Power MOSFET

30 V, 5.9 m Ω , 55 A, Single N-Channel, μ8FL

Features

- Low R_{DS(on)} to Minimize Conduction Losses
- Low Capacitance to Minimize Driver Losses
- Optimized Gate Charge to Minimize Switching Losses
- NVTFS4C08NWF Wettable Flanks Product
- NVT Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q101 Qualified and PPAP Capable
- These Devices are Pb-Free, Halogen Free/BFR Free and are RoHS Compliant

MAXIMUM RATINGS (T_J = 25°C unless otherwise stated)

Paran	Symbol	Value	Unit		
Drain-to-Source Voltage	V_{DSS}	30	V		
Gate-to-Source Voltage			V_{GS}	±20	V
Continuous Drain		T _A = 25°C	I _D	17	Α
Current $R_{\theta JA}$ (Notes 1, 2, 4)		T _A = 100°C		12	
Power Dissipation R _{θJA}		T _A = 25°C	P _D	3.1	W
(Note 1, 2, 4)	Steady	T _A = 100°C		1.6	
Continuous Drain Current R _{0.IC} (Note 1,	State	T _A = 25°C	I _D	55	
3, 4)		T _A = 100°C		39	Α
Power Dissipation		T _A = 25°C	P_{D}	31	W
$R_{\theta JC}$ (Note 1, 3, 4)		T _A = 100°C		15	
Pulsed Drain Current	I _{DM}	253	Α		
Operating Junction and S	T _J , T _{stg}	–55 to +175	°C		
Source Current (Body Did	IS	28	Α		
Single Pulse Drain–to–So $(T_J = 25^{\circ}C, I_L = 20 A_{pk}, L$	E _{AS}	20	mJ		
Lead Temperature for So (1/8" from case for 10 s)	TL	260	°C		

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

THERMAL RESISTANCE MAXIMUM RATINGS

Parameter	Symbol	Value	Unit
Junction-to-Case - Steady State (Drain) (Notes 1 and 4)	$R_{\theta JC}$	4.9	°C/W
Junction–to–Ambient – Steady State (Notes 1 and 2)	$R_{\theta JA}$	48	C/ V V

- The entire application environment impacts the thermal resistance values shown, they are not constants and are only valid for the particular conditions
- 2. Surface-mounted on FR4 board using a 650 mm² 2 oz. Cu pad.
- 3. Assumes heat-sink sufficiently large to maintain constant case temperature independent of device power.
- 4. Continuous DC current rating. Maximum current for pulses as long as 1 second is higher but is dependent on pulse duration and duty cycle.

ON Semiconductor®

http://onsemi.com

V _{(BR)DSS}	R _{DS(on)} MAX	I _D MAX
30 V	5.9 mΩ @ 10 V	55 A
	9.0 mΩ @ 4.5 V	33 K

N-Channel MOSFET

(μ8FL) CASE 511AB

4C08 = Specific Device Code for

NVMTS4C08N

08WF = Specific Device Code of

NVTFS4C08NWF

= Assembly Location

= Year WW = Work Week

= Pb-Free Package

(Note: Microdot may be in either location)

ORDERING INFORMATION

See detailed ordering and shipping information on page 5 of this data sheet.

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise specified)

