Make: Books

Making
Things See o

k|
Greg Borenstein

Make:

makezine.com

Making Things See

3D Vision with Kinect, Processing, Arduino, and MakerBot

Greg Borenstein

<

MAKERMEDIA

Sebastopol, CA

Making Things See

by Greg Borenstein

Copyright 2012 © Greg Borenstein. All rights reserved.
Printed in Canada.

Published by Maker Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

Maker Media books may be purchased for educational, business, or sales promotional use. Online editions are also avail-
able for most titles (my.safaribooksonline.com). For more information, contact O'Reilly Media’s corporate/institutional sales
department: 800-998-9938 or corporate@oreilly.com.

Editors: Andrew Odewahn, Brian Jepson
Production Editor: Holly Bauer
Proofreader: Linley Dolby

Indexer: Fred Brown

Compositor: Nancy Kotary

Cover Designer: Mark Paglietti
Interior Designer: Ron Bilodeau

Illustrator: Rebecca Demarest

January 2012: First Edition.

Revision History for the First Edition:

2012-01-04 First release
2012-03-16 Second release
2013-03-22 Third release

See http://oreilly.com/catalog/errata.csp?isbn=0636920020684 for release details.

The Make logo and Maker Media logo are registered trademarks of Maker Media, Inc. Many of the designations used by
manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in this
book, and Maker Media, Inc., was aware of a trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and author assume no responsibility
for errors or omissions, or for damages resulting from the use of the information contained herein.

ISBN: 978-1-449-30707-3
[T

For Jacob and Ellie and Sophie and Amalia. The future is yours.

2

~J.

Preface............ .

What Is the Kinect?...................

How Does It Work? Where Did It Come From?
Kinect Artists

Working with the Depth Image.......

Images and Pixels

Project 1: Installing the SimpleOpenNI Processing Library
Project 2: Your First Kinect Program
Project 3: Looking at a Pixel
Converting to Real-World Distances
Project 4: A Wireless Tape Measure
Project 5: Tracking the Nearest Object
Projects

Project 6: Invisible Pencil

Project 7: Minority Report Photos
Exercises

Working with Point Clouds............

What You'll Learn in This Chapter
Welcome to the Third Dimension
Drawing Our First Point Cloud
Making the Point Cloud Move
Viewing the Point Cloud in Color
Making the Point Cloud Interactive
Projects

Project 8: Air Drum Kit

Project 9: Virtual Kinect

Conclusion

....... 1

1
10

44
45
53
61
67
69
76
84
86
96

107

110
111
113
119
126
129
139
139
157
182

vi

4. Working with the SkeletonData 185
A Note About Calibration 192
Stages in the Calibration Process 193
User Detection 194
Accessing Joint Positions 202
Skeleton Anatomy Lesson 209
Measuring the Distance Between Two Joints 219
Transferring Orientation in 3D 228
Background Removal, User Pixels, and the Scene Map 246
Tracking Without Calibration: Hand Tracking and Center of Mass 254
Projects 263
Project 10: Exercise Measurement 265
Project 11:"Stayin’ Alive”: Dance Move Triggers MP3 279
Conclusion 299

5. Scanning for Fabrication.................. 301
Intro to Modelbuilder 306
Intro to MeshLab 313
Making a Mesh from the Kinect Data 316
Looking at Our First Scan 322
Cleaning Up the Mesh 324
Looking at Our Corrected Model 331
Prepping for Printing 333
Reduce Polygons in MeshLab 333
Printing Our Model on a MakerBot 336
Sending Our Model to Shapeways 340
Conclusion: Comparing Prints 342

5. Using the Kinect for Robotics............ 345
Forward Kinematics 347
Inverse Kinematics 367
Conclusion 378

7. Conclusion: What's Next?................. 379
Beyond Processing: Other Frameworks and Languages 380
Topics in 3D Programming to Explore 384
Ideas for Projects 388

R. AppendiX..............oooiiii 393
Index.......coooiiiii 411

Preface

When Microsoft first released the Kinect, Matt Webb,
CEO of design and invention firm Berg London,
captured the sense of possibility that had so many
programmers, hardware hackers, and tinkerers so
excited:

“WW2 and ballistics gave us digital computers.
Cold War decentralization gave us the Internet.
Terrorism and mass surveillance: Kinect.”

Why the Kinect Matters

The Kinect announces a revolution in technology akin to those that shaped
the most fundamental breakthroughs of the 20th century. Just like the pre-
miere of the personal computer or the Internet, the release of the Kinect was
another moment when the fruit of billions of dollars and decades of research
that had previously only been available to the military and the intelligence
community fell into the hands of regular people.

