HV Series, Radial, Conformally Coated, 500 – 10,000 VDC (Industrial Grade)

Overview

KEMET's High Voltage HV Series radial conformally coated ceramic capacitors are designed with COG and X7R dielectrics which feature a 125°C maximum operating temperature. These devices are ideal for high voltage power supplies, DC/DC conversion and well suited for timing, resonant, bypass, and decoupling applications. These high voltage capacitors are widely used in industries related to semiconductors, telecommunications, test/ diagnostic equipment and power/grid.

Benefits

- Operating temperature range of -55°C to +125°C
- · High shock and vibration capability
- Capacitance range from 150 pF 5.6 μF in X7R
- Capacitance range from 10p F 0.39 μF in COG
- DC voltage ratings of 500 V, 1 kV, 2 kV, 3 kV, 4 kV, 5 kV, 7.5 kV, 10 kV
- High thermal stability
- Encapsulation meets flammability standard UL 94 V-0

Applications

- · Switch mode power supplies
- DC/DC Converters
- Lighting ballast
- Measuring equipment
- Inverters
- Telecom equipment
- High voltage coupling

Ordering Information

10	HV	2	3	N	102		К	N	Μ	
Voltage	Series	Style	/Size	Dielectric	Capacitance Code (pF)		bacitance lerance ¹	Lead Wire Barrier Layer ²	Test Level	Packaging
05 = 500 V 10 = 1,000 V 20 = 2,000 V 30 = 3,000 V 40 = 4,000 V 50 = 5,000 V 75 = 7,500 V 100 = 10,000 V	HV	20 21 22 23 24 25 26	30 31 33 34 35 36	B, W = X7R type N = COG (NPO)	Two significant digits and number of zeros	C0G J = ±5% K = ±10% M = ±20%	X7R K = ±10% M = ±20% P = 0/+100% Z = -20%/+80%	N = Nickel C = Copper	M = MIL-PRF-49467 Group A Screening	Blank = Waffle Tray

¹ Additional capacitance tolerance offerings may be available. Contact KEMET for details.

² Please refer to the Construction section in the datasheet.

Dimensions – Inches (Millimeters)

Series	Style/ Size	Length (L)	Height (H)	Thickness (T)	Lead Spacing ±0.030 (S)	Lead Diameter (F)	Lead Length Minimum (LL)
	20	0.250 (6.35)	0.220 (5.59)	0.200 (5.08)	0.170 (4.32)		
	21	0.320 (8.13)	0.280 (7.11)	0.250 (6.35)	0.220 (5.59)		
	22	0.370 (9.40)	0.300 (7.62)	0.250 (6.35)	0.275 (6.99)		
	23	0.470 (11.94)	0.400 (10.16)	0.270 (6.89)	0.375 (9.53)		
	24	0.570 (14.48)	0.500 (12.70)	0.270 (6.89)	0.475 (12.07)		
	25	0.670 (17.02)	0.600 (15.24)	0.270 (6.89)	0.575 (14.61)	0.005 + 0.004/ 0.000	
HV	26	0.770 (19.56)	0.720 (18.29)	0.270 (6.89)	0.675 (17.15)	0.025 +0.004/-0.002 (0.635 +0.102/-0.051)	0.125 (3.175)
	30	0.450 (11.43)	0.220 (5.59)	0.200 (5.08)	0.300 (7.62)	(0.033 + 0.102/ 0.031)	
	31	0.550 (13.97)	0.280 (7.11)	0.250 (6.35)	0.400 (10.16)		
	33	0.850 (21.59)	0.400 (10.16)	0.270 (6.89)	0.700 (17.78)		
	34	1.050 (26.67)	0.500 (12.70)	0.270 (6.89)	0.975 (24.76)		
	35	1.250 (31.75)	0.600 (15.24)	0.270 (6.89)	1.175 (29.84)		
	36	1.450 (36.83)	0.720 (18.29)	0.270 (6.89)	1.375 (34.92)		

Environmental Compliance

RoHS exemptions 7a & 7c-II apply to HV series parts that have nickel barrier layer leads. All other parts are Not RoHS Compliant.

Electrical Parameters/Characteristics

Item	Parameters/Characteristics
Operating Temperature Range:	-55°C to +125°C
Capacitance Change with Reference to +25°C and 0 VDC Applied (TCC):	X7R: ±15% C0G: ±30 PPM/°C
Aging Rate (Maximum % Cap Loss/Decade Hour):	X7R: 2.0%/decade hour C0G: 0%
¹ Dielectric Withstanding Voltage:	150% of rated voltage for voltage rating of 500 V \leq V \leq 1,000 V 120% of rated voltage for voltage rating of \geq 1,000 V (5±1 seconds and charge/discharge not exceeding 50 mA at 25°C)
² Dissipation Factor (DF) Maximum Limit at 25°C:	X7R: 2.0% C0G: 0.15%
³ Insulation Resistance (IR) Limit at 25°C:	1,000 MΩ microfarads or 100 GΩ (Rated voltage applied for 120±5 seconds)

¹ DWV is the voltage a capacitor can withstand (survive) for a short period of time.

It exceeds the nominal and continuous working voltage of the capacitor.

