

Sensor Plotting with Mu and CircuitPython

Created by Kattni Rembor

https://learn.adafruit.com/sensor-plotting-with-mu-and-circuitpython

Last updated on 2022-12-01 03:11:45 PM EST

©Adafruit Industries Page 1 of 25

3

4

6

7

9

11

13

15

17

21

Table of Contents

Light

Temperature

Buttons and Switch

Motion

Sound

Capacitive Touch

Potentiometer

Color

Heartbeat Pulse

Soil Moisture

©Adafruit Industries Page 2 of 25

Light

We're going to use CircuitPython, Mu, and the light sensor on Circuit Playground

Express to plot light levels. We have a simple nine-line piece of code below. We'll run

this code on our Circuit Playground Express and use Mu to plot the sensor data that

CircuitPython prints out.

Visit our Welcome to CircuitPython

page to learn how to install the Mu

editor & plotter

Save the following as code.py on your Circuit Playground Express board, using the

Mu editor:

SPDX-FileCopyrightText: 2018 Phillip Torrone for Adafruit Industries

#

SPDX-License-Identifier: MIT

import time

import analogio

import board

light = analogio.AnalogIn(board.LIGHT)

while True:

 print((light.value,))

 time.sleep(0.1)

On the first few lines we import analogio , board and time , and setup our light

sensor. Inside our while loop, we are print() -ing the light level. The

time.sleep() is to keep from spamming the results - if they're too fast, they get

difficult to read!

Note that the Mu plotter looks for tuple values to print. Tuples in Python come in

parentheses () with comma separators. If you have two values, a tuple would look like

(1.0, 3.14) Since we have only one value, we need to have it print out like (1.0,

) note the parentheses around the number, and the comma after the number. Thus

the extra parentheses and comma in print((light.value,)) .

Once you have everything setup and running, try placing your hand over the Circuit

Playground Express, and watch the plotter immediately react! When you block the

light from reaching the CPX, the graphing plotter line goes down. If you shine a

flashlight on it to add more light, the plotter goes up!

©Adafruit Industries Page 3 of 25

https://learn.adafruit.com/welcome-to-circuitpython/installing-mu-editor

It's a really easy way to test out your sensors and get a feeling for analog reads in

CircuitPython!

Note you can have the text REPL on the left and resize the plotter to be big and on

the right like above. That way you see the numbers and the graph at the same time.

The plotter will automatically re-scale depending on light levels.

Temperature

We're going to use CircuitPython, Mu and the temperature sensor built into the Circuit

Playground Express to plot temperature change. We'll run this code on our Circuit

Playground Express and use Mu to plot the sensor data that CircuitPython prints out.

Visit our Welcome to CircuitPython

page to learn how to install the Mu

editor & plotter

Save the following as code.py on your Circuit Playground Express board, using the

Mu editor:

SPDX-FileCopyrightText: 2018 Kattni Rembor for Adafruit Industries

#

SPDX-License-Identifier: MIT

import time

import adafruit_thermistor

import board

thermistor = adafruit_thermistor.Thermistor(

 board.TEMPERATURE, 10000, 10000, 25, 3950)

while True:

 print((thermistor.temperature,))

©Adafruit Industries Page 4 of 25

https://learn.adafruit.com/welcome-to-circuitpython/installing-mu-editor

 # print(((thermistor.temperature * 9 / 5 + 32),)) # Fahrenheit

 time.sleep(0.25)

Our code is quite simple. We import adafruit_thermistor , board and time .

Then we setup our temperature sensor. Inside our while loop, we print the

temperature in Celsius.

If you'd like to see Fahrenheit instead, place a # (# + space) before the line

print((thermistor.temperature,)) and remove the # before the line print(

((thermistor.temperature * 9 / 5 + 32),)) . The temperature is in Celsius by

default, so we include a little math (the * 9 / 5 + 32) to convert it to Fahrenheit.

Note that the Mu plotter looks for tuple values to print. Tuples in Python come in

parentheses () with comma separators. If you have two values, a tuple would look like

(1.0, 3.14) . Since we have only one value, we need to have it print out like (1.0,

) note the parentheses around the number, and the comma after the number. Thus

the extra parentheses and comma in print((thermistor.temperature,)) .