Drain-to-Source Breakdown Voltage Temperature Coefficient	Parameter	Symbol	Test Condition		Min	Тур	Max	Unit
Drain-to-Source Breakdown Voltage Temperature Coefficient	OFF CHARACTERISTICS						1	
	Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	$V_{GS} = 0 \text{ V}, I_D = 250 \mu\text{A}$		30			V
Vos = 24 V T _J = 125°C 10 10 μ μ μ μ μ μ μ μ μ		V _{(BR)DSS} / T _J				13.8		mV/°C
State-to-Source Leakage Current I _{GSS} V _{DS} = 0 V, V _{GS} = ±20 V ±100 n./	Zero Gate Voltage Drain Current	I _{DSS}	$V_{GS} = 0 V$	T _J = 25°C			1.0	
ON CHARACTERISTICS (Note 5) VGS(TH) VGS = VDS, ID = 250 μA 1.3 2.2 V Gate Threshold Voltage VGS(TH)/TJ VGS = VDS, ID = 250 μA 1.3 2.2 V Negative Threshold Temperature Coefficient VGS(TH)/TJ VGS = 10 V ID = 30 A 4.7 5.9 mV Drain-to-Source On Resistance PS VDS = 1.5 V, ID = 15 A 4.2 9.0 m Forward Transconductance PR TA = 25°C 1.0 4.2 5.0 Gate Resistance Rg TA = 25°C 1.0 4.2 5.0 CHARGES AND CAPACITANCES Input Capacitance CISS TA = 25°C 1.10 4.2 5.0 5.0 4.2 5.0<			$V_{DS} = 24 \text{ V}$	T _J = 125°C			10	μΑ
	Gate-to-Source Leakage Current	I _{GSS}	$V_{DS} = 0 \text{ V}, V_{GS}$	s = ±20 V			±100	nA
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	ON CHARACTERISTICS (Note 5)							
$ \begin{array}{ c c c c c c c c } \hline Drain-to-Source On Resistance & R_{DS(on)} & V_{GS} = 10 \ V & I_D = 30 \ A & 4.7 & 5.9 \\ \hline V_{QS} = 4.5 \ V & I_D = 18 \ A & 7.2 & 9.0 \\ \hline Forward Transconductance & g_{FS} & V_{DS} = 1.5 \ V, I_D = 15 \ A & 42 & 8.5 \\ \hline Gate Resistance & R_G & T_A = 25^\circ C & 1.0 & 9.0 \\ \hline CHARGES AND CAPACITANCES \\ Input Capacitance & C_{ISS} & & & & & & & & & & & & & & & & & & $	Gate Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS}, I_{D}$	= 250 μΑ	1.3		2.2	V
V _{GS} = 4.5 V I _D = 18 A 7.2 9.0 Forward Transconductance g _{FS} V _{DS} = 1.5 V, I _D = 15 A 42 5 5 5 5 5 5 5 5 5	Negative Threshold Temperature Coefficient	V _{GS(TH)} /T _J				5.0		mV/°C
Forward Transconductance QFS V_DS = 1.5 V, I_D = 15 A 42 5 C	Drain-to-Source On Resistance	R _{DS(on)}	V _{GS} = 10 V	I _D = 30 A		4.7	5.9	~ 0
Cate Resistance R _G			V _{GS} = 4.5 V	I _D = 18 A		7.2	9.0	mΩ
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Forward Transconductance	9FS	V _{DS} = 1.5 V, I	_D = 15 A		42		S
$ \begin{array}{ c c c c c } \hline \text{Input Capacitance} & C_{ISS} \\ \hline \text{Output Capacitance} & C_{OSS} \\ \hline \text{Reverse Transfer Capacitance} & C_{RSS} \\ \hline \hline \text{Reverse Transfer Capacitance} & C_{RSS} \\ \hline \hline \text{Capacitance Ratio} & C_{RSS}/C_{ISS} \\ \hline \text{Capacitance Ratio} & C_{RSS}/C_{ISS} \\ \hline \text{Total Gate Charge} & Q_{G(TOT)} \\ \hline \text{Threshold Gate Charge} & Q_{G(TH)} \\ \hline \text{Gate-to-Source Charge} & Q_{G} \\ \hline \text{Gate-to-Drain Charge} & Q_{G} \\ \hline \text{Gate Plateau Voltage} & V_{GP} \\ \hline \hline \text{Total Gate Charge} & Q_{G(TOT)} \\ \hline \text{Royer Control Charge} & Q_{G} \\ \hline \text{Gate-to-Drain Charge} & Q_{G} \\ \hline \text{Gate Plateau Voltage} & V_{GP} \\ \hline \hline \text{Total Gate Charge} & Q_{G(TOT)} \\ \hline \text{V}_{GS} = 10 \text{ V}, V_{DS} = 15 \text{ V}; I_{D} = 30 \text{ A} \\ \hline \text{SWITCHING