² See part number specification sheet for frequency and voltage for Capacitance, Dissipation Factor and TCC measurement conditions.

³ To obtain IR limit, divide $M\Omega$ - μ F value by the capacitance and compare to G Ω limit. Select the lower of the two limits.

Note: When measuring capacitance, it is important to ensure the set voltage level is held constant. The HP4284 and Agilent E4980 have a feature known as Automatic Level Control (ALC). The ALC feature should be switched to "ON."

Post Environmental Limits

Dielectric	Rated DC Voltage	Capacitance Value	DF (%)	Capacitance Shift	IR
COG	All	All	0.25	0.3% or ±0.50 pF	10% of Initial Limit
X7R	All	All	3.0	±20%	10% of Initial Limit

Table 1A – HV Series X7R Waterfall

Style		HV20			HV	21			HV	22				HV23		
Voltage	500	1k	2k	500	1k	2k	3k	500	1k	2k	3k	500	1k	2k	3k	4k
Capacitance Capacitance Code						•		•		•						•
680 pf 681								Х	Х	Х	Х					
820 pf 821	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х					
1,000 pf 102	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	X
1,200 pf 122	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
1,500 pf 152	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
1,800 pf 182	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	X
2,200 pf 222	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
2,700 pf 272	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	X
3,300 pf 332	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	X
3,900 pf 392	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	X
4,700 pf 472	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
5,600 pf 562	Х	х		Х	х	Х		Х	х	Х	Х	Х	Х	Х	Х	Х
6,800 pf 682	X	X		X	X	X		X	X	X		X	X	X	X	X
8,200 pf 822	X	X		X	X	X		X	X	X		X	X	X	X	
0.01 µF 103	X	X		X	X	X		X	X	X		X	X	X	X	
0.012 µF 123	X	X		X	X	X		X	X	X		X	X	X	X	
0.015 µF 153	X	X		X	X	~		X	X	X		X	X	X	X	
0.018 µF 183	X	X		X	X			X	X	~		X	X	X	~	
0.022 µF 223	X	X		X	X			X	X			X	X	X		
0.027 µF 273	X	~		X	X			X	X			X	X	X		
0.033 µF 333	X			X	X			X	X			X	X	X		
0.039 µF 393	X			X	X			X	X			X	X	, A		
0.047 µF 473	X			X	X			x	X			X	X			
0.056 µF 563	X			X	X			x	X			X	X			
0.068 µF 683	X			x	X			x	X			X	X			
0.082 µF 823	X			X	^			x	X			x	X			
0.1 µF 104	^			x				x	X			x	X			
0.12 μF 124	-			X				X	^			X	X			
0.12 μr 124 0.15 μF 154	-			X				X				X	X			
0.15 μF 184	-			X				X				x	X			
0.18 μF 184 0.22 μF 224				^				X				X	X			
0.22 μF 224 0.27 μF 274								X				X	X			
0.27 μF 274 0.33 μF 334								⊢^				X	^			
0.33 μF 334 0.39 μF 394												X				
0.39 μF 394 0.47 μF 474	_											X				
	_											X				
0.56 μF 564 Voltage	500	1k	2k	500	1k	2k	3k	500	1k	2k	3k	× 500	1k	2k	3k	4k
Style	500 1k 2 HV20							300		<u>2</u> * 22	J	300	IK	<u>2</u> ⊾ HV23		""

Table 1A - HV Series X7R Waterfall cont.