Once you have everything loaded and running, you can place your finger over the

temperature sensor to see the plotter immediately respond! Try breathing on your

CPX temperature sensor to increase the temperature and watch the plotter go up! Try

setting it on a cool surface to watch the plotter go down!

This is a great way to tell the temperature and plot temperature changes in Celsius (or

Fahrenheit).

©Adafruit Industries Page 5 of 25

Buttons and Switch

We're going to use CircuitPython, Mu, and the two buttons and one switch on Circuit

Playground Express to plot button presses and the switch location. We'll run this code

on our Circuit Playground Express and use Mu to plot the data that CircuitPython

prints out.

Visit our Welcome to CircuitPython

page to learn how to install the Mu

editor & plotter

Save the following as code.py on your Circuit Playground Express board, using the

Mu editor:

SPDX-FileCopyrightText: 2018 Kattni Rembor for Adafruit Industries

#

SPDX-License-Identifier: MIT

import time

import board

import digitalio

button_a = digitalio.DigitalInOut(board.BUTTON_A)

button_a.direction = digitalio.Direction.INPUT

button_a.pull = digitalio.Pull.DOWN

button_b = digitalio.DigitalInOut(board.BUTTON_B)

button_b.direction = digitalio.Direction.INPUT

button_b.pull = digitalio.Pull.DOWN

switch = digitalio.DigitalInOut(board.SLIDE_SWITCH)

switch.direction = digitalio.Direction.INPUT

switch.pull = digitalio.Pull.UP

while True:

 if button_a.value:

 print((1,))

 elif button_b.value:

 print((2,))

 elif switch.value:

 print((-1,))

 else:

 print((0,))

 time.sleep(0.1)

Our code is very simple. First we import digitalio , board and time . Then, we

create the button_a , button_b and switch objects.

Our main loop consists of if , elif , and else statements. An elif statement

says "otherwise, if" something happens, do a thing. An else statement says

"otherwise do" a thing regardless of what is happening. So, our main loop reads: if

©Adafruit Industries Page 6 of 25

https://learn.adafruit.com/welcome-to-circuitpython/installing-mu-editor

button A is pressed, print 1, otherwise, if button B is pressed, print 2, otherwise,

if the switch is moved to the right, print -1, otherwise print 0. Therefore, it will pr

int 0 until you press a button or move the switch. Then we have a time.sleep(0.1

) to keep from spamming the results - if they move too quickly they're difficult to

read!

Note that the Mu plotter looks for tuple values to print. Tuples in Python come in

parentheses () with comma separators. If you have two values, a tuple would look

like (1.0, 3.14) Since we have only one value, we need to have it print out like (1

.0,) note the parentheses around the number, and the comma after the number.

Thus the extra parentheses and comma in print((1,)) , print((2,)) , etc.

Once you have everything setup and running, try pressing one of the buttons on the

Circuit Playground Express, and watch the plotter immediately react! When you press

button A or button B, the plotter line goes up. If you move the switch to the right, the

plotter line goes up!

This is a great way to test the buttons and switch on the Circuit Playground Express

and plot different numbers simply by printing them!

Motion

We're going to use CircuitPython, Mu and the accelerometer built into the Circuit

Playground Express to plot motion. We'll run this code on our Circuit Playground

Express and use Mu to plot the motion data that CircuitPython prints out.

Visit our Welcome to CircuitPython

page to learn how to install the Mu

editor & plotter

©Adafruit Industries Page 7 of 25

https://learn.adafruit.com/welcome-to-circuitpython/installing-mu-editor

Save the following as code.py on your Circuit Playground Express board, using the

Mu editor:

SPDX-FileCopyrightText: 2018 Kattni Rembor for Adafruit Industries

#

SPDX-License-Identifier: MIT

import time

import board

import adafruit_lis3dh

import busio

i2c = busio.I2C(board.ACCELEROMETER_SCL, board.ACCELEROMETER_SDA)

lis3dh = adafruit_lis3dh.LIS3DH_I2C(i2c, address=0x19)

lis3dh.range = adafruit_lis3dh.RANGE_8_G

while True:

 x, y, z = lis3dh.acceleration

 print((x, y, z))

 time.sleep(0.1)

Our code is really simple. We import time , board , adafruit_lis3dh , and busio .

