ZHX1201 # SIR UltraSlim™ Transceiver (IrMC) **Preliminary Product Specification** PS015207-0104 This publication is subject to replacement by a later edition. To determine whether a later edition exists, or to request copies of publications, contact: #### **ZiLOG Worldwide Headquarters** 532 Race Street San Jose, CA 95126-3432 Telephone: 408.558.8500 Fax: 408.558.8300 www.ZiLOG.com ZiLOG is a registered trademark of ZiLOG Inc. in the United States and in other countries. All other products and/or service names mentioned herein may be trademarks of the companies with which they are associated. #### **Document Disclaimer** ©2004 by ZiLOG, Inc. All rights reserved. Information in this publication concerning the devices, applications, or technology described is intended to suggest possible uses and may be superseded. ZiLOG, INC. DOES NOT ASSUME LIABILITY FOR OR PROVIDE A REPRESENTATION OF ACCURACY OF THE INFORMATION, DEVICES, OR TECHNOLOGY DESCRIBED IN THIS DOCUMENT. ZiLOG ALSO DOES NOT ASSUME LIABILITY FOR INTELLECTUAL PROPERTY INFRINGEMENT RELATED IN ANY MANNER TO USE OF INFORMATION, DEVICES, OR TECHNOLOGY DESCRIBED HEREIN OR OTHERWISE. Devices sold by ZiLOG, Inc. are covered by warranty and limitation of liability provisions appearing in the ZiLOG, Inc. Terms and Conditions of Sale. ZiLOG, Inc. makes no warranty of merchantability or fitness for any purpose. Except with the express written approval of ZiLOG, use of information, devices, or technology as critical components of life support systems is not authorized. No licenses are conveyed, implicitly or otherwise, by this document under any intellectual property rights. ## **Table of Contents** | Description | 1 | |--|-----------------------| | Features | 2 | | Pin Description VCC Positive Supply GND Ground SD Shutdown RxD Receive Data TxD Transmit Data LEDA LED Driver TAB Shield Connection | 2
3
3
3
3 | | Application Block Diagrams | 4 | | Electrical and Timing Specifications | 5 | | ZHX1201 Tape and Reel Specifications | 7 | | ZHX1201 Soldering and Cleaning Recommendations | 8 | | Moisture Prevention Guidelines | 9 | | Baking | 9 | | Mechanical Drawing | 10 | | Ordering Information | 11 | | Customer Feedback Form | 11
11
11 | ## List of Figures | Figure 1. | UltraSlim Form | |-----------|---| | Figure 2. | ZHX1201 Block Diagram 1 | | Figure 3. | ZHX1201 Application Block Diagrams | | Figure 4. | ZHX1201 Reel Specifications 7 | | Figure 5. | ZHX1201 Tape Specifications | | Figure 6. | Temperature Profile for the Top Surface | | Figure 7. | ZHX1201 Packaging | | Figure 8. | ZHX1201 Mechanical Drawing | ## List of Tables | Table 1. | ZHX1201 Transceiver Pin Out | 2 | |----------|----------------------------------|---| | Table 2. | Absolute Maximum Ratings | 5 | | Table 3. | Recommended Operating Conditions | 5 | | Table 4. | Electrical Characteristics | 5 | ZiLOG ### **Description** The ZILOG ZHX1201 for mobile phones, pagers, and PDAs is a small, low power, and high functionality transceiver. ZiLOG's low-power CMOS technology allows the transceiver to receive an IrDA communication at a typical current of 100 μ A. The UltraSlim form factor (8 mm long x 3 mm wide x 2.5 mm high) allows placement in many small devices (see Figure 1). Application circuit space is also minimized because only one external component is required. Figure 1. UltraSlim Form The ZHX1201 is designed to support IrDA-Data SIR mode, which at 115 Kbits/s provides the capability for the user to share phone numbers, addresses, and notes as well as linking a PC to the internet via a mobile telephone. The transceiver combines an IRED emitter, a PIN photodiode, and a unique driver/control ASIC in a single package, as shown in Figure 2. Figure 2. ZHX1201 Block Diagram The ZILOG ZHX1201 also features a shutdown control that minimizes current draw to 0.1 μ A typical. ### **Features** - Compliant to IrDA Data Specification 1.4 Low Power SIR (link range: low power to low power—0 to 20 cm; standard power to low power—0 to 30 cm) - Low-power supply voltage range: 2.4 to 3.6 V - Receiving current: only 100 μA (typically) at 3.0 V - UltraSlim package: 8 mm long x 3 mm wide x 2.5 mm high - Extended operating temperature range: -30 °C to +85 °C - Internal current source eliminates current limiting resistor - Meets IEC 825-1 Class 1 eye safety specifications ### **Pin Description** Table 1 lists the