Face recognition, gait analysis, skeletonization, depth imaging—this cohort
of technologies that had been developed to detect terrorists in public spaces
could now suddenly be used for creative civilian purposes: building gestural
interfaces for software, building cheap 3D scanners for personalized fabrica-
tion, using motion capture for easy 3D character animation, using biometrics
to create customized assistive technologies for people with disabilities, etc.

vii

Why the Kinect Matters

viii

While this development may seem wide-ranging and diverse, it can be sum-
marized simply: for the first time, computers can see. While we've been able to
use computers to process still images and video for decades, simply iterating
over red, green, and blue pixels misses most of the amazing capabilities that
we take for granted in the human vision system: seeing in stereo, differentiat-
ing objects in space, tracking people over time and space, recognizing body
language, etc. For the first time, with this revolution in camera and image-
processing technology, we're starting to build computing applications that
take these same capabilities as a starting point. And, with the arrival of the
Kinect, the ability to create these applications is now within the reach of even
weekend tinkerers and casual hackers.

Just like the personal computer and Internet revolutions before it, this Vision
Revolution will surely also lead to an astounding flowering of creative and pro-
ductive projects. Comparing the arrival of the Kinect to the personal computer
and the Internet may sound absurd. But keep in mind that when the personal
computer was first invented, it was a geeky toy for tinkerers and enthusiasts.
The Internet began life as a way for government researchers to access one
anothers’ mainframe computers. All of these technologies only came to as-
sume their critical roles in contemporary life slowly as individuals used them
to make creative and innovative applications that eventually became fixtures
in our daily lives. Right now it may seem absurd to compare the Kinect with
the PC and the Internet, but a few decades from now, we may look back on it
and compare it with the Altair or the ARPAnet as the first baby step toward a
new technological world.

The purpose of this book is to provide the context and skills needed to build
exactly these projects that reveal this newly possible world. Those skills include:

« Working with depth information from 3D cameras
+ Analyzing and manipulating point clouds

« Tracking the movement of people’s joints

+ Background removal and scene analysis

« Pose and gesture detection

The first three chapters of this book will introduce you to all of these skills.
You'll learn how to implement each of these techniques in the Processing pro-
gramming environment. We'll start with the absolute basics of accessing the
data from the Kinect and build up your ability to write ever more sophisticated
programs throughout the book. Learning these skills means not just mastering
a particular software library or API, but understanding the principles behind
them so that you can apply them even as the practical details of the technology
rapidly evolve.

And yet even mastering these basic skills will not be enough to build the
projects that really make the most of this Vision Revolution. To do that, you
also need to understand some of the wider context of the fields that will be
revolutionized by the cheap, easy availability of depth data and skeleton in-
formation. To that end, this book will provide introductions and conceptual

Preface

overviews of the fields of 3D scanning, digital fabrication, robotic vision, and
assistive technology. You can think of these sections as teaching you what you
can do with the depth and skeleton information once you've gotten it. They
will include topics such as:

+ Building meshes

+ Preparing 3D models for fabrication

+ Defining and detecting gestures

+ Displaying and manipulating 3D models

+ Designing custom input devices for people with limited ranges of motion
+ Forward and inverse kinematics

In covering these topics, our focus will expand outward from simply work-
ing with the Kinect to using a whole toolbox of software and techniques. The
last three chapters of this book will explore these topics through a series of
in-depth projects. We'll write a program that uses the Kinect as a scanner to
produce physical objects on a 3D printer, we'll create a game that will help a
stroke patient with physical therapy, and we'll construct a robot arm that cop-
ies the motions of your actual arm. In these projects, we'll start by introducing
the basic principles behind each general field and then seeing how our new-
found knowledge of programming with the Kinect can put those principles
into action. But we won't stop with Processing and the Kinect. We'll work with
whatever tools are necessary to build each application, from 3D modeling pro-
grams to microcontrollers.

This book will not be a definitive reference to any of these topics; each is vast,
comprehensive, and filled with its own fascinating intricacies. This book aims
to serve as a provocative introduction to each area—giving you enough con-
text and techniques to start using the Kinect to make interesting projects and
hoping that your progress will inspire you to follow the leads provided to in-
vestigate further.

Who This Book Is For

At its core, this book is for anyone who wants to learn more about building
creative interactive applications with the Kinect, from interaction and game
designers who want to build gestural interfaces to makers who want to work
with a 3D scanner to artists who want to get started with computer vision.

That said, you will get the most out of it if you are one of the following: a begin-
ning programmer looking to learn more sophisticated graphics and interac-
tions techniques, specifically how to work in three dimensions, or an advanced
programmer who wants a shortcut to learning the ins and outs of working
with the Kinect and a guide to some of the specialized areas that it enables.

You don't have to be an expert graphics programmer or experienced user of
Processing to get started with this book, but if you've never programmed be-
fore, there are probably other much better places to start.