Then we setup the accelerometer. Inside our while loop, we assign x, y, z to be

the motion values. Then we print our motion values. The time.sleep(0.1) slows

down the readings a little - without it they're too fast to read!

Note that the Mu plotter looks for tuple values to print. Tuples in Python come in

parentheses () with comma separators. If you have two values, a tuple would look like

(1.0, 3.14) . We have three values, (x, y, z) , and note that the tuple itself has

its own parentheses. Thus the extra parentheses in print((x, y, z)) .

Once you have everything up and running, try moving the board around to see the

plotter respond immediately! The accelerometer is in the center of the board, and

depending on which axis you move the board around, the x, y or z values will change.

Try moving it only one direction to watch a single value change! Try shaking it all

around to see all the values change significantly!

This is a great way to see the motion values and plot the motion as you move the

board!

©Adafruit Industries Page 8 of 25

Sound

We're going to use CircuitPython, Mu and the sound sensor built into the Circuit

Playground Express to plot sound levels. We'll run this code on our Circuit Playground

Express and use Mu to plot the sensor data that CircuitPython prints out.

Visit our Welcome to CircuitPython

page to learn how to install the Mu

editor & plotter

Save the following as code.py on your Circuit Playground Express board, using the

Mu editor:

SPDX-FileCopyrightText: 2018 Kattni Rembor for Adafruit Industries

#

SPDX-License-Identifier: MIT

import array

import math

import time

import audiobusio

import board

def mean(values):

 return sum(values) / len(values)

def normalized_rms(values):

 minbuf = int(mean(values))

 sum_of_samples = sum(

 float(sample - minbuf) * (sample - minbuf)

 for sample in values

©Adafruit Industries Page 9 of 25

https://learn.adafruit.com/welcome-to-circuitpython/installing-mu-editor

)

 return math.sqrt(sum_of_samples / len(values))

mic = audiobusio.PDMIn(

 board.MICROPHONE_CLOCK,

 board.MICROPHONE_DATA,

 sample_rate=16000,

 bit_depth=16

)

samples = array.array('H', [0] * 160)

mic.record(samples, len(samples))

while True:

 mic.record(samples, len(samples))

 magnitude = normalized_rms(samples)

 print(((magnitude),))

 time.sleep(0.1)

Let's look at the code!

First we import audiobusio , time , board , array and math . Then we have two

helper functions. The first one uses math to return a mean, or average. It is used in

the second helper. The second one uses math to return a normalised rms average ().

We use these functions to take multiple sound samples really quickly and average

them to get a more accurate reading.

Next we set up the microphone object and our samples variable. Then we initialise

the mic object so it's ready when we are.

Then we use the mic object to start taking sound samples. We use our normalised rms

to find the average of a given set of samples, and we call that the magnitude . Last,

we print the magnitude to the serial console.

Note that the Mu plotter looks for tuple values to print. Tuples in Python come in

parentheses () with comma separators. If you have two values, a tuple would look like

(1.0, 3.14) Since we have only one value, we need to have it print out like (1.0,

) note the parentheses around the number, and the comma after the number. Thus

the extra parentheses and comma in print(((magnitude),)) .

Once you have everything setup and running, try speaking towards the Circuit

Playground Express, and watch the plotter immediately react! Move further away from

the board to cause smaller changes in the plotter line. Move closer to the board to

see bigger spikes!

It's a really easy way to test your microphone and see how it reads sound changes on

the Circuit Playground Express!

©Adafruit Industries Page 10 of 25

https://en.wikipedia.org/wiki/Root_mean_square

Capacitive Touch

We're going to use CircuitPython, Mu and the capacitive touch pads built into the

Circuit Playground Express to plot the raw capacitive touch values. We'll run this code

on our Circuit Playground Express and use Mu to plot the capacitive touch data that

CircuitPython prints out.

