

Character LCDs

Created by lady ada

https://learn.adafruit.com/character-lcds

Last updated on 2022-12-01 01:49:59 PM EST

©Adafruit Industries Page 1 of 31

3

3

4

6

13

18

20

30

31

Table of Contents

Overview

Character vs. Graphical LCDs

LCD Varieties

Wiring a Character LCD

• Installing the Header Pins

• Power and Backlight

• Contrast Circuit

• Bus Wiring

Arduino Code

• Multiple Lines

RGB Backlit LCDs

Python & CircuitPython

• CircuitPython Microcontroller Wiring

• Python Computer Wiring

• CircuitPython Installation of CharLCD Library

• Python Installation of CharLCD Library

• Python & CircuitPython Usage

• Full Example Code

Python Docs

The createChar Command

©Adafruit Industries Page 2 of 31

Overview

We sell tons of lovely character LCDs for use with Arduino (), they are extremely

common and a fast way to have your project show status messages. This tutorial will

show how you can easily connect a character LCD, either 16x2 or 20x4 (http://

adafru.it/198).

The LCDs we sell at Adafruit have a low power LED backlight, run on +5v and require

only 6 data pins to talk to. You can use any data pins you want!

This tutorial will cover character LCDs carried at Adafruit - such as our "standard"

blue&white 16x2, RGB 16x2 LCDs, "standard" blue&white 20x4 and RGB 20x4 (). We

don't guarantee it will work with any other LCDs. If you need help getting other LCDs

to work, please contact the place you purchased it from, they'll be happy to help!

Character vs. Graphical LCDs

There are hundreds of different kinds of LCDs, the ones we'll be covering here are ch

aracter LCDs. Character LCDs are ideal for displaying text. They can also be

configured to display small icons but the icons must be only 5x7 pixels or so (very

small!)

Here is an example of a character LCD, 16 characters by 2 lines:

©Adafruit Industries Page 3 of 31

http://www.adafruit.com/category/63_96
http://www.adafruit.com/products/198
https://www.adafruit.com/category/63_96
https://www.adafruit.com/category/63_96

If you look closely you can see the little rectangles where the characters are

displayed. Each rectangle is a grid of pixels. Compare this to a graphical LCD such as

the following:

The graphical LCD has one big grid of pixels (in this case 128x64 of them) - It can

display text but its best at displaying images. Graphical LCDs tend to be larger, more

expensive, difficult to use and need many more pins because of the complexity

added.

This tutorial isn't about graphical LCDs. Its only about text/character LCDs!

LCD Varieties

OK now that we're clear about what type of LCD we're talking about, its time to also

look at the different shapes they come in.

©Adafruit Industries Page 4 of 31

Although they display only text, they do come in many shapes: from top left we have a

20x4 with white text on blue background, a 16x4 with black text on green, 16x2 with

white text on blue and a 16x1 with black text on gray.

The good news is that all of these displays are 'swappable' - if you build your project

with one you can unplug it and use another size. Your code may have to adjust to the

larger size but at least the wiring is the same!

For this part of the tutorial, we'll be using LCDs with a single strip of 16 pins as shown

above. There are also some with 2 lines of 8 pins like so:

©Adafruit Industries Page 5 of 31

These are much harder to breadboard. If you want some help in wiring these up, chec

k out this page ().

Wiring a Character LCD

Installing the Header Pins

OK now you've got your LCD, you'll also need a couple other things. First is a 10K

potentiometer. This will let you adjust the contrast. Each LCD will have slightly

different contrast settings so you should try to get some sort of trimmer. You'll also

need some 0.1" header - 16 pins long.

If the header is too long, just cut/snap it short!

Next you'll need to solder the header to the LCD.You must do this, it is not OK to just

try to 'press fit' the LCD!

©Adafruit Industries Page 6 of 31

http://learn.adafruit.com/diy-8x2-lcd-shield
http://learn.adafruit.com/diy-8x2-lcd-shield

Also watch out not to apply too much heat, or you may melt the underlying

breadboard. You can try 'tacking' pin 1 and pin 16 and then removing from the

breadboard to finish the remaining solder points

The easiest way we know of doing this is sticking the header into a breadboard and

then sitting the LCD on top while soldering. this keeps it steady.

