, G, J		VOLTAGE
2R0	2.0	B, C, D	2500	3600	130	13		2500	3600	101	100	K, M	2500		751	750	K, M		
2R1	2.1				150	15				111	110	IX, IVI			821	820	IX, IVI	1000	1500
2R2	2.2			1	160	16				121	120			GE	911	910			DED
2R4	2.4			VOLTAGE	180	18			VOLTAGE	131	130			VOLTAGE	102	1000			EXTENDED
2R7	2.7			170	200	20			170	151	150			NO	112	1100			EXT
3R0	3.0			M	220	22	F, G, J		М	161	160			3000	122	1200			
3R3	3.3			ED	240	24	К, М		ED	181	180			9	152	1500		500	800
3R6	3.6			IND	270	27			ON:	201	200			IDE	182	1800	,	500	000
3R9	3.9			EXTENDED	300	30			EXTENDED	221	220			EXTENDED	222	2200			
4R3	4.3			E.	330	33			Ē	241	240			EX	242	2400		300	500
4R7	4.7				360	36				271	270				272	2700		500	300

VRMS = 0.707 x WVDC

• SPECIAL VALUES, TOLERANCES, HIGHER WVDC AND MATCHING AVAILABLE. • ENCAPSULATION OPTION AVAILABLE. PLEASE CONSULT FACTORY.

www.atceramics.com

ATC 100 C Capacitors: Mechanical Configurations

ATC Series	ATC	CASE SIZE	OUTLINES		DY DIMENSIO Inches (MM)		LEAD AND TERMINATION DIMENSIONS AND MATERIALS			
& CASE SIZE	TERM. CODE	& TYPE	W/T IS A Termination Surface	LENGTH (L)			OVERLAP (Y)	MATERIAL		
100C	W	C Solder Plate	$\begin{array}{c c} Y \rightarrow \parallel \leftarrow & \downarrow \\ & & \\ & & \\ & & \\ & \rightarrow \parallel & L & \leftarrow \uparrow \rightarrow \mid \top \mid \leftarrow \end{array}$.230 +.020010 (5.84 +0.51 -0.25)				Tin / Lead, Solder Plated over Nickel Barrier Termination		
100C	Ρ	C Pellet	$\begin{array}{c} Y \rightarrow \parallel \leftarrow & \downarrow \\ & & \\ & & \\ & & \\ & & \\ & \rightarrow \mid L \mid \leftarrow \uparrow \rightarrow \mid \top \mid \leftarrow \end{array}$.230 +.025010 (5.84 +0.64 -0.25)			.040 (1.02)	Heavy Tin/Lead Coated, over Nickel Barrier Termination		
100C	Т	C Solderable Nickel Barrier	$\begin{array}{c} Y \rightarrow \leftarrow & \downarrow \\ & & \\ & & \\ & & \\ & & \\ & \rightarrow \ L \ \leftarrow \uparrow \rightarrow \ T \ \leftarrow \end{array}$.230 +.020010 (5.84 +0.51 -0.25)	-		max.	RoHS Compliant Tin Plated over Nickel Barrier Termination		
100C	CA	C Gold Chip	$\begin{array}{c} Y \rightarrow \bullet - & - \downarrow \\ \hline \\ \hline \\ \rightarrow & L & \bullet - \uparrow \rightarrow \top \bullet - \end{array}$.230 +.020010 (5.84 +0.51 -0.25)		.145 (3.68) max. for ca- pacitance val-		RoHS Compliant Gold Plated over Nickel Barrier Termination		
100C	MS	C Microstrip	$\begin{array}{c c} & & & & \\ \downarrow & & & \downarrow \\ \hline W_L \\ \hline W_L \\ \uparrow & & \downarrow \\ \hline \uparrow & \downarrow \\ L \\ \hline \uparrow & \downarrow \\ L \\ \hline \end{array} \begin{array}{c} \downarrow \\ \downarrow $.250 ±.015 (6.35 ±0.38)	ues ≤ 680 pF; .165 (4.19) max. for ca- pacitance val-		High Purity Silver Leads L _L = .500 (12.7) min. W _L = .240 ±.005		
100C	AR	C Axial Ribbon	$ \begin{array}{c c} \rightarrow & L_L & \leftarrow \\ \hline \\ \hline \\ \hline \\ \rightarrow & L & \leftarrow \\ \end{array} \begin{array}{c} \psi \\ \psi \\ \hline \\$			ues > 680 pF.		(6.10 ±.127) T _L = .004 ±.001 (.102 ±.025) Leads are Attached with High Temperature Solder.		
100C	AW	C Axial Wire	$\rightarrow L \leftarrow \psi $.245 ±.025 (6.22 ±0.64)					N/A	Silver-plated Copper Leads LL = 2.25 (57.15) min. Dia. = .032 ±.002 (0.81 ±0.05)
100C	VA	C Vertical Axial Ribbon	$ \begin{array}{c c} & \rightarrow \mid L_{L} \mid \leftarrow & \underbrace{\downarrow} \rightarrow \mid W_{L} \mid \leftarrow \\ \hline & & & \\ \hline \rightarrow \mid L \mid \leftarrow & & \underbrace{\uparrow} \rightarrow \mid T \mid \leftarrow \\ \end{array} $					Silver Leads $L_L = .500 (12.7) \text{ min.}$ $W_L = * * \text{ See below}$ $T_L = .004 \pm .001 (.102 \pm .025)$		
100C	RW	C Radial Wire	$\rightarrow L_{L} \leftarrow$ $\rightarrow L_{L} \leftarrow$ \uparrow \uparrow \downarrow					Silver-plated Copper Leads L _L = 1.0 (25.4) min. Dia. = .032 ±.002 (0.81 ±0.05)		

