

PIN-PROGRAMMABLE PRECISION CLOCK MULTIPLIER/JITTER ATTENUATOR

CMOS)

Features

- Pin-selectable output frequencies ranging from 8 kHz–708 MHz
- Ultra-low jitter clock outputs as low as 250 fs rms (12 kHz–20 MHz) 270 fs rms (50 kHz–80 MHz)
- Integrated loop filter with selectable
 loop bandwidth (60 Hz–8.4 kHz)
- Meets ITU-T G.8251 and Telcordia OC-192 GR-253-CORE jitter specifications
- Hitless input clock switching with phase build-out and digital hold

Applications

- SONET/SDH OC-48/STM-16 and OC-192/STM-64 line cards
- GbE/10GbE, 1/2/4/8/10GFC line cards
- Optical modulesTest and measurement
- Synchronous Ethernet

ITU G.709 line cards

Dual clock outputs with selectable

Support for ITU G.709 FEC ratios

Pin-controlled output phase adjust

±10% operation with high PSRR

Small size: 6 x 6 mm 36-lead QFN

Single supply 1.8 ±5%, 2.5 or 3.3 V

(255/238, 255/237, 255/236)

LOL, LOS alarm outputs

On-chip voltage regulator

signal format (LVPECL, LVDS, CML,

Description

The Si5323 is a jitter-attenuating precision clock multiplier for high-speed communication systems, including SONET OC-48/OC-192, Ethernet, and Fibre Channel. The Si5323 accepts dual clock inputs ranging from 8 kHz to 707 MHz and generates two equal frequency-multiplied clock outputs ranging from 8 kHz to 1050 MHz. The input clock frequency and clock multiplication ratio are selectable from a table of popular SONET, Ethernet, and Fibre Channel rates. The Si5323 is based on Silicon Laboratories' 3rd-generation DSPLL[®] technology, which provides any-frequency synthesis and jitter attenuation in a highly integrated PLL solution that eliminates the need for external VCXO and loop filter components. The DSPLL loop bandwidth is digitally programmable, providing jitter performance optimization at the application level. Operating from a single 1.8, 2.5, or 3.3 V supply, the Si5323 is ideal for providing clock multiplication and jitter attenuation in high performance timing applications.

Functional Block Diagram

TABLE OF CONTENTS

Section

<u>Page</u>

1. Electrical Specifications
1.2. Three-Level Input Pins (Example with External Resistors)
2. Typical Phase Noise Plots
2.1. Example: SONET OC-192
3. Functional Description
3.1. External Reference
3.2. Further Documentation
3.3. Frequency Plan Tables
4. Pin Descriptions: Si5323
5. Ordering Guide
6. Package Outline: 36-Pin QFN
7. Recommended PCB Layout
8. Si5323 Device Top Mark
Document Change List
Contact Information

1. Electrical Specifications

Table 1. Recommended Operating Conditions

 $(V_{DD} = 1.8 \pm 5\%, 2.5 \pm 10\%, \text{ or } 3.3 \text{ V} \pm 10\%, T_A = -40 \text{ to } 85 \text{ °C})$

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Temperature Range	T _A		-40	25	85	°C
Supply Voltage	V _{DD}	3.3 V nominal	2.97	3.3	3.63	V
		2.5 V nominal	2.25	2.5	2.75	V
		1.8 V nominal	1.71	1.8	1.89	V
		ations are guaranteed and apply bly voltages and an operating ten				

Table 2. DC Characteristics

(V_{DD} = 1.8 ±5%, 2.5 ±10%, or 3.3 V ±10%, T_A = –40 to 85 °C)

Parameter	Symbol	Test Condition	Min	Тур	Max	Units
Supply Current	I _{DD}	LVPECL Format	—	251	279	mA
(Supply current is indepen-		622.08 MHz Out				
dent of V _{DD})		All CKOUTs Enabled ¹				
		LVPECL Format	—	217	243	mA
		622.08 MHz Out				
		Only 1 CKOUT Enabled ¹				
		CMOS Format	—	204	234	mA
		19.44 MHz Out				
		All CKOUTs Enabled				
		CMOS Format	_	194	220	mA
		19.44 MHz Out				
		Only CKOUT1 Enabled				
CKIN Input Pins						
Input Common Mode	V _{ICM}	1.8 V ±5%	0.9	—	1.4	V
Voltage (Input Threshold Voltage)		2.5 V ±10%	1.0	—	1.7	V
(input micshold voltage)		3.3 V ±10%	1.1	—	1.95	V
Input Resistance	CKN _{RIN}	Single-ended	20	40	60	kΩ
Input Voltage Level Limits	CKN _{VIN}	See note ²	0	—	V _{DD}	V
Single-ended Input Voltage Swing	V _{ISE}	f _{CKIN} ≤ 212.5 MHz See Figure 2.	0.2	—	—	V _{PP}
		f _{CKIN} > 212.5 MHz See Figure 2.	0.25	—	—	V _{PP}

Notes:

1. LVPECL outputs require nominal V_{DD} \geq 2.5 V.

2. No overshoot or undershoot.

3. This is the amount of leakage that the 3L inputs can tolerate from an external driver. See Figure 3 on page 9. In most designs, an external resistor voltage divider is recommended.