Sty	/le			HV	24					HV	25					HV	26		
Volt	age	500	1k	2k	3k	4k	5k	500	1k	2k	3k	4k	5k	500	1k	2k	3k	4k	5k
Capacitance	Capacitance Code																		
1,000 pf	102	Х	Х	Х	X	Х	X												
1,200 pf	122	X	Х	Х	X	Х	X									ļ			
1,500 pf	152	Х	Х	Х	X	Х	X												
1,800 pf	182	Х	Х	Х	Х	Х	Х												
2,200 pf	222	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х		
2,700 pf	272	Х	Х	Х	X	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	X		
3,300 pf	332	Х	Х	Х	X	Х	Х	Х	Х	Х	X	Х	Х	Х	Х	Х	Х		
3,900 pf	392	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
4,700 pf	472	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
5,600 pf	562	Х	Х	Х	Х	Х	Х	Х	Х	Х		Х	Х	Х	Х	Х	Х	Х	Х
6,800 pf	682	Х	Х	Х	X	Х	Х	Х	Х	Х		Х	Х	Х	Х	Х	Х	Х	Х
8,200 pf	822	Х	Х	Х	Х	Х		Х	Х	Х		Х	Х	Х	Х	Х	Х	Х	Х
0.01 µF	103	Х	Х	Х	Х	Х		Х	Х	Х		Х	Х	Х	Х	Х	Х	Х	Х
0.012 µF	123	Х	Х	Х	Х	Х		Х	Х	Х		Х		Х	Х	Х	Х	Х	Х
0.015 µF	153	Х	Х	Х	Х			Х	Х	Х		Х		Х	Х	Х	Х	Х	Х
0.018 µF	183	Х	Х	Х	Х			Х	Х	Х				Х	Х	Х	Х	Х	
0.022 µF	223	X	X	X	X			X	X	X				X	X	X	X	X	
0.027 µF	273	X	X	X	X			X	X	X				X	X	X	X	X	
0.033 µF	333	X	X	X	X			X	X	X				X	X	X	X	X	
0.039 µF	393	X	X	X				X	X	X				X	X	X	X		
0.039 µF	473	X	X	X				X	X	X				X	X	X	X		
0.047 µF	563	X	X	X				X	X	X				X	X	X	x		
0.058 µF	683	X	X	X				X	X	X				X	X	X	X		
	823	X	X	X				X	X	X				X	X	X	X		
0.082 µF	104	X						X		X				X	X	X	X		
0.1 µF	104	X	X	Х					X	X							^		
0.12 µF								X	X	X				X	X	X			
0.15 µF	154	X	X					X	X					X	X	X			
0.18 µF	184	X	X					X	X					X	X	Х			
0.22 µF	224	X	Х					X	X					X	X				
0.27 μF	274	Х	Х					Х	Х					Х	Х				
0.33 µF	334	Х	Х					Х	Х					Х	X				
0.39 µF	394	Х	Х					Х	Х					Х	Х				
0.47 µF	474	Х	Х					Х	Х					Х	Х				
0.56 µF	564	Х						Х						Х	Х				
0.68 µF	684	Х						Х						Х	Х				
0.82 µF	824	Х						Х						Х	Х				
1 µF	105	Х						Х						Х	Х				
1.2 µF	125	Х						Х						Х					
1.5 µF	155							Х						Х					
1.8 µF	185							Х						Х					
2.2 µF	225													Х					
2.7 µF	275													Х					
3.3 µF	335													Х					
3.9 µF	395													Х					
Volt	age	500	1k	2k	3k	4k	5k	500	1k	2k	3k	4k	5k	500	1k	2k	3k	4k	5k
Sty	•		L	HV	/24		•			HV	/25				L	H\	/26		

Table 1A - HV Series X7R Waterfall cont.

St	yle			HV30)				HV	/31						HV33	3		
Volt	lage	500	1k	2k	3k	4k	500	1k	2k	3k	4k	5k	500	1k	2k	3k	4k	5k	7.5k
Capacitance	Capacitance Code			I	1	<u> </u>	I		<u> </u>	I	I	1	·		<u> </u>	<u> </u>	I	I	
150 pf	151	Х	Х	Х	Х	Х					<u> </u>								
180 pf	181	X	Х	X	X	X	<u> </u>												ļ
220 pf	221	X	X	X	X	X													
270 pf 330 pf	271 331	X X	X X	X X	X X	X X													
390 pf	391	X	X	X	X	X													
470 pf	471	X	X	X	X	X													
560 pf	561	X	X	X	X	X													1
680 pf	681	X	X	X	X	X	Х	Х	Х	Х	Х	Х							
820 pf	821	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
1,000 pf	102	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
1,200 pf	122	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
1,500 pf	152	Х	Х	Х	Х		Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
1,800 pf	182	Х	Х	Х	Х		Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
2,200 pf	222	Х	Х	Х	Х		Х	Х	Х	Х	Х		Х	Х	Х	Х	Х	Х	Х
2,700 pf	272	X	Х	X	X		X	Х	X	X	Х		Х	Х	X	X	Х	Х	Х
3,300 pf	332	X	Х	X	Х		X	X	X	X	X		X	X	X	X	X	Х	X
3,900 pf	392	X	X	X			X	X	X	X	X		X	X	X	X	X	X	X
4,700 pf	472	X	X	X			X	X	X	X	Х		X	X	X	X	X	X	Х
5,600 pf	562	X	X X	X X			X	X	X	X			X X	X	X	X	X	X	-
6,800 pf 8,200 pf	682 822	X X	X	X			X X	X X	X X	X X			X	X X	X X	X X	X X	Х	
0.01 μF	103	X	X	^			X	X	X	X			X	X	X	X	X		
0.012 µF	123	X	X				X	X	x	<u> </u>			X	x	x	x	X		
0.012 µr	153	X	X				X	X	X				X	X	X	X			
0.018 µF	183	X	X				X	X	X				X	X	X	X			
0.022 µF	223	X	X				X	X	X				X	X	X	X			
0.027 µF	273	Х	Х				Х	Х	Х				Х	Х	Х	Х			
0.033 µF	333	Х	Х				Х	Х	Х				Х	Х	Х	Х			
0.039 µF	393	Х	Х				Х	Х					Х	Х	Х	Х			
0.047 µF	473	Х	Х				Х	Х					Х	Х	Х				
0.056 µF	563	Х	Х				Х	Х					Х	Х	X				
0.068 µF	683	X					X	X					X	X	X				
0.082 µF	823	X					X	X					X	X	X				
0.1 µF	104 124	X					X X	X					X X	X X					
0.12 μF 0.15 μF	124	X X					X	X X					X	X					
0.15 μF 0.18 μF	154	X					X	^					X	X					
0.18 μF	224						X						X	X					
0.22 μr 0.27 μF	274						X						X	X					
0.33 µF	334						X						X	X					
0.39 µF	394						Х						Х	Х					
0.47 µF	474												Х	Х					
0.56 µF	564												Х	Х					
0.68 µF	684												Х	Х					
0.82 µF	824												Х						
1 μF	105												X						
1.2 µF	125												X						
1.5 μF	155												X						
Volt	-	500	1k	2k	3k	4k	500	1k	2k	3k	4k	5k	500	1k	2k	3k	4k	5k	7.5k
St	yle			HV30					<u> </u>	/31						HV33			

Table 1A - HV Series X7R Waterfall cont.