Preface

Who This Book Is For

The Structure of This Book

As a starting point, I'll assume that you have some exposure to the Processing
creative coding language (or can teach yourself that as you go). You should
know the basics from Getting Started with Processing by Casey Reas and Ben
Fry (http://shop.oreilly.com/product/0636920000570.do), Learning Processing by
Dan Shiffman (http://learningprocessing.com), or the equivalent. This book is
designed to proceed slowly from introductory topics into more sophisticated
code and concepts, giving you a smooth introduction to the fundamentals of
making interactive graphical applications while teaching you about the Kinect.
At the beginning, I'll explain nearly everything about each example, and as we
go I'll leave more and more of the details to you to figure out. The goal is for
you to level up from a beginner to a confident intermediate interactive graphics
programmer.

The Structure of This Book

The goal of this book is to unlock your ability to build interactive applications
with the Kinect. It's meant to make you into a card-carrying member of the
Vision Revolution | described at the beginning of this introduction. Member-
ship in this Revolution has a number of benefits. Once you've achieved it, you'll
be able to play an invisible drum set that makes real sounds, make 3D scans
of objects and print copies of them, and teach robots to copy the motions of
your arm.

However, membership in this Revolution does not come for free. To gain entry
into its ranks, you'll need to learn a series of fundamental programming con-
cepts and techniques. These skills are the basis of all the more advanced ben-
efits of membership, and all of those cool abilities will be impossible without
them. This book is designed to build up those skills one at a time, starting from
the simplest and most fundamental and building toward the more complex
and sophisticated. We'll start out with humble pixels and work our way up to
intricate three-dimensional gestures.

Toward this end, the first half of this book will act as a kind of primer in these
programming skills. Before we dive into controlling robots or 3D printing our
faces, we need to start with the basics. The first four chapters of this book cov-
er the fundamentals of writing Processing programs that use the data from
the Kinect.

Processing is a creative coding environment that uses the Java programming
language to make it easy for beginners to write simple interactive applications
that include graphics and other rich forms of media. As mentioned previously,
this book assumes basic knowledge of Processing (or equivalent program-
ming chops), but as we go through these first four chapters, I'll build up your
knowledge of some of the more advanced Processing concepts that are most
relevant to working with the Kinect. These concepts include looping through
arrays of pixels, basic 3D drawing and orientation, and some simple geometric
calculations.

| will attempt to explain each of these concepts clearly and in depth. The idea
is for you not to just to have a few project recipes that you can make by rote,
but to actually understand enough of the flavor of the basic ingredients to be

Preface

http://shop.oreilly.com/product/0636920000570.do
http://learningprocessing.com

able to invent your own “dishes” and modify the ones | present here. At times,
you may feel that I'm beating some particular subject to death, but stick with
it—you'll frequently find that these details become critically important later
on when trying to get your own application ideas to work.

One nice side benefit to this approach is that these fundamental skills are rel-
evant to a lot more than just working with the Kinect. If you master them here
in the course of your work with the Kinect, they will serve you well throughout
all your other work with Processing, unlocking many new possibilities in your
work, and really pushing you decisively beyond beginner status.

There are three fundamental techniques that we need to build all of the fancy
applications that make the Kinect so exciting: processing the depth image,
working in 3D, and accessing the skeleton data. From 3D scanning to robot-
ic vision, all of these applications measure the distance of objects using the
depth image, reconstruct the image as a three-dimensional scene, and track
the movement of individual parts of a user’s body. The first half of this book
will serve as an introduction to each of these techniques. I'll explain how the
data provided by the Kinect makes these techniques possible, demonstrate
how to implement them in code, and walk you through a few simple examples
to show what they might be good for.

Working with the Depth Camera

First off, you'll learn how to work with the depth data provided by the Kinect.
The Kinect uses an IR projector and camera to produce a“depth image” of the
scene in front of it. Unlike conventional images in which each pixel records
the color of light that reached the camera from that part of the scene, each
pixel of this depth image records the distance of the object in that part of
the scene from the Kinect. When we look at depth images, they will look like
strangely distorted black and white pictures. They look strange because the
color of each part of the image indicates not how bright that object is, but
how far away it is. The brightest parts of the image are the closest, and the
darkest parts are the farthest away. If we write a Processing program that ex-
amines the brightness of each pixel in this depth image, we can figure out the
distance of every object in front of the Kinect. Using this same technique and
a little bit of clever coding, we can also follow the closest point as it moves,
which can be a convenient way of tracking a user for simple interactivity.