Table 2. DC Characteristics (Continued) (V_{DD} = 1.8 ±5%, 2.5 ±10%, or 3.3 V ±10%, T_A = -40 to 85 °C)

Parameter	Symbol	Test Condition	Min	Тур	Max	Units
Differential Input Voltage Swing	V _{ID}	f _{CKIN} ≤ 212.5 MHz See Figure 2.	0.2	—		V _{PP}
		f _{CKIN} > 212.5 MHz See Figure 2.	0.25	—		V _{PP}
Output Clocks (CKOUTn) ¹						
Common Mode	CKO _{VCM}	LVPECL 100 Ω load line-to-line	V _{DD} – 1.42	—	V _{DD} – 1.25	V
Differential Output Swing	CKO _{VD}	LVPECL 100 Ω load line-to-line	1.1	—	1.9	V _{PP}
Single-ended Output Swing	CKO _{VSE}	LVPECL 100 Ω load line-to-line	0.5	—	0.93	V _{PP}
Differential Output Voltage	CKO _{VD}	CML 100 Ω load line-to-line	350	425	500	mV _{PP}
Common Mode Output Voltage	CKO _{VCM}	CML 100 Ω load line-to-line	_	V _{DD} – 0.36		V
Differential Output Voltage	CKO _{VD}	LVDS 100 Ω load line-to-line	500	700	900	mV _{PP}
		Low swing LVDS 100 Ω load line-to-line	350	425	500	mV _{PP}
Common Mode Output Voltage	CKO _{VCM}	LVDS 100 Ω load line-to-line	1.125	1.2	1.275	V
Differential Output Resistance	CKO _{RD}	CML, LVDS, LVPECL	—	200	—	Ω
Output Voltage Low	CKO _{VOLLH}	CMOS	_	—	0.4	V
Output Voltage High	CKO _{VOHLH}	V _{DD} = 1.71 V CMOS	0.8 x V _{DD}	—		V
Output Drive Current	СКО _Ю	CMOS Driving into CKO _{VOL} for out- put low or CKO _{VOH} for output high. CKOUT+ and CKOUT– shorted externally.				
		V _{DD} = 1.8 V	—	7.5	—	mA
		V _{DD} = 3.3 V		32	_	mA

Notes:

1. LVPECL outputs require nominal $V_{DD} \ge 2.5$ V.

2. No overshoot or undershoot.

3. This is the amount of leakage that the 3L inputs can tolerate from an external driver. See Figure 3 on page 9. In most designs, an external resistor voltage divider is recommended.

Table 2. DC Characteristics (Continued)

 $(V_{DD} = 1.8 \pm 5\%, 2.5 \pm 10\%, \text{ or } 3.3 \text{ V} \pm 10\%, \text{ T}_{A} = -40 \text{ to } 85 \text{ °C})$

Parameter	Symbol	Test Condition	Min	Тур	Max	Units				
2-Level LVCMOS Input Pins										
Input Voltage Low	V _{IL}	V _{DD} = 1.71 V	—	_	0.5	V				
		V _{DD} = 2.25 V	_	_	0.7	V				
		V _{DD} = 2.97 V	_	_	0.8	V				
Input Voltage High	V _{IH}	V _{DD} = 1.89 V	1.4	—	—	V				
		V _{DD} = 2.25 V	1.8	_	—	V				
		V _{DD} = 3.63 V	2.5	_	—	V				
Input Low Current	۱ _{IL}		—	_	50	μA				
Input High Current	Ι _{ΙΗ}		—	_	50	μA				
Weak Internal Input Pull-up Resistor	R _{PUP}		—	75	—	kΩ				
Weak Internal Input Pull-down Resistor	R _{PDN}		—	75	—	kΩ				
3-Level Input Pins										
Input Voltage Low	V _{ILL}		—	—	$0.15 \times V_{DD}$	V				
Input Voltage Mid	V _{IMM}		0.45 x V _{DD}	_	$0.55 ext{ v}_{ ext{DD}}$	V				
Input Voltage High	V _{IHH}		0.85 x V _{DD}	_	—	V				
Input Low Current	I _{ILL} ³		-20	—	—	μA				
Input Mid Current	I _{IMM} ³		-2	—	2	μA				
Input High Current	I _{IHH} ³		—	_	20	μA				
Notes:										

Notes:

1. LVPECL outputs require nominal $V_{DD} \ge 2.5$ V. **2.** No overshoot or undershoot.

3. This is the amount of leakage that the 3L inputs can tolerate from an external driver. See Figure 3 on page 9. In most designs, an external resistor voltage divider is recommended.