Visit our Welcome to CircuitPython

page to learn how to install the Mu

editor & plotter

Save the following as code.py on your Circuit Playground Express board, using the

Mu editor:

SPDX-FileCopyrightText: 2018 Kattni Rembor for Adafruit Industries

#

SPDX-License-Identifier: MIT

import time

import board

import touchio

touch_A1 = touchio.TouchIn(board.A1)

touch_A2 = touchio.TouchIn(board.A2)

touch_A5 = touchio.TouchIn(board.A5)

touch_A6 = touchio.TouchIn(board.A6)

while True:

 value_A1 = touch_A1.raw_value

 value_A2 = touch_A2.raw_value

 value_A5 = touch_A5.raw_value

©Adafruit Industries Page 11 of 25

https://learn.adafruit.com/welcome-to-circuitpython/installing-mu-editor

 value_A6 = touch_A6.raw_value

 print((value_A1, value_A2, value_A5, value_A6))

 time.sleep(0.1)

Our code is fairly simple. First we import time , touchio and board . Next, we setup

four touch pads, A1, A2, A5 and A6. Inside our while loop, we assign value_PadNam

e to the raw_value for each pad, e.g. value_A1 = touch_A1.raw_value , etc.

Then we print those values in a tuple. And last, we have a time.sleep(0.1) to

slow down the reading of the values - if it's too fast, it's really hard to read!

Note that the Mu plotter looks for tuple values to print. Tuples in Python come in

parentheses () with comma separators. If you have two values, a tuple would look like

(1.0, 3.14) . We have four values, (value_A1, value_A2, value_A5,

value_A6) , and note that the tuple itself has its own parentheses. Thus the extra

parentheses in print((value_A1, value_A2, value_A5, value_A6)) .

Once you have everything up and running, try touching any of the four pads, A1, A2,

A5 or A6 to see the plotter respond immediately! Try touching only one pad to see of

the four lines in the plotter go up. Try touching more than one pad at once to see

multiple lines move. The harder you touch the pad, the higher the plotter line will go!

This is a great way to test your capacitive touch pads and plot the changes as you

touch different pads!

©Adafruit Industries Page 12 of 25

Potentiometer

We're going to use CircuitPython, Mu, and a potentiometer with Circuit Playground

Express to plot voltage levels. We'll run this code on our Circuit Playground Express

and use Mu to plot the voltage data that CircuitPython prints out.

Visit our Welcome to CircuitPython

page to learn how to install the Mu

editor & plotter

First, let's get the potentiometer attached to your Circuit Playground Express!

To connect the potentiometer to the

Circuit Playground Express:

Connect the left pin on the potentiometer

to GND on the Circuit Playground Express.

Connect the middle pin on the

potentiometer to A1 on the Circuit

Playground Express.

Connect the right pin on the potentiometer

to 3.3V on the Circuit Playground Express.

Save the following as code.py on your Circuit Playground Express board, using the

Mu editor:

SPDX-FileCopyrightText: 2018 Kattni Rembor for Adafruit Industries

#

SPDX-License-Identifier: MIT

import time

import analogio

import board

potentiometer = analogio.AnalogIn(board.A1)

def get_voltage(pin):

 return (pin.value * 3.3) / 65536

while True:

 print((get_voltage(potentiometer),))

 time.sleep(0.1)

Let's take a look at the code!

©Adafruit Industries Page 13 of 25

https://learn.adafruit.com/welcome-to-circuitpython/installing-mu-editor
https://learn.adafruit.com//assets/53346
https://learn.adafruit.com//assets/53346

First we import time , analogio and board . Next we create the potentiometer

object and assign it to pin A1 .

Then we have the get_voltage() helper function. By default, analog readings will

range from 0 (minimum) to 65535 (maximum). This helper will convert the 0-65535

reading from pin.value and convert it a 0-3.3V voltage reading.

Our main loop is super simple. Inside our print statement, we call the get_voltage

() helper and provide it with the potentiometer object. Then we have a time.sle

ep(0.1) to slow down the printed results - otherwise they'd be too fast to read!

Note that the Mu plotter looks for tuple values to print. Tuples in Python come in

parentheses () with comma separators. If you have two values, a tuple would look

like (1.0, 3.14) Since we have only one value, we need to have it print out like (1

.0,) note the parentheses around the number, and the comma after the number.

Thus the extra parentheses and comma in

print((get_voltage(potentiometer),)) .

Once you have everything setup and running, try rotating the potentiometer knob

attached the Circuit Playground Express, and watch the plotter immediately react!

Rotate to the left to watch the plotter go down. Rotate to the right to watch it go up!

This is a great way to see the voltage changes resulting from using a potentiometer,

and plot the changes as you move the knob!

