PNP General Purpose and NPN Bias Resistor Transistor Combination - Simplifies Circuit Design - Reduces Board Space - Reduces Component Count - Available in 8 mm, 7 inch/3000 Unit Tape and Reel - ESD Rating Human Body Model: Class 1B - Machine Model: Class B - NSV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC–Q101 Qualified and PPAP Capable - These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant #### **MAXIMUM RATINGS** $(T_A = 25^{\circ}C \text{ unless otherwise noted, common for } Q_1 \text{ and } Q_2)$ | Rating | Symbol | Q ₁ | Q_2 | Unit | |--------------------------------|------------------|----------------|-------|------| | Collector-Emitter Voltage | V _{CEO} | -50 | 50 | Vdc | | Collector-Base Voltage | V _{CBO} | -50 | 50 | Vdc | | Emitter-Base Voltage | V _{EBO} | -6.0 | 5.0 | Vdc | | Collector Current – Continuous | I _C | -150 | 150 | mAdc | Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected. #### THERMAL CHARACTERISTICS | Characteristic
(One Junction Heated) | Symbol | Max | Unit | |--|-----------------------------------|--|-------------| | Total Device Dissipation $T_A = 25^{\circ}C$
Derate above 25°C | P _D | 187 (Note 1)
256 (Note 2)
1.5 (Note 1)
2.0 (Note 2) | mW
mW/°C | | Thermal Resistance –
Junction-to-Ambient | $R_{\theta JA}$ | 670 (Note 1)
490 (Note 2) | °C/W | | Characteristic
(Both Junctions Heated) | Symbol | Max | Unit | | Total Device Dissipation T _A = 25°C Derate above 25°C | P _D | 250 (Note 1)
385 (Note 2)
2.0 (Note 1)
3.0 (Note 2) | mW
mW/°C | | Thermal Resistance –
Junction-to-Ambient | $R_{\theta JA}$ | 493 (Note 1)
325 (Note 2) | °C/W | | Thermal Resistance –
Junction-to-Lead | $R_{ heta JL}$ | 188 (Note 1)
208 (Note 2) | °C/W | | Junction and Storage Temperature | T _J , T _{stg} | -55 to +150 | °C | - 1. FR-4 @ Minimum Pad - 2. FR-4 @ 1.0 x 1.0 inch Pad ## ON Semiconductor® #### www.onsemi.com SOT-363 CASE 419B STYLE 1 #### MARKING DIAGRAM 71 = Device Code M = Date Code* ■ = Pb-Free Package (Note: Microdot may be in either location) *Date Code orientation may vary depending upon manufacturing location. #### **ORDERING INFORMATION** | Device | Package | Shipping [†] | |----------------|----------------------|-----------------------| | NSTB60BDW1T1G | SOT-363
(Pb-Free) | 3000 / Tape &
Reel | | NSVTB60BDW1T1G | SOT-363
(Pb-Free) | 3000 / Tape &
Reel | †For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D. # **ELECTRICAL CHARACTERISTICS** ($T_A = 25^{\circ}C$ unless otherwise noted) | Characteristic | Symbol | Min | Тур | Max | Unit | |--|--------------------------|-------|------|------|------| | Q_1 | • | | | • | 1 | | Collector-Base Breakdown Voltage ($I_C = -50 \mu Adc, I_E = 0$) | V _{(BR)CBO} | -50 | _ | _ | Vdc | | Collector-Emitter Breakdown Voltage $(I_C = -1.0 \text{ mAdc}, I_B = 0)$ | V _{(BR)CEO} | -50 | - | - | Vdc | | Emitter–Base Breakdown Voltage ($I_E = -50 \mu Adc, I_E = 0$) | V _{(BR)EBO} | -6.0 | _ | _ | Vdc | | Collector-Base Cutoff Current (V _{CB} = -50 Vdc, I _E = 0) | I _{CBO} | _ | _ | -0.1 | μΑ | | Emitter-Base Cutoff Current (V _{EB} = -6.0 Vdc, I _B = 0) | I _{EBO} | - | _ | -0.1 | μΑ | | Collector-Emitter Saturation Voltage ($I_C = -50 \text{ mAdc}$, $I_B = -5.0 \text{ mAdc}$) (Note 3) | V _{CE(sat)} – – | | | | Vdc | | DC Current Gain ($V_{CE} = -10 \text{ V}, I_{C} = -5.0 \text{ mA}$) (Note 3) | h _{FE} | 120 | _ | 560 | - | | Transition Frequency ($V_{CE} = -12 \text{ Vdc}$, $I_{C} = -2.0 \text{ mAdc}$, $f = 100 \text{ MHz}$) | f _T | - 140 | | - | MHz | | Output Capacitance (V _{CB} = -12 Vdc, I _E = 0 Adc, f = 1.0 MHz) | C _{OB} – 3.5 | | _ | pF | | | Q_2 | | | | | | | Collector-Base Breakdown Voltage ($I_C = 50 \mu A, I_E = 0$) | V _{(BR)CBO} | 50 | - | _ | Vdc | | Collector-Emitter Breakdown Voltage (I _C = 1.0 mA, I _B = 0) (Note 3) | V _{(BR)CEO} | 50 | - | - | Vdc | | Collector-Base Cutoff Current (V _{CB} = 50 V, I _E = 0) | I _{CBO} | _ | _ | 100 | nAdc | | Collector-Emitter Cutoff Current (V _{CE} = 50 V, I _B = 0) | I _{CEO} | _ | _ | 500 | nAdc | | Emitter-Base Cutoff Current (V _{EB} = 6.0 V, I _C = 0) | I _{EBO} | _ | | | mAdc | | Collector-Emitter Saturation Voltage