Voltage Capacitance	500	HV34 500 1k 2k 3k 4k 5k 7.5k 1001										HV	30							HV	30			
Capacitanco Capacita	1000) 1k	2k	3k	4k	5k	7.5k	100k	500	1k	2k	3k	4k	5k	7.5k	100k	500	1k	2k	3k	4k	5k	7.5k	100k
Capacitance		<u> </u>					<u> </u>																	
1,000 pf 102	X	X	X	X	Х	Х	X	Х							<u> </u>	Х						r –	r –	
1,200 pf 122	X	X	X	X	X	X	X	X								X						i	ĺ	
1,500 pf 152	X	Х	Х	Х	Х	Х	Х	Х								Х							ĺ	Х
1,800 pf 182	X	Х	Х	Х	Х	Х	Х	Х								Х								Х
2,200 pf 222	X	Х	Х	Х	Х	Х	Х	Х								Х								Х
2,700 pf 272	X	X	Х	Х	Х	Х	Х	Х								Х								Х
3,300 pf 332	X	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х								Х
3,900 pf 392	X	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х								Х
4,700 pf 472	X	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
5,600 pf 562	X	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
6,800 pf 682	X	Х	Х	Х	Х	Х	Х		Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
8,200 pf 822	X	Х	Х	Х	Х	Х			Х	Х	Х	Х	Х	Х	Х		Х	Х	Х	Х	Х	Х	Х	Х
0.01 µF 103	X	X	X	X	X	X			X	X	X	X	X	X	X		X	X	X	X	X	X	X	
0.012 µF 123	X	Х	Х	Х	Х	Х			Х	Х	Х	Х	Х	Х			Х	Х	Х	Х	Х	Х	Х	
0.015 µF 153	X	Х	Х	Х	Х	Х			Х	Х	Х	Х	Х	Х			Х	Х	Х	Х	Х	Х	Х	
0.018 µF 183	Х	X	Х	Х	Х	Х			Х	Х	Х	Х	Х	Х			Х	Х	Х	Х	Х	Х	Х	
0.022 µF 223	X	Х	Х	Х	Х	Х			Х	Х	Х	Х	Х	Х			Х	Х	Х	Х	Х	Х	Х	
0.027 µF 273	X	Х	Х	Х	Х				Х	Х	Х	Х	Х	Х			Х	Х	Х	Х	Х	Х		
0.033 µF 333	X	Х	Х	Х	Х				Х	Х	Х	Х	Х				Х	Х	Х	Х	Х	Х		
0.039 µF 393	X	Х	Х	Х					Х	Х	Х	Х	Х				Х	Х	Х	Х	Х			
0.047 µF 473	X	Х	Х	Х					Х	Х	Х	Х	Х				Х	Х	Х	Х	Х			
0.056 µF 563	X	Х	Х	Х					Х	Х	Х	Х					Х	Х	Х	Х	Х			
0.068 µF 683	X	Х	Х	Х					Х	Х	Х	Х					Х	Х	Х	Х	Х			
0.082 µF 823	X	Х	Х	Х					Х	Х	Х	Х					Х	Х	Х	Х				
0.1 µF 104	X	Х	Х						Х	Х	Х	Х					Х	Х	Х	Х				
0.12 µF 124	X	Х	Х						Х	Х	Х						Х	Х	Х	Х				
0.15 µF 154	X	X	Х						Х	Х	Х						Х	Х	Х	Х				
0.18 µF 184	Х	Х	Х						Х	Х	Х						Х	Х	Х					
0.22 µF 224	X	Х	Х						Х	Х	Х						Х	Х	Х					
0.27 µF 274	Х	Х	Х						Х	Х	Х						Х	Х	Х					
0.33 µF 334	Х	Х							Х	Х							Х	Х	Х					
0.39 µF 394	Х	Х							Х	Х							Х	Х						
0.47 µF 474	X	Х							Х	Х							Х	Х						
0.56 µF 564	Х	Х							Х	Х							Х	Х						
0.68 µF 684	Х	Х							Х	Х							Х	Х						
0.82 µF 824	Х	Х							Х	Х							Х	Х						
1 μF 105	Х	Х							Х	Х							Х	Х						
1.2 μF 125	Х								Х	Х							Х	Х						
1.5 μF 155	Х								Х								Х	Х						
1.8 μF 185	Х								Х								Х	Х						
2.2 μF 225	Х								Х								Х	Х						
2.7 µF 275									Х								Х							
3.3 µF 335									Х								Х							
3.9 µF 395									Х								Х							
4.7 μF 475																	Х							
5.6 µF 565																	Х							
Voltage	500) 1k	2k	3k	4k	5k	7.5k	100k	500	1k	2k	3k	4k	5k	7.5k	100k	500	1k	2k	3k	4k	5k	7.5k	100k
Style		HV34							ни	35							н	36						