©Adafruit Industries Page 14 of 25

Color

We're going to use CircuitPython, Mu, and the light sensor on Circuit Playground

Express to plot color levels. We'll run this code on our Circuit Playground Express and

use Mu to plot the color data that CircuitPython prints out.

Visit our Welcome to CircuitPython

page to learn how to install the Mu

editor & plotter

Save the following as code.py on your Circuit Playground Express board, using the

Mu editor:

SPDX-FileCopyrightText: 2018 Kattni Rembor for Adafruit Industries

#

SPDX-License-Identifier: MIT

import analogio

import board

import neopixel

pixels = neopixel.NeoPixel(board.NEOPIXEL, 10, brightness=1.0)

light = analogio.AnalogIn(board.LIGHT)

while True:

 pixels.fill((0, 0, 0))

 pixels[1] = (255, 0, 0)

 raw_red = light.value

 red = int(raw_red * (255 / 65535))

 pixels[1] = (0, 255, 0)

 raw_green = light.value

 green = int(raw_green * (255 / 65535))

 pixels[1] = (0, 0, 255)

 raw_blue = light.value

 blue = int(raw_blue * (255 / 65535))

 pixels.fill((0, 0, 0))

 # Printed to match the color lines on the Mu plotter!

 # The orange line represents red.

 print((green, blue, red))

Let's take a look at the code!

First we import neopixel , analogio , time and board . Next, we create the pixel

s object for the NeoPixels and the light object for the light sensor.

LED colors are set using a combination of red, green, and blue, in the form of an (R, G,

B) tuple. Each member of the tuple is set to a number between 0 and 255 that

determines the amount of each color present. Red, green and blue in different

©Adafruit Industries Page 15 of 25

https://learn.adafruit.com/welcome-to-circuitpython/installing-mu-editor

combinations can create all the colors in the rainbow! So, for example, to set the LED

to red, the tuple would be (255, 0, 0), which has the maximum level of red, and no

green or blue. Green would be (0, 255, 0), etc. For the colors between, you set a

combination, such as cyan which is (0, 255, 255), with equal amounts of green and

blue.

The light sensor works as a color sensor by using the NeoPixel next to it (pixel 1) to

flash red, green and blue, and then record the reflected light levels of each color to

determine the color of the object being held against it. So, inside our main loop, we

need to flash red, green and blue, record the reflected light levels, and then use math

to determine the level of each color.

The first thing we do in our main loop is make sure the NeoPixels are off with

pixels.fill((0, 0, 0)) . Next, we begin with red. We flash pixel[1] red by

assigning it (255, 0, 0) , for 0.5 seconds. Then we grab the light sensor value

and assign it to raw_red .

The light sensor returns a value between 0 and 65535. Since color values are 0-255,

we need to use math to scale the raw light sensor value down to a viable color value.

So, to get our red value, we use red = int(raw_red * (255/65535)) . This takes

whatever value the light sensor provides, and returns an equivalent value between 0

and 255. Now we have our red level!

We repeat the exact same steps for green, and then for blue.

The last thing we do, is print our red , green and blue values in the form of a

tuple, so we can see them on the plotter! We've changed the order a bit to

print((green, blue, red)) so the color of the lines on the plotter match the

colors they represent: green for green, blue for blue and orange for red.

Once you have everything setup and running, try holding a colored item up to the

light sensor on the Circuit Playground Express, and watch the plotter immediately

react! Hold up a green item to watch the green line go higher than the blue or red.

Hold up a red item and watch the orange line go higher than the green or the blue!

This is a great way to see color levels sense using the light sensor, and plot the

changes as you hold up different colors!

©Adafruit Industries Page 16 of 25

Heartbeat Pulse

We're going to use CircuitPython, Mu, and the light sensor on Circuit Playground

Express to plot pulse sensing. We'll run this code on our Circuit Playground Express

and use Mu to plot the pulse data that CircuitPython prints out.