Power and Backlight

K now we're onto the interesting stuff! Get

your LCD plugged into the breadboard.

©Adafruit Industries Page 7 of 31

https://learn.adafruit.com//assets/925
https://learn.adafruit.com//assets/925

Now we'll provide power to the

breadboard. Connect +5V to the red rail,

and Ground to the blue rail.

Next we'll connect up the backlight for the

LCD. Connect pin 16 to ground and pin 15

to +5V. On the vast majority of LCDs

(including ones from Adafruit) the LCD

includes a series resistor for the LED

backlight.

If you happen to have one that does not

include a resistor, you'll need to add one

between 5V and pin 15. To calculate the

value of the series resistor, look up the

maximum backlight current and the typical

backlight voltage drop from the data

sheet. Subtract the voltage drop from 5

volts, then divide by the maximum current,

then round up to the next standard resistor

value. For example, if the backlight voltage

drop is 3.5v typical and the rated current is

16mA, then the resistor should be (5 - 3.5)/

0.016 = 93.75 ohms, or 100 ohms when

rounded up to a standard value. If you

can't find the data sheet, then it should be

safe to use a 220 ohm resistor, although a

value this high may make the backlight

rather dim.

©Adafruit Industries Page 8 of 31

https://learn.adafruit.com//assets/926
https://learn.adafruit.com//assets/926
https://learn.adafruit.com//assets/927
https://learn.adafruit.com//assets/927

Connect the Arduino up to power, you'll

notice the backlight lights up.

Note that some low-cost LCDs dont come with a backlight. Obviously in this case you

should just keep going.

Contrast Circuit

Next, lets place the contrast pot, it goes on

the side near pin 1.

Connect one side of the pot to +5V and

the other to Ground (it doesn't matter

which goes on what side). The middle of

the pot (wiper) connects to pin 3 of the

LCD.

©Adafruit Industries Page 9 of 31

https://learn.adafruit.com//assets/928
https://learn.adafruit.com//assets/928
https://learn.adafruit.com//assets/929
https://learn.adafruit.com//assets/929
https://learn.adafruit.com//assets/930
https://learn.adafruit.com//assets/930

Now we'll wire up the logic of the LCD -

this is seperate from the backlight! Pin 1 is

ground and pin 2 is +5V.

Now turn on the Arduino, you'll see the

backlight light up (if there is one), and you

can also twist the pot to see the first line

of rectangles appear.

This means you've got the logic, backlight and contrast all worked out. Don't keep

going unless you've got this figured out!

Bus Wiring

Now we'll finish up the wiring by connecting the data lines. There are 11 bus lines: D0

through D7 (8 data lines) and RS, EN, and RW. D0-D7 are the pins that have the raw

data we send to the display. TheRS pin lets the microcontroller tell the LCD whether it

wants to display that data (as in, an ASCII character) or whether it is a command byte

(like, change posistion of the cursor). The EN pin is the 'enable' line we use this to tell

©Adafruit Industries Page 10 of 31

https://learn.adafruit.com//assets/931
https://learn.adafruit.com//assets/931
https://learn.adafruit.com//assets/932
https://learn.adafruit.com//assets/932
https://learn.adafruit.com//assets/933
https://learn.adafruit.com//assets/933

the LCD when data is ready for reading. The RW pin is used to set the direction -

whether we want to write to the display (common) or read from it (less common)

The good news is that not all these pins are necessary for us to connect to the

microcontroller (Arduino). RW for example, is not needed if we're only writing to the

display (which is the most common thing to do anyways) so we can 'tie' it to ground.

There is also a way to talk to the LCD using only 4 data pins instead of 8. This saves

us 4 pins! Why would you ever want to use 8 when you could use 4? We're not 100%

sure but we think that in some cases its faster to use 8 - it takes twice as long to use 4

- and that speed is important. For us, the speed isn't so important so we'll save some

pins!

So to recap, we need 6 pins: RS, EN, D7, D6, D5, and D4 to talk to the LCD.