Table 1B – HV Series COG Waterfall

Sty	yle		HV	/20			HV	/21			HV	22				HV23	;	
Volt	age	500	1k	2k	3k	500	1k	2k	3k	500	1k	2k	3k	500	1k	2k	3k	4k
Capacitance	Capacitance Code																	
12 pf	120		Х															
15 pf	150		Х	Х	Х	ļ												
18 pf	180		Х	Х	Х													
22 pf	220		Х	Х	Х			Х	Х									
27 pf	270	Х	Х	Х	Х			Х	Х									
33 pf	330	Х	Х	Х	Х			Х	Х	Х	Х	Х	Х					
39 pf	390	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х					
47 pf	470	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х					
56 pf	560	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х					
68 pf	680	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х					
82 pf	820	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
100 pf	101	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
120 pf	121	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
150 pf	151	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
180 pf	181	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
220 pf	221	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
270 pf	271	Х	Х	Х	Х	Х	Х	X	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
330 pf	331	Х	Х	Х	Х	Х	Х	X	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
390 pf	391	Х	Х	Х		Х	Х	X	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
470 pf	471	Х	Х	Х		Х	Х	X	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
560 pf	561	Х	Х	Х		Х	Х	X	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
680 pf	681	Х	Х	Х		Х	Х	X		Х	Х	Х	Х	Х	Х	Х	Х	Х
820 pf	821	Х	Х			Х	Х	X		Х	Х	Х	Х	Х	Х	х	х	1
1,000 pf	102	X	X			X	X	X		X	X	X	X	X	X	X	X	
1,200 pf	122	X	X			X	X	X		X	X	X	X	X	X	X	X	
1,500 pf	152	X				Х	X	X		X	Х	Х		X	Х	Х	X	
1,800 pf	182	X				X	X	X		X	X	X		X	X	X	X	
2,200 pf	222	X				X	X			X	X	X		X	X	X	X	
2,700 pf	272	X				X	X			X	X	X		X	X	X	- ^	
3,300 pf	332	X				X	X			X	X	X		X	X	X		
3,900 pf	392	X				X	X			X	X			X	X	X		
4,700 pf	472	X				X	X	1		X	X			X	X	X		1
5,600 pf	562					1		1		X	X			X	X	X		1
6,800 pf	682					1		1		X	X			X	X			1
8,200 pf	822					1		1		X				X	X			1
0.01 µF	103					1		1		X				X	X			1
0.012 µF	123					1		1		X				X	X			1
0.015 µF	153					1		1		X				X	X			1
0.018 µF	183					1		1		X				X				1
0.022 µF	223					1		1						X				1
0.022 µr	273					1								X				
0.033 µF	333					1								X				
	age	500	1k	2k	3k	500	1k	2k	3k	500	1k	2k	3k	500	1k	2k	3k	4k
Sty	yle		H١	/20			H١	/21			HV	22				HV23		

Table 1B - HV Series COG Waterfall cont.

Sty	yle			H	24					H	/25					HV26	•	
Volt	age	500	1k	2k	3k	4k	5k	500	1k	2k	3k	4k	5k	500	1k	2k	3k	5k
Capacitance	Capacitance Code		•	•	•	•	•	•		•	•	•	•	•	•	•	•	
27 pf	270					Х	Х											
33 pf	330					Х	Х											
39 pf	390					Х	Х											
47 pf	470					Х	Х											
56 pf	560	Х	Х	Х	Х	Х	Х											
68 pf	680	Х	Х	Х	Х	Х	Х											
82 pf	820	Х	Х	Х	Х	Х	Х											
100 pf	101	Х	Х	Х	Х	Х	Х											Х
120 pf	121	Х	Х	Х	Х	Х	Х											Х
150 pf	151	Х	Х	Х	Х	Х	Х											Х
180 pf	181	Х	Х	Х	Х	Х	Х			Х	Х	Х	Х	Х	Х	Х	Х	Х
220 pf	221	Х	Х	Х	Х	Х	Х			Х	Х	Х	Х	Х	Х	Х	Х	Х
270 pf	271	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
330 pf	331	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
390 pf	391	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
470 pf	471	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	X	Х	Х	Х	Х	Х
560 pf	561	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
680 pf	681	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	X	Х	Х	Х	Х	Х
820 pf	821	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
1,000 pf	102	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	X	Х	Х	Х	Х	Х
1,200 pf	122	Х	х	Х	Х	Х	Х	Х	Х	Х	Х	Х	X	Х	х	Х	Х	Х
1,500 pf	152	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
1,800 pf	182	X	X	X	X			X	X	X	X	X	X	X	Х	X	X	X
2,200 pf	222	X	X	X	X			X	X	X	X			X	Х	X	X	X
2,700 pf	272	X	X	X	X			X	X	X	X			X	X	X	X	X
3,300 pf	332	X	X	X	X			X	X	X	X			X	X	X	X	X
3,900 pf	392	X	X	X	X			X	X	X	X			X	X	X	X	X
4,700 pf	472	X	X	X	X			X	X	X	X			X	X	X	X	
5,600 pf	562	X	X	X				X	X	X	X			X	X	X	X	
6,800 pf	682	X	X	X				x	X	X				X	X	X	X	
8,200 pf	822	X	X	X				X	X	X				X	X	X	X	
0.01 µF	103	X	X	X		1		X	X	X			1	X	X	X		l
0.012 μF	103	X	X			1		X	X	X			1	X	X	X		<u> </u>
0.012 μF	153	X	X			1		X	X				1	X	X	X		<u> </u>
0.013 μF	183	X	X			1		X	X				1	X	X	X		<u> </u>
0.022 µF	223	X	X					X	X					X	X	X		
0.022 μF 0.027 μF	273	X	X					X	X					X	X	^		
0.027 µF	333	X	X					X	X					X	X			
0.033 μF 0.039 μF	393	X	X					X	X					X	X			
0.039 μF 0.047 μF	473	X	X					X	X					X	X			
0.047 μF 0.056 μF	563	X	^					^	^					X	X			<u> </u>
0.056 μF 0.068 μF	683	X												X	X			I
U.068 μF Volt		500	1k	2k	3k	4k	5k	500	1k	2k	3k	4k	5k	500		2k	3k	5k
Sty			ĸ		/24	1 ~~	1				/25	1 ~	1		I ''	HV26	1	<u> </u>