Visit our Welcome to CircuitPython

page to learn how to install the Mu

editor & plotter

Save the following as code.py on your Circuit Playground Express board, using the

Mu editor:

SPDX-FileCopyrightText: 2018 Kattni Rembor for Adafruit Industries

#

SPDX-License-Identifier: MIT

import time

import analogio

import board

import neopixel

pixels = neopixel.NeoPixel(board.NEOPIXEL, 10, brightness=1.0)

light = analogio.AnalogIn(board.LIGHT)

Turn only pixel #1 green

pixels[1] = (0, 255, 0)

How many light readings per sample

NUM_OVERSAMPLE = 10

How many samples we take to calculate 'average'

NUM_SAMPLES = 20

samples = [0] * NUM_SAMPLES

while True:

 for i in range(NUM_SAMPLES):

©Adafruit Industries Page 17 of 25

https://learn.adafruit.com/welcome-to-circuitpython/installing-mu-editor

 # Take NUM_OVERSAMPLE number of readings really fast

 oversample = 0

 for s in range(NUM_OVERSAMPLE):

 oversample += float(light.value)

 # and save the average from the oversamples

 samples[i] = oversample / NUM_OVERSAMPLE # Find the average

 mean = sum(samples) / float(len(samples)) # take the average

 print((samples[i] - mean,)) # 'center' the reading

 time.sleep(0.025) # change to go faster/slower

For a detailed explanation of how LED pulse sensing works, check out this article ().

There are two things we have to do.

First, the values that result from pulse sensing are often noisy or jittery: some are too

high, and some are too low, so we smooth them out by taking an average. We take 10

readings as fast as possible (faster than we need to), find the average, and that

smooth out the noise. This is called oversampling.

Second, we want to center the readings around zero. The original samples are all the

values are positive (greater than or equal to zero). To center the values around zero,

we find the average and shift all the values down. So instead of the value always

being greater than zero, it will vary above and below zero, with the average being

zero. This is called "removing the DC bias" on the signal. To learn more about DC bias,

check out this article ().

 Since the signal keeps changing, the average is also going to keep changing. So we

keep the last 20 samples and compute their average. When the next sample comes

along, we drop the oldest sample, and recompute the average again of the 20 most

recent values. This is a called a "moving average". Picture a moving window that is

©Adafruit Industries Page 18 of 25

https://en.wikipedia.org/wiki/Photoplethysmogram
https://en.wikipedia.org/wiki/DC_bias

20 samples wide, moving along the stream of sample data that we are taking. For

more detailed information about moving averages, check out this article ().

We begin our code by importing the modules we need: neopixel , analogio , time

and board . Next, we create the pixels object for the NeoPixels and the light

object for the light sensor.

Then, we turn the pixel next to the light sensor green. Note that we turned pixel

number "1" green, but it's actually the second pixel on the board. This is because

Python starts counting with 0, so the first pixel is pixel number "0".

Next, we assign NUM_OVERSAMPLE = 10 to specify how many light readings we'll

take per sample, and NUM_SAMPLES = 20 to specify how many samples we're going

to take to calculate the average we need to remove the DC bias. Then we create a

place to store the samples for the moving average, in samples = [0] *

NUMSAMPLES .

Now we start reading samples. The outer loop for i in range(NUM_SAMPLES): te

lls the code to cycle through a range of 20 values, so i keeps running between 0

and 19 continuously.

As we mentioned above, we are also going to take 10 samples as a fast as possible

and average them to smooth out the noise. The inner loop for s in

range(NUM_OVERSAMPLE): reads 10 values from the light sensor. We sum up all

those oversampling values using oversample += float(light.value) , until we've

added up NUM_SAMPLES number of values. Then we divide by 10 to find the average

of the oversampling values, and store the value with samples[i] = oversample /

NUM_OVERSAMPLE .

After we've computed the oversampling average, we compute the moving average

with mean = sum(samples) / float(len(samples)) . The window wraps around

the samples array. For instance, if i is 3, the most recent sample is in samples[3] ,

and the previous samples are in samples[2] , samples[1] , samples[0] , and then

wraps around back to samples[19] , samples[18] , etc. all the way back to sample

s[4] , the oldest value. This image provides a visual explanation.

©Adafruit Industries Page 19 of 25

https://en.wikipedia.org/wiki/Moving_average

We subtract the average from the sampled value, with samples[i] - mean, to

center the reading around zero, or remove the DC bias.

Remember, we initialised the moving average samples array with samples = [0] *

NUMSAMPLES . You'll notice the plotter doesn't respond correctly at the very

beginning. This is because the the moving average that we're taking while the first 20

samples are still in our moving window includes the zeros that we started with before

our main loop. So, until we've moved past the first 20 samples, our average will be

skewed.