Working with Point Clouds

This first approach treats the depth data as if it were only two-dimensional. It
looks at the depth information captured by the Kinect as a flat image when
really it describes a three-dimensional scene. In the third chapter, we'll start
looking at ways to translate from these two-dimensional pixels into points in
three-dimensional space. For each pixel in the depth image, we can think of
its position within the image as its x-y coordinates. That is, if we're looking at a
pixel that's 50 pixels in from the top-left corner and 100 pixels down, it has an
x-coordinate of 50 and a y-coordinate of 100. But the pixel also has a grayscale

Preface

The Structure of This Book

xi

The Structure of This Book

Xii

value. And we know from our initial discussion of the depth image that each
pixel’s grayscale value corresponds to the depth of the image in front of it.
Hence, that value will represent the pixel’s z-coordinate.

Once we've converted all our two-dimensional grayscale pixels into three-
dimensional points in space, we have what is called a point cloud—that is, a
bunch of disconnected points floating near each other in three-dimensional
space in a way that corresponds to the arrangement of the objects and people
in front of the Kinect. You can think of this point cloud as the 3D equivalent of a
pixelated image. While it might look solid from far away, if we look closely, the
image will break down into a bunch of distinct points with space visible be-
tween them. If we wanted to convert these points into a smooth continuous
surface, we'd need to figure out a way to connect them with a large number of
polygons to fill in the gaps. This is a process called constructing a mesh, and it’s
something we'll cover extensively later in the book in the chapters on physical
fabrication and animation.

For now, though, there’s a lot we can do with the point cloud itself. First of all,
the point cloud is just cool. Having a live 3D representation of yourself and
your surroundings on your screen that you can manipulate and view from dif-
ferent angles feels a little bit like being in the future. It's the first time in using
the Kinect that you'll get a view of the world that feels fundamentally different
that those that you're used to seeing through conventional cameras.

To make the most of this new view, you're going to learn some of the funda-
mentals of writing code that navigates and draws in 3D. When you start work-
ing in 3D, there are a number of common pitfalls that I'll try to help you avoid.
For example, it’s easy to get so disoriented as you navigate in 3D space that the
shapes you draw end up not being visible. I'll explain how the 3D axes work in
Processing and show you some tools for navigating and drawing within them
without getting confused. Another frequent area of confusion in 3D drawing
is the concept of the camera. To translate our 3D points from the Kinect into a
2D image that we can actually draw on our flat computer screens, Processing
uses the metaphor of a camera. After we've arranged our points in 3D space,
we place a virtual camera at a particular spot in that space, aim it at the points
we've drawn, and, basically, take a picture. Just as a real camera flattens the ob-
jects in front of it into a 2D image, this virtual camera does the same with our
3D geometry. Everything that the camera sees gets rendered onto the screen
from the angle and in the way that it sees it. Anything that’s out of the camera’s
view doesn't get rendered. I'll show you how to control the position of the
camera so that all of the 3D points from the Kinect that you want to see end up
rendered on the screen. I'll also demonstrate how to move the camera around
so we can look at our point cloud from different angles without having to ever
physically move the Kinect.

Working with the Skeleton Data

The third technique is in some ways both the simplest to work with and the
most powerful. In addition to the raw depth information we've been work-
ing with so far, the Kinect can, with the help of some additional software,

Preface

recognize people and tell us where they are in space. Specifically, our Process-
ing code can access the location of each part of a user’s body in 3D: we can get
the exact position of hands, head, elbows, feet, etc.

One of the big advantages of depth images is that computer vision algorithms
work better on them than on conventional color images. The reason Microsoft
developed and shipped a depth camera as a controller for the Xbox was not to
show players cool looking point clouds, but because they could run software
on the Xbox that processes the depth image in order to locate people and
find the positions of their body parts. This process is known as skeletonization
because the software infers the position of a user’s skeleton (specifically, his
joints and the bones that connect them) from the data in the depth image.

By using the right Processing library, we can get access to this user position
data without having to implement this incredibly sophisticated skeletoniza-
tion algorithm ourself. We can simply ask for the 3D position of any joint we're
interested in and then use that data to make our applications interactive. In
Chapter 4, I'll demonstrate how to access the skeleton data from the Kinect
Processing library and how to use it to make our applications interactive. To
create truly rich interactions, we'll need to learn some more sophisticated 3D
programming. In Chapter 3, when working with point clouds, we'll cover the
basics of 3D drawing and navigation. Then, we'll add to those skills by learning
more advanced tools for comparing 3D points with each other, tracking their
movement, and even recording it for later playback. These new techniques
will serve as the basic vocabulary for some exciting new interfaces we can use
in our sketches, letting users communicate with us by striking poses, doing
dance moves, and performing exercises (among many other natural human
movements).