(I _C = 10 mA, I _B = 5.0 mA) (Note 3) | OL(Sat) | | - | 0.25 | Vdc | | DC Current Gain (V _{CE} = 10 V, I _C = 5.0 mA) (Note 3) | h _{FE} | 80 | _ | _ | | | Output Voltage (on) (V_{CC} = 5.0 V, V_B = 4.0 V, R_L = 1.0 k Ω) (Note 3) | V _{OL} | - | _ | 0.2 | Vdc | | Output Voltage (off) (V _{CC} = 5.0 V, V _B = 0.25 V, R _L = 1.0 k Ω) (Note 3) | V _{OH} | 4.9 | _ | | | | Input Resistor (Note 3) | R1 15.4 22 28.6 | | 28.6 | kΩ | | | Resistor Ratio (Note 3) | R2/R1 | 1.70 | 2.13 | 2.55 | | Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. 3. Pulse Test: Pulse Width < 300 µs, Duty Cycle < 2.0% #### **TYPICAL ELECTRICAL CHARACTERISTICS - PNP Transistor** Figure 1. Normalized DC Current Gain Figure 2. "Saturation" and "On" Voltages Figure 3. Current-Gain - Bandwidth Product Figure 4. Capacitances Figure 5. Output Admittance Figure 6. Base Spreading Resistance #### **TYPICAL ELECTRICAL CHARACTERISTICS - NPN Transistor** Figure 7. Maximum Collector Voltage versus Collector Current Figure 8. DC Current Gain Figure 9. Output Capacitance Figure 10. Output Current versus Input Voltage Figure 11. Input Voltage versus Output Current #### PACKAGE DIMENSIONS #### SOT-363/SC-88/SC70-6 CASE 419B-02 #### NOTES: - DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. CONTROLLING DIMENSION: MILLIMETERS. - CONTROLLING DIMENSION: MILLIMETERS. DIMENSIONS D AND E1 DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS, MOLD FLASH, PROTRUSIONS, OR GATE BURRS SHALL NOT EXCEED 0.20 PER END. DIMENSIONS D AND E1 AT THE OUTERMOST EXTREMES OF THE PLASTIC BODY AND DATUM H. - DATUMS A AND B ARE DETERMINED AT DATUM H. DIMENSIONS b AND c APPLY TO THE FLAT SECTION OF THE LEAD BETWEEN 0.08 AND 0.15 FROM THE TIP. DIMENSION b DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 TOTAL IN EXCESS OF DIMENSION b AT MAXIMUM MATERIAL CONDI-TION. THE DAMBAR CANNOT BE LOCATED ON THE LOWER RADIUS OF THE FOOT. | | MILLIMETERS | | | INCHES | | | |-----|-------------|------------|------|-----------|-------|-------| | DIM | MIN | NOM | MAX | MIN | NOM | MAX | | Α | | | 1.10 | | | 0.043 | | A1 | 0.00 | | 0.10 | 0.000 | | 0.004 | | A2 | 0.70 | 0.90 | 1.00 | 0.027 | 0.035 | 0.039 | | b | 0.15 | 0.20 | 0.25 | 0.006 | 0.008 | 0.010 | | С | 0.08 | 0.15 | 0.22 | 0.003 | 0.006 | 0.009 | | D | 1.80 | 2.00 | 2.20 | 0.070 | 0.078 | 0.086 | | Е | 2.00 | 2.10 | 2.20 | 0.078 | 0.082 | 0.086 | | E1 | 1.15 | 1.25 | 1.35 | 0.045 | 0.049 | 0.053 | | е | 0.65 BSC | | | 0.026 BSC | | | | L | 0.26 | 0.36 | 0.46 | 0.010 | 0.014 | 0.018 | | L2 | 0.15 BSC | | | 0.006 BSC | | | | aaa | 0.15 | | | 0.006 | | | | bbb | 0.30 0.012 | | | | | | | ccc | | 0.10 0.004 | | | | | | ddd | 0.10 | | | 0.004 | | | # STYLE 1: - PIN 1. EMITTER 2 2. BASE 2 - 3. COLLECTOR 1 4. EMITTER 1 - 5. BASE 1 6. COLLECTOR 2 #### RECOMMENDED SOLDERING FOOTPRINT* *For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. ON Semiconductor and the unarregistered trademarks of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries. SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. ## **PUBLICATION ORDERING INFORMATION** #### LITERATURE FULFILLMENT Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800-282-9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81–3–5817–1050 ON Semiconductor Website: www.onsemi.com Order Literature: http://www.onsemi.com/orderlit For additional information, please contact your local Sales Representative