Then, we print it as a tuple print((samples[i] - mean,)) .

Note that the Mu plotter looks for tuple values to print. Tuples in Python come in

parentheses () with comma separators. If you have two values, a tuple would look like

(1.0, 3.14) . Since we have only one value, we need to have it print out like (1.0,

) note the parentheses around the number, and the comma after the number. Thus

the extra parentheses and comma in print((samples[i] - mean,)) .

Finally we include time.sleep(0.025) to give a slight delay to the readings.

Once you have everything setup and running, try pressing your finger over the green

LED and the light sensor on the Circuit Playground Express, and watch the plotter

react! If you press too hard, sometimes it won't respond. But if you press lightly, you'll

see a wave form on the plot that matches your pulse!

This is a great way to sense your pulse using the light sensor, and watch plot the

changes as you press your finger against it!

©Adafruit Industries Page 20 of 25

Soil Moisture

We're going to use CircuitPython, Mu, and the capacitive touch pads on Circuit

Playground Express to plot soil moisture sensing. We'll run this code on our Circuit

Playground Express and use Mu to plot the soil moisure data that CircuitPython prints

out.

Visit our Welcome to CircuitPython

page to learn how to install the Mu

editor & plotter

The hardware you'll need for this project is the Circuit Playground Express, an

alligator clip and a nail. You'll also need at least two soil samples, one wet and one

dry, for calibrating the code.

Assembly is as simple as connecting one end of your alligator clip to pad A1 on the

Circuit Playground Express, and the other end of your alligator clip to the top of your

nail.

Save the following as code.py on your Circuit Playground Express board, using the

Mu editor:

SPDX-FileCopyrightText: 2018 Kattni Rembor for Adafruit Industries

#

SPDX-License-Identifier: MIT

import time

from adafruit_circuitplayground.express import cpx

import touchio

import simpleio

import board

cpx.pixels.brightness = 0.2

touch = touchio.TouchIn(board.A1)

DRY_VALUE = 1500 # calibrate this by hand!

WET_VALUE = 2100 # calibrate this by hand!

while True:

 value_A1 = touch.raw_value

 print((value_A1,))

 # fill the pixels from red to green based on soil moisture

 percent_wet = int(simpleio.map_range(value_A1, DRY_VALUE, WET_VALUE, 0, 100))

 cpx.pixels.fill((100-percent_wet, percent_wet, 0))

 time.sleep(0.5)

First we import the libraries we need. The first library is time . Next, you'll see we

import a specific part of of the second library by saying from

©Adafruit Industries Page 21 of 25

https://learn.adafruit.com/welcome-to-circuitpython/installing-mu-editor

adafruit_circuitplayground.express import cpx . This way we can call this

library by typing cpx instead of the longer library name. Then we import touchio , s

impleio , and board .

We set the pixel brightness. Pixel brightness is set by a number between 0 and 1,

representing 0-100%, i.e. 0.3 would be 30%. So we set our brightness to 20% with

cpx.pixels.brightness = 0.2 . Then we create the touch object so we can use

it as our moisture sensor. We are going to use pin A1 in this project, so we provide bo

ard.A1 .

To sense whether the soil is dry or wet, we're going to use the raw capacitive touch

values from the capacitive touch pad on the Circuit Playground Express. We create

two variables, DRY_VALUE and WET_VALUE and assign them to the raw capacitive

touch values associated with dry and wet soil.

We find these values in the main loop. We assign value_A1 = touch.raw_value ,

and then print the results of value_A1 . This allows us to view the results of the

raw capactitive touch values in the serial output. Wet soil has a higher raw capacitive

touch value than dry soil, and we can use this to track whether the soil is wet or dry.

The code comes with default values for both of these variables, however, the your

actual results may be different. Therefore, you should calibrate these values first.

Note that the Mu plotter looks for tuple values to print. Tuples in Python come in

parentheses () with comma separators. If you have two values, a tuple would look like

(1.0, 3.14) . Since we have only one value, we need to have it print out like (1.0,

) note the parentheses around the number, and the comma after the number. Thus

the extra parentheses and comma in print((value_A1,)) .

DRY_VALUE and WET_VALUE both need to be calibrated by hand. To calibrate them,

place the nail into your soil sample, and open the serial console (REPL) in Mu. Then

you can see what the returned value is and you can change your variables to reflect

it.