We'll be using the LiquidCrystal library to talk to the LCD so a lot of the annoying work

of setting pins and such is taken care of. Another nice thing about this library is that

you can use any Arduino pin to connect to the LCD pins. So after you go through this

guide, you'll find it easy to swap around the pins if necessary

As mentioned, we'll not be using

the RW pin, so we can tie it go ground.

That's pin 5 as shown here.

Next is the RS pin #4. We'll use a brown

wire to connect it to Arduino's digital pin

#7.

©Adafruit Industries Page 11 of 31

https://learn.adafruit.com//assets/934
https://learn.adafruit.com//assets/934
https://learn.adafruit.com//assets/935
https://learn.adafruit.com//assets/935

Next is the EN pin #6, we'll use a white

wire to connect it to Arduino digital #8.

Now we will wire up the data pins. DB7 is

pin #14 on the LCD, and it connects with

an orange wire to Arduino #12.

Next are the remaining 3 data

lines, DB6 (pin #13 yellow) DB5 (pin #12

green) and DB4 (pin #11 blue) which we

connect to Arduino #11, 10 and 9.

You should have four 'gap' pins on the LCD

between the 4 data bus wires and the

control wires.

©Adafruit Industries Page 12 of 31

https://learn.adafruit.com//assets/936
https://learn.adafruit.com//assets/936
https://learn.adafruit.com//assets/937
https://learn.adafruit.com//assets/937
https://learn.adafruit.com//assets/938
https://learn.adafruit.com//assets/938

This is what you'll have on your desk.

Arduino Code

Now we must upload some sketch to the Arduino to talk to the LCD. Luckily the Liquid

Crystal library is already built in. So we just need to load one of the examples and

modify it for the pins we used.

If you've changed the pins, you'll want to make a handy table so you can update the

sketch properly.

LCD pin name RS EN DB4 DB5 DB6 DB7

Arduino pin # 7 8 9 10 11 12

Open up the File→Examples→LiquidCrystal→HelloWorld example sketch

Now we'll need to update the pins. Look for this line:

LiquidCrystal lcd(12, 11, 5, 4, 3, 2);

And change it to:

LiquidCrystal lcd(7, 8, 9, 10, 11, 12);

To match the pin table we just made.

Now you can compile and upload the sketch.

©Adafruit Industries Page 13 of 31

https://learn.adafruit.com//assets/939
https://learn.adafruit.com//assets/939

Adjust the contrast if necessary

You can of course use any size or color LCD, such as a 20x4 LCD

©Adafruit Industries Page 14 of 31

Or a black on green

The nice thing about the black on green ones is you can remove the backlight.

Sometimes they dont come with one!

©Adafruit Industries Page 15 of 31

Multiple Lines

One thing you'll want to watch for is how the LCD handles large messages and

multiple lines. For example if you changed this line:

lcd.print("hello, world!");

To this:

lcd.print("hello, world! this is a long long message");

The 16x2 LCD will cut off anything past the 16th character:

©Adafruit Industries Page 16 of 31

But the 20x4 LCD will 'wrap' the first line to the third line! (Likewise the 2nd line runs

into the 4th) This seems really bizarre but its how the LCD memory configured on the

inside. This probably should have been done differently but hey that's what we have

to live with. Hopefully we'll have a future LCD library that is very smart and wraps lines

but for now we are stuck. So when writing long lines to the LCD count your characters

and make sure that you dont accidentally overrun the lines!

©Adafruit Industries Page 17 of 31

RGB Backlit LCDs

We now stock a few different RGB backlight LCDs () . These LCDs work just like the

normal character type, but the backlight has three LEDS (red/green/blue) so you can

generate any color you'd like. Very handy when you want to have some ambient

information conveyed.

After you've wired up the LCD and tested it as above, you can connect the LEDs to

the PWM analog out pins of the Arduino to precisely set the color. The PWM pins are

fixed in hardware and there's 6 of them but three are already used so we'll use the

remaining three PWM pins. Connect the red LED (pin 16 of the LCD) to Digital 3, the

green LED pin (pin 17 of the LCD) to digital 5 and the blue LED pin (pin 18 of the LCD)

to digital 6. You do not need any resistors between the LED pins and the arduino pins

because resistors are already soldered onto the character LCD for you!