Table 2. DC Characteristics (Continued)

 $(V_{DD} = 1.8 \pm 5\%, 2.5 \pm 10\%, \text{ or } 3.3 \text{ V} \pm 10\%, \text{ T}_{A} = -40 \text{ to } 85 \text{ °C})$

Parameter	Symbol	Test Condition	Min	Тур	Max	Units
LVCMOS Output Pins	I					1
Output Voltage Low	V _{OL}	I _O = 2 mA V _{DD} = 1.71 V	—	—	0.4	V
		I _O = 2 mA V _{DD} = 2.97 V	—	—	0.4	V
Output Voltage High	V _{OH}	I _O = -2 mA V _{DD} = 1.71 V	V _{DD} – 0.4	—		V
		I _O = -2 mA V _{DD} = 2.97 V	V _{DD} – 0.4	—		V
Disabled Leakage Current	I _{OZ}	RST = 0	-100	—	100	μA
Single-Ended Reference C	lock Input Pin	XA (XB with cap to gnd)		1		•
Input Resistance	XA _{RIN}	XTAL/RefCLK	—	12		kΩ
Input Voltage Level Limits	XA _{VIN}	RATE[1:0] = LM, ML, MH, or HM	0	—	1.2	V
Input Voltage Swing	XA _{VPP}		0.5	—	1.2	V _{PP}
Differential Reference Clo	ck Input Pins (XA/XB)				•
Input Resistance	XA/XB _{RIN}	XTAL/RefCLK		12	_	kΩ
Differential Input Voltage Level Limits	XA/XB _{VIN}	RATE[1:0] = LM, ML, MH, or HM	0	—	1.2	V
Input Voltage Swing	XA _{VPP} /XB _{VPP}		0.5	_	1.2	V _{PP, each}

1. LVPECL outputs require nominal $V_{DD} \ge 2.5$ V.

2. No overshoot or undershoot.

3. This is the amount of leakage that the 3L inputs can tolerate from an external driver. See Figure 3 on page 9. In most designs, an external resistor voltage divider is recommended.

Figure 2. Rise/Fall Time Characteristics

1.1. Three-Level (3L) Input Pins (No External Resistors)

Figure 3. Three-Level Input Pins

1.2. Three-Level Input Pins (Example with External Resistors)

(or similar) resistor pack

Figure 4. Three-Level Input Pins

Table 3. Three-Level Input Pins^{1,2,3,4}

Parameter	Min	Мах
Input Low Current	–30 μA	—
Input Mid Current	–11 μA	–11 μA
Input High Current	—	–30 μA

Notes:

1. The current parameters are the amount of leakage that the 3L inputs can tolerate from an external driver using the external resistor values indicated in this example. In most designs, an external resistor voltage divider is recommended.

2. Resistor packs are only needed if the leakage current of the external driver exceeds the current specified in Table 2, limm. Any resistor pack may be used (e.g., Panasonic EXB-D10C183J). PCB layout is not critical.

- 3. If a pin is tied to ground or V_{DD} , no resistors are needed.
- 4. If a pin is left open (no connect), no resistors are needed.

Table 4. AC Characteristics

(V_{DD} = 1.8 ±5%, 2.5 ±10%, or 3.3 V ±10%, T_A = –40 to 85 °C)

Parameter	Symbol	Test Condition	Min	Тур	Max	Units
CKIN Input Pins						
Input Frequency	CKN _F		.008		710	MHz
Input Duty Cycle (Minimum Pulse	-	Whichever is smaller	40	_	60	%
Width)	CKN _{DC}	(i.e., the 40%/60% limitation applies only to high clock frequencies)	2		_	ns
Input Capacitance	CKN _{CIN}			_	3	pF
Input Rise/Fall Time	CKN _{TRF}	20–80% See Figure 2	_	_	11	ns
CKOUTn Output Pins						
Output Frequency (Output not configured for CMOS or disable)	CK _{OF}		.008		710	MHz
Maximum Output Frequency in CMOS Format	CKO _{FMC}		_	_	212.5	MHz
Single-ended Output Rise/Fall (20–80%)	CKO _{TRF}	CMOS Output V _{DD} = 1.71 Cload = 5 pF	_	_	8	ns
		CMOS Output V _{DD} = 2.97 Cload = 5 pF	—	_	2	ns
Differential Output Rise/Fall Time	CKO _{TRF}	20 to 80 %, f _{OUT} = 622.08	—	230	350	ps
Output Duty Cycle Differential Uncertainty	CKO _{DC}	100 Ω Load Line to Line Measured at 50% Point (not for CMOS)	_		±40	ps
LVCMOS Input Pins						
Minimum Reset Pulse Width	t _{RSTMIN}		1	—	—	μs
Input Capacitance	C _{IN}		_		3	pF
LVCMOS Output Pins						
Rise/Fall Times	t _{RF}	C _{LOAD} = 20 pf See Figure 2	_	25	—	ns
LOSn Trigger Window	LOS _{TRIG}	From last CKIN↑ to LOS↑			750	μs
Time to Clear LOL after LOS Cleared	t _{CLRLOL}	f _{in} unchanged and XA/XB stable. ↓ LOS to ↓ LOL		10	_	ms