©Adafruit Industries Page 22 of 25

First place your nail into your dry soil

sample.

As you can see, the dry value we are

getting back is a little bit different than the

default number. So let's change

DRY_VALUE to reflect our results.

Now we'll do the same to get our wet

value.

Place the nail into your wet soil sample.

Now look at the values in the serial output.

Our wet value is a little bit different, so

let's change WET_VALUE as well

We've determined our wet and dry values. Now we'll use these values to make the

LEDs green when the soil is 100% wet, and red when the soil is dry, or 0% wet. This is

how you'll know your plant needs to be watered!

LED colors are set using a combination of red, green, and blue, in the form of an (R, G,

B) tuple. Each member of the tuple is set to a number between 0 and 255 that

determines the amount of each color present. Red, green and blue in different

combinations can create all the colors in the rainbow! So, for example, to set the LED

to red, the tuple would be (255, 0, 0), which has the maximum level of red, and no

green or blue. Green would be (0, 255, 0), etc.

So, we're going to need to map the raw capacitive touch values to fit within the values

needed for an RGB tuple. To do this, we're going to use simpleio.map_range . This

works by providing the value we're going to use (value_A1), the minimum value we

expect value_A1 to be (which is DRY_VALUE), the maximum value we expect value_A

1 to be (WET_VALUE), and then the minimum and maximum numbers we'd like to

©Adafruit Industries Page 23 of 25

https://learn.adafruit.com//assets/54119
https://learn.adafruit.com//assets/54119
https://learn.adafruit.com//assets/54120
https://learn.adafruit.com//assets/54120

match it to, which is 0 and 100 . By assigning percent_wet =

int(simpleio.map_range(value_A1, DRY_VALUE, WET_VALUE, 0, 100)) , we

are taking the raw capacitive touch values and mapping them to a whole number (in

t) between 0 and 100 to get a percentage.

We use this percentage to set the LEDs to be red when dry, green when wet, and a

yellowish color in between as the soil is slowly drying out. We light up all the pixels

with cpx.pixels.fill((100-percent_wet, percent_wet, 0)) , which uses the p

ercent_wet we get from the previous line.

When the soil is 100% wet, the first member of the tuple is 0 (100-percent_wet if p

ercent_wet =100 is 0), and the second member is 100 (because percent_wet =100)

. So the tuple when the soil is wet is (0, 100, 0) which means the LEDs will be green.

This is how you know you don't need to water your soil!

When the soil is 0% wet, the first member of the tuple is 100 (100-percent_wet if p

ercent_wet =0 is 100), and the second member is 0 (because percent_wet =0). So

the tuple when the soil is wet is (100, 0, 0) which means the LEDs will be red.

This is how you know it's time to water your soil!

But what about when your soil is sort of wet and sort of dry? When the soil is 50%

wet, the first member of the tuple is 50 (100-percent_wet if percent_wet =50 is

50), and the second member is 50 (because percent_wet =50). So the tuple when

the soil is half dry is (50, 50, 0) which means the LEDs will be yellow. The yellow color

will range from a greenish-yellow to a reddish-yellow as your soil goes from moist to

slowly drying out. This is how you'll know it'll be time to water your soil soon!

Finally, we include a time.sleep(0.5) to slow down the speed of reading the data.

Soil dries out slowly so there's no need for reading the data super quickly.

Once you have everything setup and running, try placing your nail into wet soil, and

watch the plotter immediately react! Place your nail into dry soil to watch the plotter

go down. Place it into soil that's only sort of wet to watch it go up a little Place it back

into wet soil and watch it go up higher!

This is a great way to see see soil moisture levels using the capacitive touch pad, and

plot the changes as the soil slowly dries out!

©Adafruit Industries Page 24 of 25

©Adafruit Industries Page 25 of 25

	Sensor Plotting with Mu and CircuitPython
	Table of Contents
	Light
	Temperature
	Buttons and Switch
	Motion
	Sound
	Capacitive Touch
	Potentiometer
	Color
	Heartbeat Pulse
	Soil Moisture

	Light
	Temperature
	Buttons and Switch
	Motion
	Sound
	Capacitive Touch
	Potentiometer
	Color
	Heartbeat Pulse
	Soil Moisture