Once we've covered all three of these fundamental techniques for working
with the Kinect, we'll be ready to move on to the cool applications that prob-
ably drew you to this book in the first place. This book’s premise is that what's
truly exciting about the Kinect is that it unlocks areas of computer interaction
that were previously only accessible to researchers with labs full of expensive
experimental equipment. With the Kinect, things like 3D scanning and ad-
vanced robotic vision are suddenly available to anyone with a Kinect and an
understanding of the fundamentals described here. But to make the most of
these new possibilities, you need a bit of background in the actual application
areas. To build robots that mimic human movements, it's not enough just to
know how to access the Kinect's skeleton data, you also need some familiarity
with inverse kinematics, the study of how to position a robot’s joints in order
to achieve a particular pose. To create 3D scans that can be used for fabrication
or computer graphics, it's not enough to understand how to work with the
point cloud from the Kinect, you need to know how to build up a mesh from
those points and how to prepare and process it for fabrication on a MakerBot,
a CNC machine, or 3D printer.

The final two chapters will provide you with introductions to exactly these
topics: 3D scanning for fabrication and 3D vision for robotics.

Preface

The Structure of This Book

Xiii

The Structure of This Book

Xiv

3D Scanning for Digital Fabrication

In Chapter 5, we'll move from people to objects. We'll use the Kinect as a 3D
scanner to capture the geometry of a physical object in digital form and then
we'll prepare that data for fabrication on a 3D printer. We'll learn how to pro-
cess the depth points from the Kinect to turn them into a continuous surface
or mesh. Then we'll learn how to export this mesh in a standard file format so
we can work with it outside of Processing. I'll introduce you to a few free pro-
grams that help you clean up the mesh and prepare it for fabrication. Once our
mesh is ready to go, we'll examine what it takes to print it out on a series of dif-
ferent rapid prototyping systems. We'll use a MakerBot to print it out in plastic
and we'll submit it to Shapeways, a website that will print out our object in a
variety of materials from sandstone to steel.

Computer Vision for Robotics

In Chapter 6, we'll see what the Kinect can do for robotics. Robotic vision is
a huge topic that’s been around for more than 50 years. Its achievements
include robots that have driven on the moon and ones that assemble auto-
mobiles. For this chapter, we'll build a simple robot arm that reproduces the
position of your real arm as detected by the Kinect. We'll send the joint data
from Processing to the robot over a serial connection. Our robot’s brain will be
an Arduino microcontroller. Arduino is Processing’s electronic cousin; it makes
it just as easy to create interactive electronics as Processing does interactive
graphical applications. The Arduino will listen to the commands from Process-
ing and control the robot’s motors to execute them.

We'll approach this project in two different ways. First we'll reproduce the an-
gles of your joints as detected by the Kinect. This approach falls into forward
kinematics, an approach to robotics in which the robot’s final position is the
result of setting its joints to a series of known angles. Then we'll reprogram our
robot so that it can follow the movement of any of your joints. This will be an
experiment in inverse kinematics. Rather than knowing exactly how we want
our robot to move, we'll only know what we want its final position to be. We'll
have to teach it how to calculate all the individual angle changes necessary to
get there. This is a much harder problem than the forward kinematic problem.
A serious solution to it can involve complex math and confusing code. Ours
will be quite simple and not very sophisticated, but will provide an interest-
ing introduction to the problems you'd encounter in more advanced robotics
applications.

None of these chapters are meant to be definitive guides to their respective
areas, but instead to give you just enough background to get started applying
these Kinect fundamentals in order to build your own ideas.

Unlike the first four chapters, which attempt to instill fundamental techniques
deeply, these last three are meant to inspire a sense of the breadth and di-
versity of what's possible with the Kinect. Instead of proceeding slowly and
thoroughly through comprehensive explanations of principles, these later
chapters are structured as individual projects. They’ll take a single project idea
from one of these topic areas and execute it completely from beginning to
end. In the course of these projects, we'll frequently find ourselves moving

Preface

beyond just writing Processing code. We'll have to interview occupational
therapists, work with assistive technology patients, clean up 3D meshes, use
a 3D animation program, solder a circuit, and program an Arduino. Along the
way, yoUu'll gain brief exposure to a lot of new ideas and tools, but nothing like
the in-depth understanding of the first four chapters. We'll move fast. It will be
exciting. You won't believe the things you'll make.

Every step of the way in these projects, we'll rely on your knowledge from
the first half of the book. So pay close attention as we proceed through these
fundamentals, they're the building blocks of everything else throughout this
book, and getting a good grasp on them will make it all the easier for you to
build whatever it is you're dreaming of.

Then, at the end of the book, our scope will widen. Having come so far in your
3D programming chops and your understanding of the Kinect, I'll point you
toward next steps that you can take to take your applications even further.
We'll discuss other environments and programming languages besides Pro-
cessing where you can work with the Kinect. These range from creative coding
libraries in other languages such as C++ to interactive graphical environments
such as Max/MSP, Pure Data, and Quartz Composer. And there’s also Micro-
soft's own set of development tools, which let you deeply integrate the Kinect
with Windows. I'll explain some of the advantages and opportunities of each
environment to give you a sense of why you'd want to try it out. Also, I'll point
you toward other resources that you can use to get started in each area.