Table 4. AC Characteristics (Continued)

 $(V_{DD} = 1.8 \pm 5\%, 2.5 \pm 10\%, \text{ or } 3.3 \text{ V} \pm 10\%, \text{ T}_{A} = -40 \text{ to } 85 \text{ °C})$

Parameter	Symbol	Test Condition	Min	Тур	Max	Units
PLL Performance	•					•
Lock Time	t _{lockhw}	Whenever RST, FRQTBL, RATE, BWSEL, or FRQSEL are changed, with valid CKIN to ↓ LOL; BW = 100 Hz	_		1.2	sec
Output Clock Phase Change	t _{P_STEP}	After clock switch $f3 \ge 128 \text{ kHz}$		200	—	ps
Closed Loop Jitter Peaking	J _{PK}		_	0.05	0.1	dB
Jitter Tolerance	J _{TOL}	BW determined by BWSEL[1:0]	5000/ BW	_	_	ns pk- pk
Spurious Noise	SP _{SPUR}	Max spur @ n x f3 (n ≥ 1, n x f3 < 100 MHz)	—	-93	-70	dBc
Phase Change due to Temperature Variation	t _{TEMP}	Max phase changes from – 40 to +85 °C	_	300	500	ps

Table 5. Performance Specifications^{1, 2, 3, 4, 5}

 $(V_{DD} = 1.8 \pm 5\%, 2.5 \pm 10\%, \text{ or } 3.3 \text{ V} \pm 10\%, \text{ T}_{A} = -40 \text{ to } 85 \text{ °C})$

Parameter	Symbol	Test Condition	Min	Тур	Мах	Unit
Jitter Generation	J _{GEN}	50 kHz–80 MHz	—	0.27	0.42	ps rms
$f_{IN} = f_{OUT} = 622.08 \text{ MHz},$,	12 kHz–20 MHz	—	0.25	0.41	ps rms
LVPECL Output Format BW = 120 Hz		800 Hz–80 MHz	—	0.28	0.45	ps rms
Phase Noise	CKO _{PN}	1 kHz offset	—	-106	-87	dBc/Hz
f _{IN} = f _{OUT} = 622.08 MHz LVPECL Output Format		10 kHz offset	—	-121	-100	dBc/Hz
		100 kHz offset	—	-122	-104	dBc/Hz
		1 MHz offset	—	-132	-119	dBc/Hz

Notes:

1. BWSEL [1:0] loop bandwidth settings provided in Table 11 on page 27.

2. 114.285 MHz 3rd OT crystal used as XA/XB input.

V_{DD} = 2.5 V
 T_A = 85 °C
 Test condition: f_{IN} = 622.08 MHz, f_{OUT} = 622.08 MHz, LVPECL clock input: 1.19 Vppd with 0.5 ns rise/fall time (20-80%), LVPECL clock output.

Table 6. Thermal Characteristics

(V_{DD} = 1.8 ±5%, 2.5 ±10%, or 3.3 V ±10%, T_A = –40 to 85 °C)

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Thermal Resistance Junction to Ambient	θ_{JA}	Still Air	_	32	_	°C/W
Thermal Resistance Junction to Case	θ _{JC}	Still Air	—	14	—	°C/W

Table 7. Absolute Maximum Ratings

Parameter	Symbol	Value	Unit				
DC Supply Voltage	V _{DD}	-0.5 to 3.8	V				
LVCMOS Input Voltage	V _{DIG}	–0.3 to (V _{DD} + 0.3)	V				
CKINn Voltage Level Limits	CKN _{VIN}	0 to V _{DD}	V				
XA/XB Voltage Level Limits	XA _{VIN}	0 to 1.2	V				
Operating Junction Temperature	T _{JCT}	–55 to 150	С				
Storage Temperature Range	T _{STG}	–55 to 150	С				
ESD HBM Tolerance (100 pF, 1.5 k Ω); All pins except CKIN+/CKIN–		2	kV				
ESD MM Tolerance; All pins except CKIN+/CKIN–		150	V				
ESD HBM Tolerance (100 pF, 1.5 kΩ); CKIN+/CKIN–		750	V				
ESD MM Tolerance; CKIN+/CKIN–		100	V				
Latch-Up Tolerance JESD78 Complia							
Note: Permanent device damage may occur if the Absolute Maximum Ratings are exceeded. Functional operation should be restricted to the conditions as specified in the operation sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods of time may affect device reliability.							

2. Typical Phase Noise Plots

The following is the typical phase noise performance of the Si5323. The clock input source was a Rohde and Schwarz model SML03 RF Generator. The phase noise analyzer was an Agilent model E5052B. The Si5323 operates at 3.3 V with an ac coupled differential PECL output and an ac coupled differential sine wave input from the RF generator at 0 dBm. Note that, as with any PLL, the output jitter that is below the loop BW is caused by the jitter at the input clock. The loop BW was 120 Hz.