Custom lead styles and lengths are available; consult factory. All leads are high purity silver attached with high temperature solder and are **RoHS** compliant. ** W_L = .110 (2.79) for capacitance values \leq 680 pF; W_L = .130 (3.30) for capacitance values > 680 pF

> A M E R I C A N ATC North America

sales@atceramics.com

T E C H N I C A L ATC Europe saleseur@atceramics.com C E R A M I C S ATC Asia sales@atceramics-asia.com

ATC 100 C Capacitors: Non-Magnetic Mechanical Configurations

ATC SERIES	ATC TERM.	CASE SIZE	OUTLINES	BO	DY DIMENSIO INCHES (mm)		LEAD AND TERMINATION DIMENSIONS AND MATERIALS		
& CASE Size	CODE	& TYPE	W/T IS A Termination Surface	LENGTH (L)	WIDTH (W)	THICKNESS (T)	OVERLAP (Y)	MATERIALS	
100C	WN	C Non-Mag Solder Plate	$\begin{array}{c c} Y \rightarrow \leftarrow & \downarrow \\ & & \\ & & \\ & & \\ & \downarrow \\ & & \\ & \rightarrow \ L \ \leftarrow \uparrow \rightarrow \ T \ \leftarrow \end{array}$.230 +.025010 (5.84 +0.64 -0.25)				Tin/Lead, Solder Plated over Non-Magnetic Barrier Termination	
100C	PN	C Non-Mag Pellet	$\begin{array}{c c} Y \rightarrow \leftarrow & \downarrow \\ & & \\ & & \\ & & \\ & \downarrow \\ & & \\ & \rightarrow \ L \ \leftarrow \uparrow \rightarrow \ \top \ \leftarrow \end{array}$.230 +.035010 (5.84 +0.89 -0.25)	.250 ±.015	-	.040 (1.02) max.	Heavy Tin/Lead Coated, over Non-Magnetic Barrier Termination	
100C	TN	C Non-Mag Solderable Barrier	$\begin{array}{c c} Y \rightarrow \parallel \leftarrow & \downarrow \\ & & \\ & & \\ & & \\ & \rightarrow \parallel L & \downarrow \leftarrow \uparrow \rightarrow \parallel \top \mid \leftarrow \end{array}$.230 +.025010 (5.84 +0.64 -0.25)	(6.35 ±0.38)			RoHS Compliant Tin Plated over Non-Magnetic Barrier Termination	
100C	MN	C Non-Mag Microstrip	$\begin{array}{c c} & \rightarrow & L_{L} & \downarrow & \neg \\ \downarrow & \rightarrow & \downarrow & \downarrow & \downarrow & \downarrow \\ \hline W_{L} & & & & & \\ \hline W_{L} & & & & & \\ \hline \uparrow & \rightarrow & L & \downarrow & & \uparrow & \uparrow & \uparrow & \downarrow \\ \hline \end{array}$	(6.22 ± 0.64)				$\begin{array}{l} \mbox{High Purity Silver Leads} \\ \mbox{L}_{L} = .500 \ (12.7) \ \mbox{min.} \\ \mbox{W}_{L} = .240 \ \pm .005 \ (6.10 \ \pm .127) \\ \mbox{T}_{L} = .004 \ \pm .001 \ (.102 \ \pm .025) \\ \mbox{Leads are Attached with} \\ \mbox{High Temperature Solder.} \end{array}$	

Custom lead styles and lengths are available; consult factory. All leads are high purity silver attached with high temperature solder and are RoHS compliant.

Suggested Mounting Pad Dimensions

AMERICAN ATC North America

sales@atceramics.com

ΤΕСΗΝΙСΑΙ ATC Europe saleseur@atceramics.com

CERAMICS ATC Asia sales@atceramics-asia.com

AMERICAN ΤΕСΗΝΙСΑΙ **ATC North America** ATC Europe

ATC Asia sales@atceramics-asia.com

ERAMICS

С

TEMPERATURE (Degrees C)

saleseur@atceramics.com www.atceramics.com

sales@atceramics.com

Sales of ATC products are subject to the terms and conditions contained in American Technical Ceramics Corp. Terms and Conditions of Sale (ATC document #001-992 Rev. B; 12/05). Copies of these terms and conditions will be provided upon request. They may also be viewed on ATC's website at www.atceramics.com/productfinder/default.asp. Click on the link for Terms and Conditions of Sale.

ATC has made every effort to have this information as accurate as possible. However, no responsibility is assumed by ATC for its use, nor for any infringements of rights of third parties which may result from its use. ATC reserves the right to revise the content or modify its product without prior notice.

© 1996 American Technical Ceramics Corp. All Rights Reserved.

ATC # 001-808 Rev. M 1/17

THE ENGINEERS' CHOICE™

Technical

ATC Europe saleseur@atceramics.com **CERAMICS** ATC Asia sales@atceramics-asia.com

www.atceramics.com