Table 1B - HV Series COG Waterfall cont.

Sty	yle			HV30)				HV	/31						HV33	3		
Volt	age	500	1k	2k	3k	4k	500	1k	2k	3k	4k	5k	500	1k	2k	3k	4k	5k	7.5k
Capacitance	Capacitance Code																		
10 pf	100					Х													
12 pf	120					Х													L
15 pf	150	X	X	X	X	X													
18 pf 22 pf	180 220	X X	X X	X X	X X	X X													
22 pi	270	X	X	X	X	X	Х	Х	Х	Х								Х	Х
33 pf	330	X	X	X	X	X	X	X	X	X								X	X
39 pf	390	X	X	X	X	X	X	X	X	X								X	X
47 pf	470	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х						Х	Х
56 pf	560	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х						Х	Х
68 pf	680	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х						Х	Х
82 pf	820	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X
100 pf	101	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X
120 pf 150 pf	<u> </u>	X X	X X	X X	X X	Х	X X	X X	X X	X X	X X	X X	X X	X X	X X	X X	X X	X X	X X
180 pf	181	X	X	X	X		X	X	X	X	X	X	X	X	X	X	X	X	X
220 pf	221	X	X	X	X		X	X	X	X	X	X	X	X	X	X	X	X	X
270 pf	271	X	X	X	X		X	X	X	X	~	~	X	X	X	X	X	X	X
330 pf	331	X	X	X	X		X	X	X	X			X	X	X	X	X	X	X
390 pf	391	Х	Х	Х	Х		Х	Х	Х	Х			Х	Х	Х	Х	Х	Х	Х
470 pf	471	Х	Х	Х	Х		Х	Х	Х	Х			Х	Х	Х	Х	Х	Х	Х
560 pf	561	Х	Х	Х	Х		Х	Х	Х	Х			Х	Х	Х	Х	Х	Х	Х
680 pf	681	X	Х	Х	Х		Х	Х	Х	Х			Х	Х	X	X	Х	Х	Х
820 pf	821	X	X	X			X	X	X	X			X	X	X	X	X	X	
1,000 pf	102	X	X	X			X	X	X	X			X	X	X	X	X	X	
1,200 pf 1,500 pf	122 152	X X	X X	X X			X X	X X	X X	X X			X X	X X	X X	X X	X X	X X	<u> </u>
1,800 pf	182	X	X	X			X	X	X	X			X	X	X	X	^	^	
2,200 pf	222	X	X				X	X	X	X			X	X	X	X			
2,700 pf	272	X	X				X	X	X	~			X	X	X	X			
3,300 pf	332	Х	Х				Х	Х	Х				Х	Х	Х	Х			
3,900 pf	392	Х	Х				Х	Х	Х				Х	Х	Х	Х			
4,700 pf	472	Х	Х				Х	Х	Х				Х	Х	Х	Х			
5,600 pf	562	X	Х				Х	Х	Х				Х	Х	Х	X			
6,800 pf	682						X	X					X	X	X	Х			
8,200 pf	822 103						X X	X X					X X	X	X				
0.01 μF 0.012 μF	103						X X	X					X	X X	X X				
0.012 µF	123						X	^					X	X	X				
0.018 µF	183						X						X	X	X				
0.022 µF	223						X						X	X					
0.027 µF	273						Х						Х	Х					
0.033 µF	333						Х						Х	Х					
0.039 µF	393												Х	Х					L
0.047 µF	473												X	Х					
0.056 µF	563												X						
0.068 μF 0.082 μF	683 823												X X						
0.082 μF 0.1 μF	104												X						
Volt		500	1k	2k	3k	4k	500	1k	2k	3k	4k	5k		1k	2k	3k	4k	5k	7.5k
	-					⁴ *					- * *			IN	1 ^{2 N}				_ /.JK
Sty	yie			HV30					HV	31						HV33			

Table 1B – HV Series COG Waterfall cont.