In addition to exploring other programming environments, you can take your
Kinect work further by learning about 3D graphics in general. Under the hood,
Processing’s 3D drawing code is based on OpenGL, a widely used standard for
computer graphics. OpenGL is a huge, complex, and powerful system, and Pro-
cessing only exposes you to the tiniest bit of it. Learning more about OpenGL
itself will unlock all kinds of more advanced possibilities for your Kinect ap-
plications. I'll point you toward resources both within Processing and outside
of it that will enable you to continue your graphics education and make ever
more beautiful and compelling 3D graphics.

Acknowledgments

It’s a cliché of acknowledgments to say that all books with solo bylines are
really collaborative efforts. In this case, I'll go further and say that | myself am
one. Specifically, my possession of the necessary knowledge and abilities to
write this book was the direct product of the excellent and patient work of a
series of amazing teachers | had at NYU’s Interactive Telecommunications Pro-
gram. This book would have been inconceivable without them.

Dan Shiffman’s passion spurred my initial interest in the Kinect; his tireless aid
as a professor, technical editor, and friend got me through learning and writ-
ing about it; and his inspiring abilities as a teacher and writer gave me a goal
to aspire to.

Kyle McDonald and Zach Lieberman taught a short, seven-week class in the
spring of 2011 that changed my life. That course introduced me to many of
the techniques and concepts | attempt to pass on in this book. | hope my

Preface

Acknowledgments

XV

Using Code Examples

Xvi

presentation of this material is half as clear and thorough as theirs. Further,
Zach came up with the idea for the artist interviews, which ended up as one of
my favorite parts of this book. And Kyle was invaluable in helping me translate
his work on 3D scanning for fabrication, which makes up the soul of Chapter 5.

Dan O’Sullivan, the chair of ITP, and Red Burns, its founder and patron saint,
gave me the space and institutional support to take on this intimidating proj-
ect and created an environment that gave me the confidence and connec-
tions to complete it.

Lily Szajnberg was my first student and ideal reader. The best explanations in
this book were forced out of me by her hunger to understand and honesty
about when | wasn't making sense.

I'd like to thank Andrew Odewahn and Brian Jepson from O'Reilly. Andrew
was the first person—even before me—to believe | could write a book. His
early feedback helped turn this project from a very long blog post into a book.
Brian’s constant and continuous work has made this book better in a thousand
ways I'll never be able to fully recount.

Max Rheiner created the SimpleOpenNI library | use throughout this book and
acted as a technical editor making sure | got all the details right. This book
would have been more difficult and come out worse without his work.

I'd also like to thank all the artists who agreed to be interviewed: Robert
Hodgin, Elliot Woods, blablabILAB, Nicolas Burrus, Oliver Kreylos, Alejandro
Crawford, Kyle McDonald (again), Josh Blake, and Phil Torrone and Limor
Fried from Adafruit. Your work, and the hope of seeing more like it, is why |
wrote this book.

Huge thanks to Liz Arum and Matt Griffin from MakerBot as well as Catarina
Mota, who helped me get up to speed on making good prints, and Duann
Scott from Shapeways, who made sure my prints would arrive in time to be
included.

And finally, my family and friends and fellow ITP Residents who put up with
me while | was writing: | love you.

Using Code Examples

This book is here to help you get your job done. In general, you may use the
code in this book in your programs and documentation. You do not need to
contact us for permission unless you're reproducing a significant portion of
the code. For example, writing a program that uses several chunks of code
from this book does not require permission. Selling or distributing a CD-ROM
of examples from MAKE books does require permission. Answering a question
by citing this book and quoting example code does not require permission.
Incorporating a significant amount of example code from this book into your
product’s documentation does require permission.

Preface

We appreciate, but do not require, attribution. An attribution usually includes
the title, author, publisher, and ISBN. For example: “Making Things See by Greg
Borenstein (MAKE). Copyright 2012 Greg Borenstein, 978-1-449-30707-3"

If you feel your use of code examples falls outside fair use or the permission
given above, feel free to contact us at permissions@oreilly.com.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width
Used for program listings, as well as within paragraphs to refer to program
elements such as variable or function names, databases, data types, envi-
ronment variables, statements, and keywords.

Constant width bold
Shows commands or other text that should be typed literally by the user.

Constant width italic
Shows text that should be replaced with user-supplied values or by values
determined by context.

' Warning
|

Safari® Books Online

Safari Books Online is an on-demand digital library that lets you easily search
over 7,500 technology and creative reference books and videos to find the
answers you need quickly.