CHARACTERISTICS (Note 6)} \\ \hline \text{Turn-On Delay Time} & I_{d}(ON) \\ \hline \text{Rise Time} & I_{f} \\ \hline \text{Turn-Off Delay Time} & I_{d}(ON) \\ \hline \text{Fall Time} & I_{f} \\ \hline \text{Turn-On Delay Time} & I_{d}(ON) \\ \hline \text{Rise Time} & I_{f} \\ \hline \text{Turn-Off Delay Time} & I_{d}(ON) \\ \hline \text{Rise Time} & I_{f} \\ \hline \text{Turn-Off Delay Time} & I_{d}(ON) \\ \hline \text{Rise Time} & I_{f} \\ \hline \text{Turn-Off Delay Time} & I_{d}(ON) \\ \hline \text{Rise Time} & I_{f} \\ \hline \text{Turn-Off Delay Time} & I_{d}(ON) \\ \hline \text{Rise Time} & I_{f} \\ \hline \text{Turn-Off Delay Time} & I_{d}(ON) \\ \hline \text{Rise Time} & I_{f} \\ \hline \text{Turn-Off Delay Time} & I_{d}(ON) \\ \hline \text{Rise Time} & I_{f} \\ \hline \text{Turn-Off Delay Time} & I_{d}(ON) \\ \hline \text{Rise Time} & I_{f} \\ \hline \text{Turn-Off Delay Time} & I_{d}(ON) \\ \hline \text{Rise Time} & I_{f} \\ \hline \text{Turn-Off Delay Time} & I_{d}(ON) \\ \hline \text{Rise Time} & I_{f} \\ \hline \text{Turn-Off Delay Time} & I_{d}(ON) \\ \hline \text{Rise Time} & I_{f} \\ \hline \text{Turn-Off Delay Time} & I_{d}(ON) \\ \hline \text{Rise Time} & I_{f} \\ \hline \text{Turn-Off Delay Time} & I_{d}(ON) \\ \hline \text{Rise Time} & I_{f} \\ \hline \text{Turn-Off Delay Time} & I_{d}(ON) \\ \hline \text{Rise Time} & I_{f} \\ \hline \text{Turn-Off Delay Time} & I_{d}(ON) \\ \hline \text{Rise Time} & I_{f} \\ \hline \text{Turn-Off Delay Time} & I_{d}(ON) \\ \hline \text{Rise Time} & I_{f} \\ \hline \text{Turn-Off Delay Time} & I_{d}(ON) \\ \hline \text{Turn-Off Delay Time} & I_{d}(ON) \\ \hline \text{Turn-Off Delay Time} & I_{d}(ON) \\ \hline \text{Turn-Off Delay Time} &$	Gate Resistance	R _G	$T_A = 25^\circ$	°C		1.0		Ω
$ \begin{array}{ c c c c c } \hline \text{Output Capacitance} & C_{OSS} & V_{GS} = 0 \text{ V, } f = 1 \text{ MHz, } V_{DS} = 15 \text{ V} \\ \hline \text{Reverse Transfer Capacitance} & C_{RSS} & 39 \\ \hline \text{Capacitance Ratio} & C_{RSS}/C_{ISS} & V_{GS} = 0 \text{ V, } V_{DS} = 15 \text{ V, } f = 1 \text{ MHz} \\ \hline \text{Capacitance Ratio} & C_{RSS}/C_{ISS} & V_{GS} = 0 \text{ V, } V_{DS} = 15 \text{ V, } f = 1 \text{ MHz} \\ \hline \text{Output Capacitance} & Q_{GITOT} \\ \hline \text{Capacitance Ratio} & C_{RSS}/C_{ISS} & V_{GS} = 0 \text{ V, } V_{DS} = 15 \text{ V, } f = 1 \text{ MHz} \\ \hline \text{Capacitance Ratio} & C_{RSS}/C_{ISS} & V_{GS} = 0 \text{ V, } V_{DS} = 15 \text{ V, } f = 1 \text{ MHz} \\ \hline \text{Capacitance Ratio} & C_{RSS}/C_{ISS} & V_{GS} = 0 \text{ V, } V_{DS} = 15 \text{ V, } f = 1 \text{ MHz} \\ \hline \text{Capacitance Ratio} & C_{RSS}/C_{ISS} & V_{GS} = 0 \text{ V, } V_{DS} = 15 \text{ V, } f = 1 \text{ MHz} \\ \hline \text{Capacitance Ratio} & C_{RSS}/C_{ISS} & V_{GS} = 0 \text{ V, } V_{DS} = 15 \text{ V, } f = 1 \text{ MHz} \\ \hline \text{Capacitance Ratio} & C_{RSS}/C_{ISS} & V_{GS} = 0 \text{ V, } V_{DS} = 15 \text{ V, } f = 1 \text{ MHz} \\ \hline \text{Capacitance Ratio} & C_{RSS}/C_{ISS} & V_{GS} = 0 \text{ V, } V_{DS} = 15 \text{ V, } f = 1 \text{ MHz} \\ \hline \text{Capacitance Ratio} & C_{RSS}/C_{ISS} & V_{GS} = 0 \text{ V, } V_{DS} = 15 \text{ V, } f = 1 \text{ MHz} \\ \hline \text{Capacitance Ratio} & C_{RSS}/C_{ISS} & V_{GS} = 15 \text{ V, } f = 1 \text{ MHz} \\ \hline \text{Capacitance Ratio} & C_{RSS}/C_{ISS} & V_{GS} = 15 \text{ V, } f = 1 \text{ MHz} \\ \hline \text{Capacitance Ratio} & C_{RS}/C_{ISS} & C_{ISS}/C_{ISS} & C_{ISS}/C_{ISS} \\ \hline \text{Capacitance Ratio} & C_{RSS}/C_{ISS} & C_{ISS}/C_{ISS} & C_{ISS}/C_{ISS} \\ \hline \text{Capacitance Ratio} & C_{RS}/C_{ISS}/C_{ISS}/C_{ISS}/C_{ISS} & C_{ISS}/C_{ISS}$	CHARGES AND CAPACITANCES							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Input Capacitance	C _{ISS}				1113		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Output Capacitance	Coss	V _{GS} = 0 V, f = 1 MH	Iz, V _{DS} = 15 V		702		pF
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Reverse Transfer Capacitance	C _{RSS}				39		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Capacitance Ratio	C _{RSS} /C _{ISS}	V _{GS} = 0 V, V _{DS} = 15 V, f = 1 MHz			0.035		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Total Gate Charge	Q _{G(TOT)}				8.4		nC
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Threshold Gate Charge	Q _{G(TH)}				1.8		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Gate-to-Source Charge	Q _{GS}	$V_{GS} = 4.5 \text{ V}, V_{DS} =$	15 V; I _D = 30 A		3.5		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Gate-to-Drain Charge	Q_{GD}	1			3.3		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Gate Plateau Voltage	V _{GP}	1			3.4		V
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Total Gate Charge	Q _{G(TOT)}	V _{GS} = 10 V, V _{DS} = 15 V; I _D = 30 A			18.2		nC
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	SWITCHING CHARACTERISTICS (Note 6)	, ,	•					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Turn-On Delay Time	t _{d(ON)}	$V_{GS} = 4.5 \text{ V}, V_{DS} = 15 \text{ V},$ $I_{D} = 15 \text{ A}, R_{G} = 3.0 \Omega$			9.0		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Rise Time					33		ns
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Turn-Off Delay Time	t _{d(OFF)}				15		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Fall Time	t _f				4.0		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Turn-On Delay Time	t _{d(ON)}				7.0		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Rise Time		V_{GS} = 10 V, V_{DS} = 15 V, I_{D} = 15 A, R_{G} = 3.0 Ω			26		ns
	Turn-Off Delay Time	t _{d(OFF)}				19		
Forward Diode Voltage V_{SD} $V_{GS} = 0 \text{ V}, \\ I_{S} = 10 \text{ A}$ $T_{J} = 25^{\circ}\text{C}$ 0.79 1.1 $V_{CS} = 0 \text{ V}, \\ T_{J} = 125^{\circ}\text{C}$ 0.66	Fall Time					3.0		
$I_{S} = 10 \text{ A}$ $T_{J} = 125^{\circ}\text{C}$ 0.66	DRAIN-SOURCE DIODE CHARACTERISTIC	S	•		•			•
$I_S = 10 \text{ A}$ $T_J = 125^{\circ}\text{C}$ 0.66	Forward Diode Voltage	V_{SD}	VGS = 0 V,			0.79	1.1	,,,
Reverse Recovery Time t _{RR} 28.3						0.66		1 ^v
	Reverse Recovery Time	t _{RR}	$V_{GS} = 0 \text{ V, dIS/dt} = 100 \text{ A/}\mu\text{s,}$ $I_{S} = 30 \text{ A}$			28.3		
Charge Time $t_a = V_{CS} = 0 \text{ V. dIS/dt} = 100 \text{ A/us}$. 14.5 ns	Charge Time	t _a				14.5		ns
VGS = 0 V, αιθ/αι = 100 / Vμθ,	Discharge Time					13.8		1
Reverse Recovery Charge Q _{RR} 15.3 no	Reverse Recovery Charge	Q _{RR}				15.3		nC