2.1. Example: SONET OC-192

Figure 5. Typical Phase Noise Plot

Jitter Band	Jitter, RMS
SONET_OC48, 12 kHz to 20 MHz	250 fs
SONET_OC192_A, 20 kHz to 80 MHz	274 fs
SONET_OC192_B, 4 to 80 MHz	166 fs
SONET_OC192_C, 50 kHz to 80 MHz	267 fs
Brick Wall, 800 Hz to 80 MHz	274 fs

Note: SONET jitter bands include the SONET skirts. The phase noise plot is brick wall integration.

Figure 6. Si5323 Typical Application Circuit

3. Functional Description

The Si5323 is a jitter-attenuating precision clock multiplier for high-speed communication systems, including SONET OC-48/OC-192, Ethernet, and Fibre Channel. The Si5323 accepts dual clock inputs ranging from 8 kHz to 707 MHz and generates two frequencymultiplied clock outputs ranging from 8 kHz to 1050 MHz. The two input clocks are at the same frequency and the two output clocks are at the same frequency. The input clock frequency and clock multiplication ratio are selectable from a table of popular SONET, Ethernet, and Fibre Channel rates. In addition to providing clock multiplication in SONET and datacom applications, the Si5323 supports SONET-to-datacom frequency translations. Silicon Laboratories offers a PCbased software utility, DSPLLsim, that can be used to look up valid Si5323 frequency translations. This utility can be downloaded from http://www.silabs.com/timing (click on Documentation).

The Si5323 is based on Silicon Laboratories' 3rdgeneration DSPLL[®] technology, which provides anyfrequency synthesis and jitter attenuation in a highly integrated PLL solution that eliminates the need for external VCXO and loop filter components. The Si5323 PLL loop bandwidth is selectable via the BWSEL[1:0] pins and supports a range from 60 Hz to 8.4 kHz. The DSPLL*sim* software utility can be used to calculate valid loop bandwidth settings for a given input clock frequency/clock multiplication ratio.

The Si5323 supports hitless switching between the two input clocks in compliance with GR-253-CORE and GR-1244-CORE that greatly minimizes the propagation of phase transients to the clock outputs during an input clock transition (<200 ps typ). Manual and automatic revertive and non-revertive input clock switching options are available via the AUTOSEL input pin. The Si5323 monitors both input clocks for loss-of-signal and provides a LOS alarm when it detects missing pulses on either input clock. The device monitors the lock status of the PLL. The lock detect algorithm works by continuously monitoring the phase of the input clock in relation to the phase of the feedback clock.

The Si5323 provides a digital hold capability that allows the device to continue generation of a stable output clock when the selected input reference is lost. During digital hold, the DSPLL generates an output frequency based on a historical average that existed a fixed amount of time before the error event occurred, eliminating the effects of phase and frequency transients that may occur immediately preceding digital hold.

The Si5323 has two differential clock outputs. The

electrical format of the clock outputs is programmable to support LVPECL, LVDS, CML, or CMOS loads. If not required, the second clock output can be powered down to minimize power consumption. The phase difference between the selected input clock and the output clocks is adjustable in 200 ps increments for system skew control. For system-level debugging, a bypass mode is available which drives the output clock directly from the input clock, bypassing the internal DSPLL. The device is powered by a single 1.8, 2.5, or 3.3 V supply.

3.1. External Reference

An external, 38.88 MHz clock or a low-cost 114.285 MHz 3rd overtone crystal is used as part of a fixed-frequency oscillator within the DSPLL. This external reference is required for the device to perform jitter attenuation. Silicon Laboratories recommends using a high-quality crystal. Specific recommendations may be found in the Any-Frequency Precision Clock Family Reference Manual. An external clock from a high quality OCXO or TCXO can also be used as a reference for the device.

In digital hold, the DSPLL remains locked to this external reference. Any changes in the frequency of this reference when the DSPLL is in digital hold will be tracked by the output of the device. Note that crystals can have temperature sensitivities.

3.2. Further Documentation

Consult the Silicon Laboratories Any-Frequency Precision Clock Family Reference Manual (FRM) for detailed information about the Si5323. Additional design support is available from Silicon Laboratories through your distributor.

Silicon Laboratories has developed a PC-based software utility called DSPLL*sim* to simplify device configuration, including frequency planning and loop bandwidth selection. The FRM and this utility can be downloaded from http://www.silabs.com/timing (click on Documentation).

3.3. Frequency Plan Tables

The Si5323 provides flexible frequency plans for SONET, Datacom, and interworking between the two (Table 8, Table 9, and Table 10 respectively). Both CKINn inputs must be the same Fin frequency and CKOUTn outputs as specified in the tables.