pin out for the ZHX1201 transceiver. The pins are described in this section. Table 1. ZHX1201 Transceiver Pin Out | Pin | Name | Function | I/O | |-----|-----------------|-------------------|-----| | 1 | GND | Ground | _ | | 2 | NC | NC | | | 3 | V _{CC} | Supply voltage | _ | | 4 | GND | Ground | _ | | 5 | SD | Shutdown | I | | 6 | RxD | Receiver output | 0 | | 7 | TxD | Transmitter input | I | | 8 | LEDA | IRED anode | _ | | _ | TAB | Shield connection | _ | ### **V_{CC}** Positive Supply (Power) Connect to positive power supply (2.4–3.6 V). Filter with a 1.0 μ F ceramic bypass capacitor and terminating resistor as close as possible to the V_{CC} pin. #### **GND Ground** (Power) Connect to ground of the power supply. A solid ground plane is recommended for proper operation. #### SD Shutdown (Input, active high) This input is used to place the IC into a shutdown mode. TxD needs to be driven low to achieve low shutdown current and held low during the transition from shutdown to active to ensure that the circuitry is properly set to communicate. #### **RxD Receive Data** (Output, active low) This output provides received serial data. It is a tri-state, slew rate controlled CMOS output (tri-stated during shutdown) driver capable of driving a standard CMOS or LS series TTL load. No external resistor is required. #### **TxD Transmit Data** (Input, active high) This CMOS input is used to transmit serial data and has an internal pull-down resistor that is disabled (open-circuited) during shutdown. With integrated digital AC coupling, no external components are required for input signals between GND and $V_{\rm CC}$. #### **LEDA LED Driver** (Power) This output is internally connected to the LED anode and contains an internal current source. The voltage range on this pad is 2.4–4.2 volts. #### TAB Shield Connection The shield tab must be soldered to ground for proper operation. ### **Application Block Diagrams** Figure 3 shows the application block diagrams for the ZHX1201 transceiver. Figure 3. ZHX1201 Application Block Diagrams ### **Electrical and Timing Specifications** Table 2, Table 3, and Table 4 list the electrical and timing specifications. **Table 2. Absolute Maximum Ratings** | Parameter | Symbol | Min | Max | Unit | Comment | |-----------------------|------------------|---------|----------------------|------|-----------------------| | Supply voltage | V _{CC} | -0.3 | 3.6 | V | V _{CC} , GND | | Supply voltage | V _{LED} | -0.3 | 4.4 | V | | | Input voltage | V _{IN} | GND-0.3 | V _{CC} +0.3 | V | TxD, SD | | Output (Ext.) voltage | V _{OUT} | GND-0.3 | V _{CC} +0.3 | V | RxD | | Storage temperature | T _{ST} | -40 | 100 | °C | | | Solder temperature | T _{SOL} | | 230 | °C | See page 8. | | ESD | | | 400 | V | | **Table 3. Recommended Operating Conditions** | Parameter | Symbol | Min | Max | Unit | |-------------------------------|-----------------|-----|-----|------| | Supply voltage | V _{CC} | 2.4 | 3.6 | V | | Supply voltage, LEDA | V_{LED} | 2.4 | 4.2 | V | | Ambient operating temperature | T _{OP} | -30 | 85 | °C | **Table 4. Electrical Characteristics** | Parameter | Symbol | Condition | Min | Typical | Max | Unit | Remarks | |---------------------------|------------------|--------------------------|----------------------|---------|---------------------|------|---------------------------------| | High-level input voltage | V _{IH} | | 0.75V _{CC} | | | V | TxD, SD | | Low-level input voltage | V _{IL} | | | | 0.25V _{CC} | V | TxD, SD | | High-level output voltage | V _{OH} | I _{OH} =100 μA | V _{CC} -0.4 | | | V | RxD | | Low-level output voltage | V _{OL} | I _{OL} =-100 μA | | | 0.1V _{CC} | V | RxD | | Transmitter current | I _{LED} | | | 40 | 55 | mA | | | Receive current | I _{CC} | | | 100 | 300 | μΑ | Idle | | Shutdown current | I _{STB} | | | | 1 | μΑ | SD=V _{CC} ,
TxD=0 V | Table 4. Electrical Characteristics (Continued) | Parameter | Symbol | Condition | Min | Typical | Max | Unit | Remarks | |---|---|----------------------------|-----|---------|-----|--------------------|---| | RxD rise/fall time | T _R , T _F | Cload=25 pF | 40 | | 100 | ns | 10% and 90% | | RxD pulse width | t _{PWA} | SIR <u><</u> 115.2 Kbps | 1.0 | | 5 | μs | Input pulse=1.6
µs; rise/fall
time<600 ns | | RxD pulse width,
alternate 3/16 th of
pulse duration. See
IrDA Physical Layer