Now upload this code to your Arduino to see the LCD background light swirl! (Click

here to see what it looks like in action ()).

// include the library code:

#include <LiquidCrystal.h>

#include <Wire.h>

#define REDLITE 3

#define GREENLITE 5

#define BLUELITE 6

// initialize the library with the numbers of the interface pins

©Adafruit Industries Page 18 of 31

http://www.adafruit.com/category/63
http://www.flickr.com/photos/adafruit/6002862732/
http://www.flickr.com/photos/adafruit/6002862732/

LiquidCrystal lcd(7, 8, 9, 10, 11, 12);

// you can change the overall brightness by range 0 -> 255

int brightness = 255;

void setup() {

 // set up the LCD's number of rows and columns:

 lcd.begin(16, 2);

 // Print a message to the LCD.

 lcd.print("RGB 16x2 Display ");

 lcd.setCursor(0,1);

 lcd.print(" Multicolor LCD ");

 pinMode(REDLITE, OUTPUT);

 pinMode(GREENLITE, OUTPUT);

 pinMode(BLUELITE, OUTPUT);

 brightness = 100;

}

void loop() {

 for (int i = 0; i < 255; i++) {

 setBacklight(i, 0, 255-i);

 delay(5);

 }

 for (int i = 0; i < 255; i++) {

 setBacklight(255-i, i, 0);

 delay(5);

 }

 for (int i = 0; i < 255; i++) {

 setBacklight(0, 255-i, i);

 delay(5);

 }

}

void setBacklight(uint8_t r, uint8_t g, uint8_t b) {

 // normalize the red LED - its brighter than the rest!

 r = map(r, 0, 255, 0, 100);

 g = map(g, 0, 255, 0, 150);

 r = map(r, 0, 255, 0, brightness);

 g = map(g, 0, 255, 0, brightness);

 b = map(b, 0, 255, 0, brightness);

 // common anode so invert!

 r = map(r, 0, 255, 255, 0);

 g = map(g, 0, 255, 255, 0);

 b = map(b, 0, 255, 255, 0);

 Serial.print("R = "); Serial.print(r, DEC);

 Serial.print(" G = "); Serial.print(g, DEC);

 Serial.print(" B = "); Serial.println(b, DEC);

 analogWrite(REDLITE, r);

 analogWrite(GREENLITE, g);

 analogWrite(BLUELITE, b);

}

©Adafruit Industries Page 19 of 31

Python & CircuitPython

It's easy to use a character LCD with CircuitPython or Python and the Adafruit

CircuitPython CharLCD () module. This module allows you to easily write Python code

that controls a character LCD (either single backlight or RGB backlight).

You can use these with any CircuitPython microcontroller board or with a computer

that has GPIO and Python thanks to Adafruit_Blinka, our CircuitPython-for-Python

compatibility library ().

CircuitPython Microcontroller Wiring

First wire up a character LCD to your board exactly as shown on the previous pages

for Arduino using the LCD's parallel data bus. Here's an example of wiring a

Metro M0 Express to a single color backlight character LCD:

Board 5V to LCD pin 2 and one side of the

potentiometer.

Board GND to LCD pin 1, 5, 16, and the

opposite side of the potentiometer.

Potentiometer output (middle pin) to LCD

pin 3

Board D7 to LCD pin 4

Board D8 to LCD pin 6

Board D9 to LCD pin 11

Board D10 to LCD pin 12

Board D11 to LCD pin 13

Board D12 to LCD pin 14

Board D13 to LCD pin 15

Remember just like the Arduino wiring

page mentions there are 4 unused pins on

the LCD, pins 7-10.

If you're using a RGB backlight here's an example of wiring it to your board.

 Remember, if you want to be able to do more than only red, green OR blue, each of

the red, green, blue color channels needs to be wired to a PWM-capable output pin

on your board (check out this script to find all the PWM capable pins on your board ()).