The following notes apply to Tables 8, 9, and 10:

- 1. All multiplication ratios are exact, but the frequency values are rounded.
- 2. For loop bandwidth settings, BWSEL[1:0], f3 values, and frequency operating ranges, consult the DSPLL*sim* software configuration utility.

Plan #	FRQSEL [3:0]	f _{IN} (MHz)	Mult Factor	f _{OUT} * (MHz)
0	LLLL	0.008	1	0.008
1	LLLM		2430	19.44
2	LLLH	-	4860	38.88
3	LLML	-	9720	77.76
4	LLMM		19440	155.52
5	LLMH		38880	311.04
6	LLHL	-	77760	622.08
7	LLHM	19.44	1	19.44
8	LLHH	-	2	38.88
9	LMLL		4	77.76
10	LMLM	-	8	155.52
11	LMLH	-	8 x (255/238)	166.63
12	LMML		8 x (255/237)	167.33
13	LMMM	-	8 x (255/236)	168.04
14	LMMH		16	311.04
15	LMHL		32	622.08
16	LMHM		32 x (255/238)	666.51
17	LMHH		32 x (255/237)	669.33
18	LHLL		32 x (255/236)	672.16
19	LHLM		48	933.12
20	LHLH		54	1049.76

Table 8. SONET Clock Multiplication Settings (FRQTBL=L)

Plan #	FRQSEL [3:0]	f _{IN} (MHz)	Mult Factor	f _{OUT} * (MHz)
21	LHML	38.88	1	38.88
22	LHMM	-	2	77.76
23	LHMH		4	155.52
24	LHHL		16	622.08
25	LHHM		16 x (255/238)	666.51
26	LHHH		16 x (255/237)	669.33
27	MLLL	-	16 x (255/236)	672.16
28	MLLM	77.76	1/4	19.44
29	MLLH		1/2	38.88
30	MLML		1	77.76
31	MLMM		2	155.52
32	MLMH		2 x (255/238)	166.63
33	MLHL		2 x (255/237)	167.33
34	MLHM		2 x (255/236)	168.04
35	MLHH		4	311.04
36	MMLL		8	622.08
37	MMLM		8 x (255/238)	666.51
38	MMLH	1	8 x (255/237)	669.33
39	MMML		8 x (255/236)	672.16
40	MMMM	155.52	1/8	19.44
41	MMMH		1/4	38.88
42	MMHL		1/2	77.76
43	MMHM		1	155.52
44	MMHH		255/238	166.63
45	MHLL		255/237	167.33
46	MHLM		255/236	168.04
47	MHLH		2	311.04
48	MHML		4	622.08
49	MHMM		4 x (255/238)	666.51
50	MHMH		4 x (255/237)	669.33
51	MHHL		4 x (255/236)	672.16

Table 8. SONET Clock Multiplication Settings (FRQTBL=L) (Continued)

Plan #	FRQSEL [3:0]	f _{IN} (MHz)	Mult Factor	f _{OUT} * (MHz)
52	MHHM	166.63	238/255	155.52
53	MMHM		1	166.63
54	MHHH		4 x (238/255)	622.08
55	MHML		4	666.51
56	HLLL	167.33	237/255	155.52
57	MMHM		1	167.33
58	HLLM		4 x (237/255)	622.08
59	MHML		4	669.33
60	HLLH	168.04	236/255	155.52
61	MMHM	1	1	168.04
62	HLML	1	4 x (236/255)	622.08
63	MHML		4	672.16
64	HLMM	311.04	1	311.04
65	HLMH		2	622.08
66	HLHL		2 x (255/238)	666.51
67	HLHM		2 x (255/237)	669.33
68	HLHH		2 x (255/236)	672.16
69	HMLL	622.08	1/32	19.44
70	HMLM		1/16	38.88
71	HMLH		1/8	77.76
72	HMML		1/4	155.52
73	HMMM	1	1/2	311.04
74	HMMH		1	622.08
75	HMHL		255/238	666.51
76	HMHM		255/237	669.33
77	НМНН	1	255/236	672.16
78	HHLL	666.51	1/4 x 238/255	155.52
79	HMML		1/4	166.63
80	HHLM	1	238/255	622.08
81	HMMH	1	1	666.51

Table 8. SONET Clock Multiplication Settings (FRQTBL=L) (Continued)

Plan #	FRQSEL [3:0]	f _{IN} (MHz)	Mult Factor	f _{OUT} * (MHz)
82	HHLH	669.33	1/4 x 237/255	155.52
83	HMML		1/4	167.33
84	HHML		237/255	622.08
85	HMMH		1	669.33
86	ННММ	672.16	1/4 x 236/255	155.52
87	HMML		1/4	168.04
88	ННМН		236/255	622.08
89	HMMH		1	672.16

Table 8. SONET Clock Multiplication Settings (FRQTBL=L) (Continued)

Table 9. Datacom Clock Multiplication Settings (FRQTBL = M)