Sty	yle				HV	34							HV	35							HV	/36			
Volt	tage	500	1k	2k	3k	4k	5k	7.5k	100k	500	1k	2k	3k	4k	5k	7.5k	100k	500	1k	2k	3k	4k	5k	7.5k	100k
Capacitance	Capacitance Code						<u>.</u>	<u>, </u>	<u>, </u>	. <u> </u>						<u>, </u>				<u>,</u>	A		1		
39 pf	390							X	X																
47 pf 56 pf	470 560			Х	X	X X	X X	X	X X								X								
68 pf	680	Х	Х	X	X	X	X	X	X																
82 pf	820	x	x	X	x	x	X	x	X																
100 pf	101	X	X	X	X	X	X	X	X																
120 pf	121	Х	Х	Х	Х	Х	Х	Х	Х													Х	Х	Х	
150 pf	151	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х		Х	Х	Х	Х	Х	Х	Х	
180 pf	181	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х		Х	Х	Х	Х	Х	Х	Х	
220 pf	221	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х		Х	Х	Х	Х	X	Х	Х	
270 pf	271	X	X	X	Х	X	X	X	Х	Х	X	X	Х	X	X	X		X	X	X	X	X	X	X	
330 pf	331	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X		X	X	X	X	X	X	X	
390 pf 470 pf	<u> </u>	X X	X X	X X	X X	X X	X X	X	X X	X X	X X	X X	X X	X X	X X	X X		X X	X X	X X	X X	X X	X X	X X	
560 pf	561	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X		X	X	X	X	X	X	X	
680 pf	681	X	X	X	X	X	X	X	^	X	X	X	X	X	X	X		X	X	X	X	X	X	X	
820 pf	821	X	X	X	X	X	X	X		X	X	X	X	X	X	X		X	X	X	X	X	X	X	
1,000 pf	102	Х	Х	Х	Х	Х	Х	X		Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
1,200 pf	122	Х	Х	Х	Х	Х	Х			Х	Х	Х	Х	Х	Х	Х		Х	Х	Х	Х	X	Х	Х	
1,500 pf	152	Х	Х	Х	Х	Х	Х			Х	Х	Х	Х	Х	Х	Х		Х	Х	Х	Х	Х	Х	Х	Х
1,800 pf	182	Х	Х	Х	Х	Х	Х			Х	Х	Х	Х	Х	Х	Х		Х	Х	Х	Х	Х	Х	Х	
2,200 pf	222	Х	Х	Х	Х	Х	Х			Х	Х	Х	Х	Х	Х			Х	Х	Х	Х	X	X	X	
2,700 pf	272	X	X	X	X	Х	Х			X	X	X	X	X	X			X	X	X	X	X	X	X	
3,300 pf 3,900 pf	<u> </u>	X X	X X	X X	X X					X X	X X	X X	X X	X X	X X			X X	X X	X X	X X	X X	X X	Х	
4,700 pf	472	X	X	X	X					X	X	X	X	^	^			X	X	X	X	X	X		
5,600 pf	562	X	X	X	X					X	X	X	X					X	X	X	X	x	x		
6,800 pf	682	X	X	X	X					X	X	X	X					X	X	X	X	X	X		
8,200 pf	822	Х	Х	Х	Х			1		Х	Х	Х	Х					Х	Х	Х	Х	X			
0.01 µF	103	Х	Х	Х	Х					Х	Х	Х	Х					Х	Х	Х	Х	Х			
0.012 µF	123	Х	Х	Х	Х					Х	Х	Х	Х					Х	Х	Х	Х				
0.015 µF	153	Х	Х	Х	Х					Х	Х	Х	Х					Х	Х	Х	Х				
0.018 µF	183	X	X	X						X	X	X	X					X	X	X	X				
0.022 μF 0.027 μF	223 273	X X	X X	Х						X X	X X	X X	Х					X X	X X	X X	X X				
0.027 μF 0.033 μF	333	X	X							X	X	X						X	X	X	X				
0.039 µF	393	X	X							X	X	X						X	X	X	<u>^</u>				
0.037 µF	473	X	X							X	X	X						X	X	X					
0.056 µF	563	X	X							X	X	X						X	X	X					
0.068 µF	683	Х								Х	Х	Х						Х	Х	Х					
0.082 µF	823	Х								Х	Х	Х						Х	Х	Х					
0.1 µF	104	Х								Х	Х	Х						Х	Х	Х					
0.12 µF	124	X								X	X	Х						X	Х	Х					
0.15 µF	154	Х								X	Х	Х						X	Х	Х					
0.18 µF	184 224									X X								X X							
0.22 μF 0.27 μF	274									X								X							
0.27 µF	334									^								X							
0.33 µF	394																	X							
	tage	500	1k	2k	3k	4k	5k	7.5k	100k	500	1k	2k	3k	4k	5k	7.5k	100k		1k	2k	3k	4k	5k	7.5k	100k
	-		L	L			_ _	1				-"		35		1	1.004		n				_ _	1	
St	yle				HV	34							HV	30							HV	/36			

Packaging Quantities

Style	Waffle Pack Quantity	Style	Waffle Pack Quantity
HV20	56	HV30	28
HV21	28	HV31	20
HV22	28	HV33	20
HV23	28	HV34	4
HV24	20	HV35	4
HV25	20	HV36	4
HV26	20	_	-

Soldering Process

Recommended Soldering Technique:

- Solder Wave
- Hand Soldering (Manual)

Recommended Soldering Profile:

Optimum Wave Solder Profile

Soldering Process cont.