With a subscription, you can read any page and watch any video from our
library online. Read books on your cell phone and mobile devices. Access new
titles before they are available for print, and get exclusive access to manu-
scripts in development and post feedback for the authors. Copy and paste
code samples, organize your favorites, download chapters, bookmark key sec-
tions, create notes, print out pages, and benefit from tons of other time-saving
features.

Maker Media has uploaded this book to the Safari Books Online service. To have
full digital access to this book and others on similar topics from Maker Media
and other publishers, sign up for free at http://my.safaribooksonline.com.

Preface

Safari® Books Online

XVii

mailto:permissions%40oreilly.com?subject=
http://my.safaribooksonline.com

How to Contact Us

XViil

How to Contact Us

Please address comments and questions concerning this book to the publisher:

Maker Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any ad-
ditional information. You can access this page at:

http://www.oreilly.com/catalog/9781449307073
To comment or ask technical questions about this book, send email to:
bookquestions@oreilly.com

For more information about our publications, events, and products, see our
website at http://makermedia.com.

Find us on Facebook: https://www.facebook.com/makemagazine
Follow us on Twitter: https://twitter.com/make

Watch us on YouTube: http://www.youtube.com/makemagazine

Preface

http://www.oreilly.com/catalog/9781449307073
mailto:bookquestions%40oreilly.com?subject=
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

What Is the Kinect?

We've talked a little bit about all the amazing
applications that depth cameras like the Kinect make
possible. But how does the Kinect actually work? What
kind of image does it produce and why is it useful? How
does the Kinect gather depth data about the scene in
front of it? What's inside that sleek little black box?

How Does It Work? Where Did It Come From?

In the next few sections of this introduction, I'll provide some background
about where the Kinect came from as well as a little info on how the device
works. This issue of the Kinect’s provenance may seem like it's only of academ-
ic interest. However, as we'll see, it is actually central when deciding which
of the many available libraries we should use to write our programs with the
Kinect. It's also a fascinating and inspiring story of what the open source com-
munity can do.

What Does the Kinect Do?

The Kinect is a depth camera. Normal cameras collect the light that bounces off
of the objects in front of them. They turn this light into an image that resem-
bles what we see with our own eyes. The Kinect, on the other hand, records
the distance of the objects that are placed in front of it. It uses infrared light to
create an image (a depth image) that captures not what the objects look like,
but where they are in space. In the next section of this introduction, I'll explain
how the Kinect actually works. I'll describe what hardware it uses to capture
this depth image and explain some of its limitations. But first I'd like to explain
why you'd actually want a depth image. What can you do with a depth image
that you can’t with a conventional color image?

First of all, a depth image is much easier for a computer to “understand” than a
conventional color image. Any program that’s trying to understand an image
starts with its pixels and tries to find and recognize the people and objects

IN THIS CHRPTER

How Does It Work?
Where Did It Come From?

Kinect Artists

How Does It Work? Where Did It Come From?

represented by them. If you're a computer program and you're looking at color
pixels, it's very difficult to differentiate objects and people. So much of the
color of the pixels is determined by the light in the room at the time the im-
age was captured, the aperture and color shift of the camera, and so on. How
would you even know where one object begins and another ends, let alone
which object was which and if there were any people present? In a depth im-
age, on the other hand, the color of each pixel tells you how far that part of
the image is from the camera. Since these values directly correspond to where
the objects are in space, they’re much more useful in determining where one
object begins, where another ends, and if there are any people around. Also,
because of how the Kinect creates its depth image (about which you'll learn
more in a second) it is not sensitive to the light conditions in the room at the
time it was captured. The Kinect will capture the same depth image in a bright
room as in a pitch black one. This makes depth images more reliable and even
easier for a computer program to understand.

We'll explore this aspect of depth images much more thoroughly in Chapter 2.

A depth image also contains accurate three-dimensional information about
whatever’s in front of it. Unlike a conventional camera, which captures how
things look, a depth camera captures where things are. The result is that we
can use the data from a depth camera like the Kinect to reconstruct a 3D mod-
el of whatever the camera sees. We can then manipulate this model, viewing
it from additional angles interactively, combining it with other preexisting
3D models, and even using it as part of a digital fabrication process to pro-
duce new physical objects. None of this can be done with conventional color
cameras.

WEe'll begin exploring these possibilities in Chapter 3 and then continue with
them in Chapter 5 when we investigate scanning for fabrication.