Plan #	FRQSEL[3:0]	f _{IN} (MHz)	Mult Factor	f _{OUT} * (MHz)
0	LLLL	15.625	2	31.25
1	LLLM		4	62.5
2	LLLH		8	125
3	LLML		16	250
4	LLMM	25	17/4	106.25
5	LLMH		5	125
6	LLHL		25/4 x 66/64	161.13
7	LLHM		51/8 x 66/64	164.36
8	LLHH		25/4 x 66/64 x 255/238	172.64
9	LMLL		25/4 x 66/64 x 255/237	173.37
10	LMLM		51/8 x 66/64 x 255/238	176.1
11	LMLH		51/8 x 66/64 x 255/237	176.84
12	LMML		17/2	212.5
13	LMMM		17	425
14	LMMH		25 x 66/64	644.53
15	LMHL		51/2 x 66/64	657.42
16	LMHM		25 x 66/64 x 255/238	690.57
17	LMHH		25 x 66/64 x 255/237	693.48
18	LHLL		51/2 x 66/64 x 255/238	704.38
19	LHLM		51/2 x 66/64 x 255/237	707.35
20	LHLH	31.25	2	62.5
21	LHML		4	125
22	LHMM		8	250

Plan #	FRQSEL[3:0]	f _{IN} (MHz)	Mult Factor	f _{OUT} * (MHz)
23	LHMH	53.125	2	106.25
24	LHHL		4	212.5
25	LHHM		8	425
26	LHHH	106.25	3/2 x 66/64	164.36
27	MLLL		3/2 x 66/64 x 255/238	176.1
28	MLLM		3/2 x 66/64 x 255/237	176.84
29	MLLH		2	212.5
30	MLML		4	425
31	MLMM		6 x 66/64	657.42
32	MLMH		6 x 66/64 x 255/238	704.38
33	MLHL		6 x 66/64 x 255/237	707.35
34	MLHM	125	10/8 x 66/64	161.13
35	MLHH		10/8 x 66/64 x 255/238	172.64
36	MMLL		10/8 x 66/64 x 255/237	173.37
37	MMLM		5 x 66/64	644.53
38	MMLH		5 x 66/64 x 255/238	690.57
39	MMML		5 x 66/64 x 255/237	693.48
40	MMMM	156.25	66/64	161.13
41	MMMH		66/64 x 255/238	172.64
42	MMHL		66/64 x 255/237	173.37
43	MMHM		4 x 66/64	644.53
44	MMHH		4 x 66/64 x 255/238	690.57
45	MHLL		4 x 66/64 x 255/237	693.48
46	MMMM	159.375	66/64	164.36
47	MMMH		66/64 x 255/238	176.1
48	MMHL		66/64 x 255/237	176.84
49	MMHM		4 x 66/64	657.4
50	ММНН		4 x 66/64 x 255/238	704.38
51	MHLL		4 x 66/64 x 255/237	707.35
52	MHLM	161.13	4/5 x 64/66	125
53	MHLH		255/238	172.64
54	MHML		255/237	173.37
55	MHMM		4	644.53
56	МНМН		4 x 255/238	690.57
57	MHHL		4 x 255/237	693.48

Table 9. Datacom Clock Multiplication Settings (FRQTBL = M) (Continued)

Plan #	FRQSEL[3:0]	f _{IN} (MHz)	Mult Factor	f _{OUT} * (MHz)
58	МННМ	164.36	2/3 x 64/66	106.25
59	MHLH		255/238	176.1
60	MHML		255/237	176.84
61	MHMM		4	657.42
62	MHMH		4 x 255/238	704.38
63	MHHL		4 x 255/237	707.35
64	MHHH	172.64	4/5 x 64/66 x 238/255	125
65	HLLL		64/66 x 238/255	156.25
66	HLLM		238/255	161.13
67	HLLH		4 x 238/255	644.53
68	MHMM		4	690.57
69	HLML	173.37	4/5 x 64/66 x 237/255	125
70	HLMM		64/66 x 237/255	156.25
71	HLMH		237/255	161.13
72	HLHL		4 x 237/255	644.53
73	MHMM		4	693.48
74	HLHM	176.1	2/3 x 64/66 x 238/255	106.25
75	HLLL		64/66 x 238/255	159.375
76	HLLM		238/255	164.36
77	HLLH		4 x 238/255	657.42
78	MHMM		4	704.38
79	HLHH	176.84	2/3 x 64/66 x 237/255	106.25
80	HLMM		64/66 x 237/255	159.375
81	HLMH		237/255	164.36
82	HLHL		4 x 237/255	657.42
83	MHMM		4	707.35
84	HMLL	212.5	2	425
85	HMLM	425	1	425
86	HMLH	644.53	1/5 x 64/66	125
87	HMML		1/4	161.13
88	НМММ		1	644.53
89	НММН		255/238	690.57
90	HMHL		255/237	693.48
91	HMHM	657.42	1/6 x 64/66	106.25
92	HMML		1/4	164.36
93	НМММ		1	657.42
94	НММН		255/238	704.38
95	HMHL		255/237	707.35