• Hand Soldering (Manual)

Manual Solder Profile with Pre-heating

KEMET recommends following the guidelines and techniques outlined in technical bulletins F2103 and F9207.

Table 2 – Performance & Reliability: Test Methods and Conditions

Stress	Reference	Test or Inspection Method
Solderability	J-STD-002	Method A at 235°C, category 3
Temperature Cycling	JESD22 Method JA-104	50 cycles (-55°C to 220°C), measurement at 24 ±4 hours after test conclusion. 30 minutes maximum dwell time at each temperature extreme. 8 minutes maximum transition time.
Biased Humidity	MIL-STD-202 Method 103	Load humidity: 1,000 hours 85°C/85% RH and rated voltage. Add 100 k Ω resistor. Measurement at 24 hours ±4 hours after test conclusion.
		Low volt humidity: 1,000 hours 85°C/85% RH and 1.5 V. Add 100 k Ω resistor. Measurement at 24 hours ±4 hours after test conclusion.
Immersion	MIL-STD-202 Method 104	Test condition B
Storage Life	MIL-STD-202 Method 108	Unpowered 1,000 hours at 200°C. Measurement at 24 hours ±4 hours after test conclusion. IR Measurement at 150°C
High Temperature Life	MIL-STD-202 Method 108	1,000 hours at 200°C with rated voltage applied.
High Temperature Lead Pull	KEMET Internal	Peel to Failure: 4 lbs (1.84 kg) minimum
Vibration	MIL-STD-202 Method 204	5g for 20 minutes, 12 cycles each of 3 orientations. Note: Use 8" X 5" PCB. 031" thick 7 secure points on one long side and 2 secure points at corners of opposite sides. Parts mounted within 2" from any secure point. Test from 10 – 2000 Hz.
Resistance to Soldering Heat	MIL-STD-202 Method 210	Test Condition B, Solder dip. Note: no preheat of samples.
Terminal Strength	MIL-STD-202 Method 211	Test Condition A. 454 g for 5 – 10 seconds; Bend test at 227 g, 3 bends
Mechanical Shock	MIL-STD-202 Method 213	Test Condition C. Figure 1 of Method 213.
Resistance to Solvents	MIL-STD-202 Method 215	Add aqueous wash chemical – OKEM Clean or equivalent.

Storage & Handling

The un-mounted storage life of a leaded ceramic capacitor is dependent upon storage and atmospheric conditions as well as packaging materials. While the ceramic chips enveloped under the epoxy coating themselves are quite robust in most environments, solderability of the wire lead on the final epoxy-coated product will be degraded by exposure to high temperatures, high humidity, corrosive atmospheres, and long term storage. In addition, packaging materials will be degraded by high temperature and exposure to direct sunlight-reels may soften or warp, and tape peel force may increase.

KEMET recommends storing the un-mounted capacitors in their original packaging, in a location away from direct sunlight, and where the temperature and relative humidity do not exceed 40 degrees centigrade and 70% respectively. For optimum solderability, capacitor stock should be used promptly, preferably within 18 months of receipt. For applications requiring pre-tinning of components, storage life may be extended if solderability is verified. Before cleaning, bonding or molding these devices, it is important to verify that your process does not affect product quality and performance. KEMET recommends testing and evaluating the performance of a cleaned, bonded or molded product prior to implementing and/or qualifying any of these processes.

Construction

Marking

19 = 2019

20 = Week 20

(of manufacturing calendar year)

KEMET Electronics Corporation Sales Offices

For a complete list of our global sales offices, please visit www.kemet.com/sales.

Disclaimer

All product specifications, statements, information and data (collectively, the "Information") in this datasheet are subject to change. The customer is responsible for checking and verifying the extent to which the Information contained in this publication is applicable to an order at the time the order is placed. All Information given herein is believed to be accurate and reliable, but it is presented without guarantee, warranty, or responsibility of any kind, expressed or implied.

Statements of suitability for certain applications are based on KEMET Electronics Corporation's ("KEMET") knowledge of typical operating conditions for such applications, but are not intended to constitute – and KEMET specifically disclaims – any warranty concerning suitability for a specific customer application or use. The Information is intended for use only by customers who have the requisite experience and capability to determine the correct products for their application. Any technical advice inferred from this Information or otherwise provided by KEMET with reference to the use of KEMET's products is given gratis, and KEMET assumes no obligation or liability for the advice given or results obtained.

Although KEMET designs and manufactures its products to the most stringent quality and safety standards, given the current state of the art, isolated component failures may still occur. Accordingly, customer applications which require a high degree of reliability or safety should employ suitable designs or other safeguards (such as installation of protective circuitry or redundancies) in order to ensure that the failure of an electrical component does not result in a risk of personal injury or property damage.

Although all product-related warnings, cautions and notes must be observed, the customer should not assume that all safety measures are indicted or that other measures may not be required.

KEMET is a registered trademark of KEMET Electronics Corporation.