And finally, since depth images are so much easier to process than conven-
tional color images, we can run some truly cutting-edge processing on them.
Specifically, we can use them to detect and track individual people, even lo-
cating their individual joints and body parts. In many ways, this is the Kinect'’s
most exciting capability. In fact, Microsoft developed the Kinect specifically
for the opportunities this body-detection ability offered to video games (more
about this in “Who Made the Kinect?” on page 6). Tracking users’ individual
body parts creates amazing possibilities for our own interactive applications.
Thankfully, we have access to software that can perform this processing and
simply give us the location of the users. We don't have to analyze the depth
image ourselves in order to obtain this information, but it's only accessible
because of the depth image’s suitability for processing.

We'll work extensively with the user-tracking data in Chapter 4.

2 Chapter 1

How Does It Work? Where Did It Come From?

What's Inside? How Does It Work?

If you remove the black plastic casing from the Kinect, what will you find?
What are the hardware components that make the Kinect work, and how do
they work together to give the Kinect its abilities? Let’s take a look. Figure 1-1
shows a picture of a Kinect that’s been freed from its case.

Figure 1-1. A Kinect with its plastic casing removed, revealing (from left to right) its IR
projector, RGB camera, and IR camera. (Photo courtesy of iFixit.)

The first thing | always notice when looking at the Kinect au natural is its un-
canny resemblance to various cute movie robots. From Short Circuit's Johnny
5 to Pixar’s WALL-E, for decades movie designers have been creating human-
looking robots with cameras for eyes. It seems somehow appropriate (or
maybe just inevitable) that the Kinect, the first computer peripheral to bring
cutting-edge computer vision capabilities into our homes, would end up look-
ing so much like one of these robots.

Unlike these movie robots, though, the Kinect seems to actually have three
eyes: the two in its center and one off all the way to one side. That “third eye”
is the secret to how the Kinect works. Like most robot “eyes,” the two protuber-
ances at the center of the Kinect are cameras, but the Kinect’s third eye is ac-
tually an infrared projector. Infrared light has a wavelength that’s longer than
that of visible light so we cannot see it with the naked eye. Infrared is perfectly
harmless—we're constantly exposed to it every day in the form of sunlight.

The Kinect's infrared projector shines a grid of infrared dots over everything in
front of it. These dots are normally invisible to us, but it is possible to capture a
picture of them using an IR camera. Figure 1-2 shows an example of what the
dots from the Kinect's projector look like.

| captured this image using the Kinect itself. One of those two cameras | point-
ed out earlier (one of the Kinect's two “eyes”) is an IR camera. It's a sensor spe-
cifically designed to capture infrared light. In Figure 1-1, an image of the Kinect
naked without its outer case, the IR camera is the one on the right. If you look
closely, you can see that this camera’s lens has a greenish iridescent sheen as
compared with the standard visible light camera next to it.

What Is the Kinect? 3

	Preface
	1.	What Is the Kinect?
	How Does It Work? Where Did It Come From?
	Kinect Artists

	2.	Working with the Depth Image
	Images and Pixels
	Project 1: Installing the SimpleOpenNI Processing Library
	Project 2: Your First Kinect Program
	Project 3: Looking at a Pixel
	Converting to Real-World Distances
	Project 4: A Wireless Tape Measure
	Project 5: Tracking the Nearest Object
	Projects
	Project 6: Invisible Pencil
	Project 7: Minority Report Photos
	Exercises

	3.	Working with Point Clouds
	What You’ll Learn in This Chapter
	Welcome to the Third Dimension
	Drawing Our First Point Cloud
	Making the Point Cloud Move
	Viewing the Point Cloud in Color
	Making the Point Cloud Interactive
	Projects
	Project 8: Air Drum Kit
	Project 9: Virtual Kinect
	Conclusion

	4.	Working with the Skeleton Data
	A Note About Calibration
	Stages in the Calibration Process
	User Detection
	Accessing Joint Positions
	Skeleton Anatomy Lesson
	Measuring the Distance Between Two Joints
	Transferring Orientation in 3D
	Background Removal, User Pixels, and the Scene Map
	Tracking Without Calibration: Hand Tracking and Center of Mass
	Projects
	Project 10: Exercise Measurement
	Project 11: “Stayin’ Alive”:
Dance Move Triggers MP3
	Conclusion

	5.	Scanning for Fabrication
	Intro to Modelbuilder
	Intro to MeshLab
	Making a Mesh from the Kinect Data
	Looking at Our First Scan
	Cleaning Up the Mesh
	Looking at Our Corrected Model
	Prepping for Printing
	Reduce Polygons in MeshLab
	Printing our Model on a MakerBot
	Sending Our Model to Shapeways
	Conclusion: Comparing Prints

	6.	Using the Kinect for Robotics
	Forward Kinematics
	Inverse Kinematics
	Conclusion

	7.	Conclusion: What’s Next?
	Beyond Processing: Other Frameworks and Languages
	Topics in 3D Programming to Explore
	Ideas for Projects

	A.	Appendix
		Index