specs. | t _{PWA} | SIR <u><</u> 115.2 Kbps | 1.2 | | 90 | μs | Input pulse=78
µs (3/16*(1/
2400)) | | Power shutdown time | T _{SD} | | | 0.1 | 200 | μs | | | Startup time | T _{STU} | | | 200 | | μs | | | Latency | T _{RRT} | | | 150 | | μs | | | LED protection timeout | | | 105 | 180 | 270 | μs | Protects LED
when TxD is left
high | | Trans. radiant intensity | IE | I _{LED} =40 mA | 3.6 | | 72 | mW/sr | θh, θν <u><(+</u> 15°) | | Threshold irradiance | E _{emin} | V _{CC} =3.3 V | | | 9 | μW/cm ² | θh, θν <u><(+</u> 15°) | | Input irradiance | E _{emax} | V _{CC} =3.3 V | | | 500 | mW/cm ² | θh, θν <u><(+</u> 15°) | | Angle of half intensity | θ | | | 20 | | 0 | Hor. and vert. | | Peak wavelength | λρ | | | 870 | | nm | | | Unless otherwise not | Jnless otherwise noted: V _{CC} =3.3 V, GND=0 V, TA=25 °C | | | | | | | **Caution:** This component is susceptible to damage from electrostatic discharge (ESD). To prevent damage and/or degradation that might be induced by ESD, use normal static precautions in handling and assembly of this component. **Note:** TxD *must* be held low during the transition from shutdown to active to ensure that the circuitry is properly set to communicate. ### **ZHX1201 Tape and Reel Specifications** Figure 4 shows the ZHX1201 reel specifications, and Figure 5 shows the ZHX1201 tape specifications. Figure 4. ZHX1201 Reel Specifications Figure 5. ZHX1201 Tape Specifications ZiLOG ### **ZHX1201 Soldering and Cleaning Recommendations** Follow these recommendations to maintain the performance of the ZHX1201 transceiver. ### **Reflow Soldering** - Reflow soldering paste is recommended. - Preheat: 120~150 °C, 60 to 120 seconds - Heating up and cooling down: 5 °C/second - Maximum number of reflows: 2 - The temperature profile at the top surface of the ZHX1201 transceiver, shown in Figure 6, is recommended. Figure 6. Temperature Profile for the Top Surface ### **Manual Soldering** - Use 63/37 or silver solder. - Temperature at solder iron tip: no more than 280 °C - Finish soldering within 3 seconds. - Handle only after ZHX1201 has cooled off. ### Cleaning Perform cleaning under the following conditions: - Cleaning agent: alcohol - Temperature and time 30 seconds below 50 °C or 3 minutes below 30 °C - Ultrasonic cleaning: below 20 W ### **Moisture Prevention Guidelines** To avoid moisture absorption during transportation and storage, ZHX1201 reels are packed in aluminum envelopes (see Figure 7) that contain a desiccant with a humidity indicator. While this packaging is an impediment to moisture absorption, it is by no means absolute, and no warranty is implied. The user must store these parts in a controlled environment to prevent moisture entry. Please read the label on the aluminum bag for indicator instructions. Figure 7. ZHX1201 Packaging ### **Baking** It is recommended that parts that have been stored over 12 months or unpacked over 72 hours be baked under the following guidelines. #### Reels 60 °C for 48 hours or more #### **Loose Parts** 100 °C for 4 hours or more or • 125 °C for 2 hours or more or 150 °C for 1 hour or more ## **Mechanical Drawing** Figure 8 shows the mechanical specification for the ZHX1201 transceiver. Figure 8. ZHX1201 Mechanical Drawing ### **Ordering Information** Use the following information to order the ZHX1201 transceiver: ZHX1201MB115THTR 2500 per reel ### **Customer Feedback Form** If you experience any problems while operating this product, or if you note any inaccuracies while reading this product specification, please copy and complete this form, then mail or fax it to ZiLOG (see *Return Information*, below). We also welcome your suggestions! ### **Customer Information** | Name | Country | |----------------|---------| | Company | Phone | | Address | Fax | | City/State/Zip | email | #### **Product Information** | Serial # or Board Fab #/Rev # | | |--------------------------------|--| | Software Version | | | Document Number | | | Host Computer Description/Type | | #### **Return Information** ZiLOG System Test/Customer Support 532 Race Street San Jose, CA 95126-3432 Fax: (408) 558-8300 Customer Service: www.zilog.com ### **Problem Description or Suggestion** Provide a complete description of the problem or your suggestion. If you are reporting a specific problem, include all steps leading up to the occurrence of the problem. Attach additional pages as necessary.