If you'd like to use non-PWM pins, you can, however you'll only be able to turn on red,

green OR blue at one time. The following diagram uses PWM capable pins:

©Adafruit Industries Page 20 of 31

https://github.com/adafruit/Adafruit_CircuitPython_CharLCD
https://github.com/adafruit/Adafruit_CircuitPython_CharLCD
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux
https://learn.adafruit.com//assets/66351
https://learn.adafruit.com//assets/66351
https://learn.adafruit.com/circuitpython-essentials/circuitpython-pwm#wheres-my-pwm-7-21

Board 5V to LCD pin 2, 15, and one side of

the potentiometer.

Board GND to LCD pin 1, 5, and the

opposite side of the potentiometer.

Potentiometer output (middle pin) to LCD

pin 3

Board D7 to LCD pin 4

Board D8 to LCD pin 6

Board D9 to LCD pin 11

Board D10 to LCD pin 12

Board D11 to LCD pin 13

Board D12 to LCD pin 14

Board D3 to LCD pin 16 (red backlight)

Board D5 to LCD pin 17 (green backlight)

Board D6 to LCD pin 18 (blue backlight)

Python Computer Wiring

Since there's dozens of Linux computers/boards you can use we will show wiring for

Raspberry Pi. For other platforms, please visit the guide for CircuitPython on Linux to

see whether your platform is supported ().

Here's the Raspberry Pi wired to a single color backlight character LCD:

Pi 5V to LCD pin 2, 15, and one side of the

potentiometer.

Pi GND to LCD pin 1, 5, 16, and the

opposite side of the potentiometer.

Potentiometer output (middle pin) to LCD

pin 3

Pi GPIO26 to LCD pin 4

Pi GPIO19 to LCD pin 6

Pi GPIO25 to LCD pin 11

Pi GPIO24 to LCD pin 12

Pi GPIO22 to LCD pin 13

Pi GPIO27 to LCD pin 14

If you're using a RGB backlight character LCD, remember each of the red, green, blue

color channels needs to be wired to a PWM-capable output pin on your computer

(pins 10, 12, 18, 21 on the Raspberry Pi).

©Adafruit Industries Page 21 of 31

https://learn.adafruit.com//assets/64317
https://learn.adafruit.com//assets/64317
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux
https://learn.adafruit.com//assets/64380
https://learn.adafruit.com//assets/64380

Here's an example of wiring an RGB backlight character LCD to a Raspberry Pi:

Pi 5V to LCD pin 2, 15, and one side of the

potentiometer.

Pi GND to LCD pin 1, 5, and the opposite

side of the potentiometer.

Potentiometer output (middle pin) to LCD

pin 3

Pi GPIO26 to LCD pin 4

Pi GPIO19 to LCD pin 6

Pi GPIO25 to LCD pin 11

Pi GPIO24 to LCD pin 12

Pi GPIO22 to LCD pin 13

Pi GPIO27 to LCD pin 14

PI GPIO21 to LCD pin 16 (red backlight)

Pi GPIO12 to LCD pin 17 (green backlight)

Pi GPIO18 to LCD pin 18 (blue backlight)

CircuitPython Installation of CharLCD

Library

You'll need to install the Adafruit CircuitPython CharLCD () library on your

CircuitPython board.

First make sure you are running the latest version of Adafruit CircuitPython () for your

board.

Next you'll need to install the necessary libraries to use the hardware--carefully follow

the steps to find and install these libraries from Adafruit's CircuitPython library bundle

(). Our CircuitPython starter guide has a great page on how to install the library

bundle ().

For non-express boards like the Trinket M0 or Gemma M0, you'll need to manually

install the necessary libraries from the bundle:

adafruit_character_lcd

adafruit_mcp230xx

adafruit_74hc595

adafruit_bus_device

•

•

•

•

©Adafruit Industries Page 22 of 31

https://learn.adafruit.com//assets/64626
https://learn.adafruit.com//assets/64626
https://github.com/adafruit/Adafruit_CircuitPython_CharLCD
https://learn.adafruit.com/welcome-to-circuitpython/installing-circuitpython
https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases
https://learn.adafruit.com/welcome-to-circuitpython/circuitpython-libraries
https://learn.adafruit.com/welcome-to-circuitpython/circuitpython-libraries

Before continuing make sure your board's lib folder or root filesystem has the adafruit

_character_lcd, adafruit_mcp230xx, adafruit_74hc595 and adafruit_bus_device files

and folders copied over.

Next connect to the board's serial REPL () so you are at the CircuitPython >>> prompt.

Python Installation of CharLCD Library

You'll need to install the Adafruit_Blinka library that provides the CircuitPython

support in Python. This may also require enabling I2C on your platform and verifying

you are running Python 3. Since each platform is a little different, and Linux changes

often, please visit the CircuitPython on Linux guide to get your computer ready ()!

Once that's done, from your command line run the following command:

sudo pip3 install adafruit-circuitpython-charlcd

If your default Python is version 3 you may need to run 'pip' instead. Just make sure

you aren't trying to use CircuitPython on Python 2.x, it isn't supported!

Python & CircuitPython Usage

To demonstrate the usage of the character LCD we'll initialize it and display text using

Python code.

First you need to import the digitalio module and define all the pins connected to

the LCD. If you followed the Metro M0 wiring for a single color backlight display on

this page you'd want to use:

import board

import digitalio

lcd_rs = digitalio.DigitalInOut(board.D7)

lcd_en = digitalio.DigitalInOut(board.D8)

lcd_d7 = digitalio.DigitalInOut(board.D12)

lcd_d6 = digitalio.DigitalInOut(board.D11)

lcd_d5 = digitalio.DigitalInOut(board.D10)

lcd_d4 = digitalio.DigitalInOut(board.D9)

For use with Raspberry Pi, you need to change the pin assignments to match the Pi

pins chosen. If you followed the Raspberry Pi wiring for a single color backlight

display on this page, you'd want to use:

•

©Adafruit Industries Page 23 of 31

https://learn.adafruit.com/welcome-to-circuitpython/the-repl
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux

import board

import digitalio

lcd_rs = digitalio.DigitalInOut(board.D26)

lcd_en = digitalio.DigitalInOut(board.D19)

lcd_d7 = digitalio.DigitalInOut(board.D27)

lcd_d6 = digitalio.DigitalInOut(board.D22)

lcd_d5 = digitalio.DigitalInOut(board.D24)

lcd_d4 = digitalio.DigitalInOut(board.D25)

To use a Raspberry Pi with a character LCD with an RGB backlight, check out the

example found here ().

For an RGB backlight on the Metro M0 Express, you need to import both the digital

io and pwmio modules and create the extra PWM lines. For example with the Metro

M0 wiring on this page:

import board

import digitalio

import pwmio

lcd_rs = digitalio.DigitalInOut(board.D7)

lcd_en = digitalio.DigitalInOut(board.D8)

lcd_d7 = digitalio.DigitalInOut(board.D12)

lcd_d6 = digitalio.DigitalInOut(board.D11)

lcd_d5 = digitalio.DigitalInOut(board.D10)

lcd_d4 = digitalio.DigitalInOut(board.D9)

red = pwmio.PWMOut(board.D3)

green = pwmio.PWMOut(board.D5)

blue = pwmio.PWMOut(board.D6)

Now define the size of your character LCD in number of columns and rows, for

example for a 16 character wide by 2 row tall display:

lcd_columns = 16

lcd_rows = 2

Next import the character LCD module and create an instance of the Character_LCD

or Character_LCD_RGB class depending on what type of display you have wired up.

 For example for the single color backlight display:

import adafruit_character_lcd.character_lcd as characterlcd

lcd = characterlcd.Character_LCD_Mono(lcd_rs, lcd_en, lcd_d4, lcd_d5, lcd_d6,

lcd_d7, lcd_columns, lcd_rows)

Or for a RGB backlight display:

import adafruit_character_lcd.character_lcd as characterlcd

lcd = characterlcd.Character_LCD_RGB(lcd_rs, lcd_en, lcd_d4, lcd_d5, lcd_d6,

lcd_d7, lcd_columns, lcd_rows, red, green, blue)

©Adafruit Industries Page 24 of 31

https://github.com/adafruit/Adafruit_CircuitPython_CharLCD/blob/master/examples/charlcd_rpi_rgb_simpletest.py

Now you can print a message using the message property, for example to print on

two lines (notice the \n line break added to the string in the middle):

lcd.message = "Hello\nCircuitPython!"

You can turn the cursor on and off using the cursor property. Set to True to turn it

on and False to turn it off, for example to turn on:

lcd.cursor = True

And to turn off:

lcd.cursor = False

You can clear the entire display using the clear function:

lcd.clear()

©Adafruit Industries Page 25 of 31

You can also blink the cursor by turning it on and then calling the blink property

and setting it to a boolean value. Set to True will start blinking the cursor, and False

will disable blinking. For example to print a message and blink the cursor:

lcd.cursor = True

lcd.blink = True

lcd.message = "Blink!"

Finally the move_left message will move the printed message one character left,

like if you wanted to scroll it off the screen. Try it:

lcd.move_left()

Or call move_right to scroll a character back to the right:

lcd.move_right()

©Adafruit Industries Page 26 of 31

If you're using the RGB backlight display there's one extra function you can use to

change the backlight color. Use the color function and provide a three-member list

of red, green, blue color values, i.e. [R, G, B] , that range from 0 to 100. For

example to set the color to red:

lcd.color = [100, 0, 0]

Or to green:

lcd.color = [0, 100, 0]

Or to blue:

lcd.color = [0, 0, 100]

©Adafruit Industries Page 27 of 31

Or any color in between, like a pleasing warm white with full red, nearly full green,

and half blue:

lcd.color = [100, 80, 50]

That's all there is to using a character LCD with CircuitPython! Be sure to see the exa

mples in the character LCD library () too for more fun like creating and printing custom

characters.

Full Example Code

Metro M0/M4 simpletest example:

SPDX-FileCopyrightText: 2021 ladyada for Adafruit Industries

SPDX-License-Identifier: MIT

"""Simple test for monochromatic character LCD"""

import time

import board

import digitalio

import adafruit_character_lcd.character_lcd as characterlcd

Modify this if you have a different sized character LCD

lcd_columns = 16

lcd_rows = 2

Metro M0/M4 Pin Config:

lcd_rs = digitalio.DigitalInOut(board.D7)

lcd_en = digitalio.DigitalInOut(board.D8)

lcd_d7 = digitalio.DigitalInOut(board.D12)

lcd_d6 = digitalio.DigitalInOut(board.D11)

lcd_d5 = digitalio.DigitalInOut(board.D10)

lcd_d4 = digitalio.DigitalInOut(board.D9)

©Adafruit Industries Page 28 of 31

https://github.com/adafruit/Adafruit_CircuitPython_CharLCD/tree/master/examples
https://github.com/adafruit/Adafruit_CircuitPython_CharLCD/tree/master/examples

lcd_backlight = digitalio.DigitalInOut(board.D13)

Initialise the LCD class

lcd = characterlcd.Character_LCD_Mono(

 lcd_rs, lcd_en, lcd_d4, lcd_d5, lcd_d6, lcd_d7, lcd_columns, lcd_rows,

lcd_backlight

)

Turn backlight on

lcd.backlight = True

Print a two line message

lcd.message = "Hello\nCircuitPython"

Wait 5s

time.sleep(5)

lcd.clear()

Print two line message right to left

lcd.text_direction = lcd.RIGHT_TO_LEFT

lcd.message = "Hello\nCircuitPython"

Wait 5s

time.sleep(5)

Return text direction to left to right

lcd.text_direction = lcd.LEFT_TO_RIGHT

Display cursor

lcd.clear()

lcd.cursor = True

lcd.message = "Cursor! "

Wait 5s

time.sleep(5)

Display blinking cursor

lcd.clear()

lcd.blink = True

lcd.message = "Blinky Cursor!"

Wait 5s

time.sleep(5)

lcd.blink = False

lcd.clear()

Create message to scroll

scroll_msg = "<-- Scroll"

lcd.message = scroll_msg

Scroll message to the left

for i in range(len(scroll_msg)):

 time.sleep(0.5)

 lcd.move_left()

lcd.clear()

lcd.message = "Going to sleep\nCya later!"

time.sleep(3)

Turn backlight off

lcd.backlight = False

time.sleep(2)

Raspberry Pi simpletest example:

SPDX-FileCopyrightText: 2021 ladyada for Adafruit Industries

SPDX-License-Identifier: MIT

"""Simple test for monochromatic character LCD on Raspberry Pi"""

import time

import board

import digitalio

import adafruit_character_lcd.character_lcd as characterlcd

Modify this if you have a different sized character LCD

lcd_columns = 16

lcd_rows = 2

Raspberry Pi Pin Config:

©Adafruit Industries Page 29 of 31

lcd_rs = digitalio.DigitalInOut(board.D26)

lcd_en = digitalio.DigitalInOut(board.D19)

lcd_d7 = digitalio.DigitalInOut(board.D27)

lcd_d6 = digitalio.DigitalInOut(board.D22)

lcd_d5 = digitalio.DigitalInOut(board.D24)

lcd_d4 = digitalio.DigitalInOut(board.D25)

lcd_backlight = digitalio.DigitalInOut(board.D4)

Initialise the lcd class

lcd = characterlcd.Character_LCD_Mono(

 lcd_rs, lcd_en, lcd_d4, lcd_d5, lcd_d6, lcd_d7, lcd_columns, lcd_rows,

lcd_backlight

)

Turn backlight on

lcd.backlight = True

Print a two line message

lcd.message = "Hello\nCircuitPython"

Wait 5s

time.sleep(5)

lcd.clear()

Print two line message right to left

lcd.text_direction = lcd.RIGHT_TO_LEFT

lcd.message = "Hello\nCircuitPython"

Wait 5s

time.sleep(5)

Return text direction to left to right

lcd.text_direction = lcd.LEFT_TO_RIGHT

Display cursor

lcd.clear()

lcd.cursor = True

lcd.message = "Cursor! "

Wait 5s

time.sleep(5)

Display blinking cursor

lcd.clear()

lcd.blink = True

lcd.message = "Blinky Cursor!"

Wait 5s

time.sleep(5)

lcd.blink = False

lcd.clear()

Create message to scroll

scroll_msg = "<-- Scroll"

lcd.message = scroll_msg

Scroll message to the left

for i in range(len(scroll_msg)):

 time.sleep(0.5)

 lcd.move_left()

lcd.clear()

lcd.message = "Going to sleep\nCya later!"

Turn backlight off

lcd.backlight = False

time.sleep(2)

Python Docs

Python Docs ()

©Adafruit Industries Page 30 of 31

https://circuitpython.readthedocs.io/projects/charlcd/en/latest/

The createChar Command

You may want to have special characters, for example in this temperature sensor, we

created a 'degree' symbol (°)

You can do that with the createChar command, and to help you out we're going to

point you to this really great website that does the hard work for you! ()

©Adafruit Industries Page 31 of 31

http://www.quinapalus.com/hd44780udg.html
http://www.quinapalus.com/hd44780udg.html

	Character LCDs
	Table of Contents
	Overview
	Character vs. Graphical LCDs
	LCD Varieties
	Wiring a Character LCD
	Arduino Code
	RGB Backlit LCDs
	Python & CircuitPython
	Python Docs
	The createChar Command

	Overview
	Character vs. Graphical LCDs
	LCD Varieties
	Wiring a Character LCD
	Installing the Header Pins
	Power and Backlight
	Contrast Circuit
	Bus Wiring

	Arduino Code
	Multiple Lines

	RGB Backlit LCDs
	Python & CircuitPython
	CircuitPython Microcontroller Wiring
	Python Computer Wiring
	CircuitPython Installation of CharLCD Library
	Python Installation of CharLCD Library
	Python & CircuitPython Usage
	Full Example Code
	Python Docs
	The createChar Command