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. 5. Pulse Test: pulse width $\leq 300~\mu s$, duty cycle $\leq 2\%$. 6. Switching characteristics are independent of operating junction temperatures.

V_{GS}, GATE-TO-SOURCE VOLTAGE (V) Figure 3. On-Resistance vs. V_{GS}

7.0

8.0

9.0

10

10

6.0

5.0

4.0

3.0

Gate Voltage 1.80 10000 $I_{D} = 30 \text{ A}$ $V_{GS} = 0 V$ $T_J = 150^{\circ}C$ R_{DS(on)}, DRAIN-TO-SOURCE RESISTANCE (NORMALIZED) $V_{GS} = 10 V$ 1.60 T_J = 125°C DSS, LEAKAGE (nA) 1000 1.20 $T_J = 85^{\circ}C$ 1.00 100 0.80 0.60 10 -25 0 25 50 75 100 125 175 10 15 20 25 30 T_J, JUNCTION TEMPERATURE (°C) V_{DS}, DRAIN-TO-SOURCE VOLTAGE (V)

Figure 5. On-Resistance Variation with **Temperature**

Figure 6. Drain-to-Source Leakage Current vs. Voltage

30

40

ID, DRAIN CURRENT (A)

Figure 4. On-Resistance vs. Drain Current and

20

50

60

70

TYPICAL CHARACTERISTICS

Figure 7. Capacitance Variation

Figure 8. Gate-to-Source and Drain-to-Source Voltage vs. Total Charge

Figure 9. Resistive Switching Time Variation vs. Gate Resistance

Figure 10. Diode Forward Voltage vs. Current

Figure 11. Maximum Rated Forward Biased Safe Operating Area

TYPICAL CHARACTERISTICS

Figure 12. Thermal Response

Figure 13. G_{FS} vs. I_D

Figure 14. Avalanche Characteristics

ORDERING INFORMATION

Device	Package	Shipping [†]
NVTFS4C08NTAG	WDFN8 (Pb-Free)	1500 / Tape & Reel
NVTFS4C08NWFTAG	WDFN8 (Pb-Free)	1500 / Tape & Reel
NVTFS4C08NTWG	WDFN8 (Pb-Free)	5000 / Tape & Reel
NVTFS4C08NWFTWG	WDFN8 (Pb-Free)	5000 / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

PACKAGE DIMENSIONS

WDFN8 3.3x3.3, 0.65P CASE 511AB ISSUE D

NOTES:

- 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
 2. CONTROLLING DIMENSION: MILLIMETERS.
- DIMENSION D1 AND E1 DO NOT INCLUDE MOLD FLASH PROTRUSIONS OR GATE BURRS.

	MILLIMETERS			INCHES			
DIM	MIN	NOM	MAX	MIN	NOM	MAX	
Α	0.70	0.75	0.80	0.028	0.030	0.031	
A1	0.00		0.05	0.000		0.002	
b	0.23	0.30	0.40	0.009	0.012	0.016	
С	0.15	0.20	0.25	0.006	0.008	0.010	
D	;	3.30 BSC		0	.130 BSC	;	
D1	2.95	3.05	3.15	0.116	0.120	0.124	
D2	1.98	2.11	2.24	0.078	0.083	0.088	
E	;	3.30 BSC		0.130 BSC			
E1	2.95	3.05	3.15	0.116	0.120	0.124	
E2	1.47	1.60	1.73	0.058	0.063	0.068	
E3	0.23	0.30	0.40	0.009	0.012	0.016	
е		0.65 BSC			0.026 BS	0	
G	0.30	0.41	0.51	0.012	0.016	0.020	
K	0.65	0.80	0.95	0.026	0.032	0.037	
L	0.30	0.43	0.56	0.012	0.017	0.022	
L1	0.06	0.13	0.20	0.002	0.005	0.008	
M	1.40	1.50	1.60	0.055	0.059	0.063	
θ	0 °		12 °	0 °		12 °	

SOLDERING FOOTPRINT*

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and in are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all Claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative