NCV898031 Automotive Grade High-Frequency SEPIC Controller Evaluation Board User's Manual http://onsemi.com ## **EVAL BOARD USER'S MANUAL** #### Description This NCV898031 evaluation board provides a convenient way to evaluate a high-frequency current-mode control SEPIC converter design. The topology uses two inductors. No additional components are required, other than dc supplies for the input and enable voltages. The output is rated 7 V/8.5 W with a 2 MHz switching frequency over the typical 6 V to 18 V automotive input voltage range. #### **Key Features** - 7 V/1.22 A Output - 2 MHz Switching Frequency - Input Undervoltage Lockout - Internal Soft-Start - Wide Input Voltage of 6 V to 40 V - Regulates through Load Dump Conditions - Automotive Grade Figure 1. NCV898031 SEPIC Evaluation Board **Table 1. EVALUATION BOARD TERMINALS** | Terminal | Function | | | |------------------|-----------------------------|--|--| | V _{IN} | Positive DC Input Voltage | | | | GND | Common DC Return | | | | V _{OUT} | Regulated DC Output Voltage | | | | EN | Enable Input | | | Table 2. ABSOLUTE MAXIMUM RATINGS (Voltages are with respect to GND) | Rating | Value | Unit | |--|------------|------| | DC Supply Voltage (V _{IN}) | -0.3 to 40 | V | | DC Supply Voltage (EN) | -0.3 to 6 | V | | Junction Temperature | -40 to 150 | °C | | Ambient Temperature (Evaluation Board) | -40 to 105 | °C | Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected. #### **Table 3. ELECTRICAL CHARACTERISTICS** (T_A = 25°C, 4.5 V \leq V_{IN} \leq 40 V, V_{EN} = 2 V, V_{OUT} = 3.3 V, 0 \leq I_{OUT} \leq 1.2 A, unless otherwise specified) | Characteristic | Condition | Typical Value | Unit | | | | | | |------------------------------------|----------------------------|---------------|------|--|--|--|--|--| | Switching | | | | | | | | | | Switching Frequency | - | 2 | MHz | | | | | | | Soft-Start Time | - | 650 | μs | | | | | | | Current Limit | | | | | | | | | | Cycle-by-Cycle Current Limit (FET) | - | 4 | Α | | | | | | | Protections | | | | | | | | | | Input Undervoltage Lockout (UVLO) | V _{IN} Decreasing | < 6 (Note 1) | V | | | | | | | Input Undervoltage Lockout (UVLO) | V _{IN} Increasing | 6.7 | V | | | | | | | Thermal Shutdown | T _A Increasing | 170 | °C | | | | | | Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. #### **PCB LAYERS** Figure 2. Top View Figure 3. Bottom View NCV898031 IC UVLO is 3.05 V (V_{IN} falling). The demo board current limit resistor was selected to limit power when V_{IN} is reduced below 6 V. See Point 3 from Test Procedure. ## **TYPICAL PERFORMANCE** #### Start-up Figure 4. Typical Start-up with V_{IN} = 12 V, I_{OUT} = 1.22 A Figure 5. Operational Waveforms, V_{IN} = 12 V, RI_{OUT} = 1.22 A # **SCHEMATIC** Figure 6. NCV898031 SEPIC Evaluation Board Schematic ## **Table 4. BILL OF MATERIALS** | Reference
Designator(s) | Quantity | Description | Footprint | Manufacturer's
Part Number | Vendor Part # | |--|----------|---|---------------|-------------------------------|----------------------| | C1, C11, C13 | 3 | CAP CER 0.1 μF 50 V 10% X7R 0805 | 805 | GRM21BR71H104KA01L | 490-1666-1-ND | | C2 | 1 | CAP ALUM 10 μF 50 V 20% RADIAL | CAP_RAD_5X11 | EKZE500ELL100ME07D | 565-1702-ND | | С3 | 1 | CAP CER 1 μF 16 V 10% X7R 0603 | 603 | GCM188R71C105KA64D | 490-5241-1-ND | | C4 | 1 | CAP CER 6800PF 50 V 10% X7R 0603 | 603 | GRM188R71H682KA01D | 490-1508-1-ND | | C5 | 1 | CAP CER 680PF 50 V 5% NP0 0603 | 603 | GRM1885C1H681JA01D | 490-1447-1-ND | | C6, C10 | 2 | CAP CER 4.7 μF 50 V 10% X7R 1206 | 1206 | C3216X7R1H475K | 445-8032-1-ND | | C7 | 1 | CAP CER 1 μF 50 V 10% X7R 1206 | 1206 | GCM31MR71H105KA55L | 490-4795-1-ND | | C8 | 1 | CAP CER 100 pF 50 V 5% NP0 0603 | 603 | GCM1885C1H101JA16D | 490-4767-1-ND | | C9 | 1 | CAP HYBRID CONDUCTIVE POLYMER
68 μF 10 V 20% | SUNCON_6p6CAP | 10HVA68M | SUNCON | | C12 | 1 | CAP CER 120 pF 50 V 5% NP0 0603 | 603 | GRM1885C1H121JA01D | 490-1429-1-ND | | D1 | 1 | 60 V, 3.0 A Schottky Rectifier | SMC_DIODE | NRVBS360T3G | ON Semiconductor | | D2, D3 | 2 | DIODE SCHOTTKY 40 V 1 A SOD123FL | SOD_123 | MBR140SFT1G | ON Semiconductor | | L1, L2 | 2 | High Temp SMT Power Inductor 15 μH 2.8 A | XAL4040 | XAL4040-153ME | XAL4040-153ME | | Q1 | 1 | N-CHANNEL MOSFET, LL, 60 V 11.5 mΩ | WDFN8 | NVTFS5820NL | ON Semiconductor | | R1 | 1 | RES 3.01 kΩ 1/10 W 1% 0603 SMD | 603 | CRCW06033K01FKEA | 541-3.01KHCT-ND | | R2 | 1 | RES 10.0 kΩ 1/10 W 1% 0603 SMD | 603 | CRCW060310K0FKEA | 541-10.0KHCT-ND | | R3 | 1 | RES 48.7 kΩ 1/10 W 1% 0603 SMD | 603 | CRCW060348K7FKEA | 541-48.7KHCT-ND | | R4 | 1 | RES 10.0 Ω 1/10 W 1% 0603 SMD | 603 | CRCW060310R0FKEA | 541-10.0HCT-ND | | R5 | 1 | RES 5.6 Ω 1/10 W 5% 0603 SMD | 603 | CRCW06035R60JNEA | 541-5.6GCT-ND | | R6 | 1 | RES 0.0 Ω 1/8 W 0805 SMD | 805 | CRCW08050000Z0EA | 541-0.0ACT-ND | | R7 | 1 | RES 1.00 kΩ 1/10 W 1% 0603 SMD | 603 | CRCW06031K00FKEA | 541-1.00KHCT-ND | | R8, R10 | 2 | RES .22 Ω 1/3 W 1% 0805 SMD | 805 | RL1220S-R22-F | CSR1206FK25L0TR-ND | | R9 | 1 | RES 23.7 Ω 1/10 W 1% 0603 SMD | 603 | CRCW060323R7FKEA | 541-23.7HCT-ND | | TP1, TP3, TP4,
TP7, TP8,
TP14, TP15,
TP16, TP17 | 9 | PIN INBOARD .042" HOLE 1000/PKG | TP | K24C/M | V1055-ND | | TP2, TP5, TP6,
TP9 | 4 | CIRCUIT PIN PRNTD .020"D .425"L | SMALLTP | 3128-2-00-15-00-00-08-0 | ED90324-ND | | TP10, TP11,
TP12, TP13 | 4 | TERM SOLDER TURRET .219" .109"L | TURRET | 2501-2-00-44-00-00-07-0 | 2501-200440000070-ND | | U1 | 1 | 2 MHz Non-Synchronous SEPIC/Boost
Controller | SOIC8_N_ADJ | NCV898031D1R2G | ON Semiconductor | #### **TEST PROCEDURE** - Connect a DC input voltage, within the 6 V to 40 V range, between V_{IN} and GND. - 2. Connect a DC enable voltage, within the 2.0 V to 5.0 V range, between EN/SYNC and GND. - 3. The evaluation board feedback components were selected to for continuous operation at rated 7 V/1.22 A output power at a minimum input voltage of 6 V. The NCV898031 $V_{\rm IN}$ has its operational voltage diode-ored between the converter output and input voltages. The converter turns-on typically at 6.7 V (V_{IN} rising). Once energized, the output voltage supplies power to the IC when the battery voltage is less than the IC V_{IN} input voltage. The decreasing V_{IN} UVLO voltage depends on load current as well as V_{IN} , and will be less than 6 V when operating below rated output current. Figure 7. Evaluation Board Connections ON Semiconductor and the registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized such exists and leages that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirma ## **PUBLICATION ORDERING INFORMATION** #### LITERATURE FULFILLMENT: Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800-282-9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semiconductor Website: www.onsemi.com Order Literature: http://www.onsemi.com/orderlit For additional information, please contact your local Sales Representative