Table 9. Datacom Clock Multiplication Settings (FRQTBL = M) (Continued)

Plan #	FRQSEL[3:0]	f _{IN} (MHz)	Mult Factor	f _{OUT} * (MHz)
96	HMHH	690.57	1/5 x 64/66 x 238/255	125
97	HHLL		1/4 x 64/66 x 238/255	156.25
98	HHLM		1/4 x 238/255	161.13
99	HMML		1/4	172.64
100	HHLH		238/255	644.53
101	HMMM		1	690.57
102	HHML	693.48	1/5 x 64/66 x 237/255	125
103	HHMM		1/4 x 64/66 x 237/255	156.25
104	ННМН		1/4 x 237/255	161.13
105	HMML		1/4	173.37
106	HHHL		237/255	644.53
107	HMMM		1	693.48
108	НННМ	704.38	1/6 x 64/66 x 238/255	106.25
109	HHLL		1/4 x 64/66 x 238/255	159.375
110	HHLM		1/4 x (238/255)	164.36
111	HMML		1/4	176.1
112	HHLH		238/255	657.42
113	HMMM		1	704.38
114	НННН	707.35	1/6 x 64/66 x 237/255	106.25
115	HHMM		1/4 x 64/66 x 237/255	159.375
116	ННМН		1/4 x (237/255)	164.36
117	HMML		1/4	176.84
118	HHHL		237/255	657.42
119	HMMM		1	707.35

Table 9. Datacom Clock Multiplication Settings (FRQTBL = M) (Continued)

Plan #	FRQSEL[3:0]	f _{IN} (MHz)	Mult Factor	f _{OUT} * (MHz)
0	LLLL	0.008	3125	25
1	LLLM		6480	51.84
2	LLLH		53125/8	53.125
3	LLML		15625/2	62.5
4	LLMM		53125/4	106.25
5	LLMH		15625	125
6	LLHL		78125/4	156.25
7	LLHM		159375/8	159.375
8	LLHH		53125/2	212.5
9	LMLL		53125	425

 Table 10. SONET to Datacom Clock Multiplication Settings

Plan #	FRQSEL[3:0]	f _{IN} (MHz)	Mult Factor	f _{OUT} * (MHz)
10	LMLM	19.440	625/486	25
11	LMLH		10625/3888	53.125
12	LMML		3125/972	62.5
13	LMMM		10625/1944	106.25
14	LMMH		3125/486	125
15	LMHL		15625/1944	156.25
16	LMHM		31875/3888	159.375
17	LMHH		15625/1944 x 66/64	161.13
18	LHLL		31875/3888 x 66/64	164.36
19	LHLM		15625/1944 x 66/64 x 255/23 8	172.64
20	LHLH		31875/3888 x 66/64 x 255/23 8	176.1
21	LHML		10625/972	212.5
22	LHMM		10625/486	425
23	LHMH		15625/486 x 6 6/64	644.53
24	LHHL		31875/972 x 6 6/64	657.42
25	LHHM		15625/486 x 6 6/64 x 255/238	690.57
26	LHHH		31875/972 x 6 6/64 x 255/238	704.38
27	MLLL	27.000	1	27
28	MLLM		250/91	74.17582
29	MLLH		11/4	74.25
30	MLML	62.500	2	125
31	MLMM		4	250
32	MLMH	74.176	91/250	27
33	MLHL		1	74.17582
34	MLHM		91 x 11/250 x 4	74.25

Table 10. SONET to Datacom Clock Multiplication Settings (Continued)

Plan #	FRQSEL[3:0]	f _{IN} (MHz)	Mult Factor	f _{OUT} * (MHz)
35	MLHH	74.250	4/11	27
36	MMLL		4 x 250/11 x 9 1	74.17582
37	MMLM		1	74.25
38	MMLH	77.760	10625/7776	106.25
39	MMML		3125/1944	125
40	MMMM		15625/7776	156.25
41	MMMH		31875/15552	159.375
42	MMHL		15625/7776 x 66/64	161.13
43	ММНМ		31875/15552 x 66/64	164.36
44	MMHH		15625/7776 x 66/64 x 255/23 8	172.64
45	MHLL		31875/15552 x 66/64 x 255/2 38	176.1
46	MHLM		10625/3888	212.5
47	MHLH		10625/1944	425
48	MHML		15625/1944 x 66/64	644.53
49	МНММ		31875/3888 x 66/64	657.42
50	МНМН		15625/1944 x 66/64 x 255/23 8	690.57
51	MHHL		31875/3888 x 66/64 x 255/23 8	704.38

Table 10. SONET to Datacom Clock Multiplication Settings (Continued)

Plan #	FRQSEL[3:0]	f _{IN} (MHz)	Mult Factor	f _{OUT} * (MHz)
52	MHHM	155.520	15625/15552	156.25
53	МННН		31875/31104	159.375
54	HLLL		15625/15552 x 66/64	161.13
55	HLLM		31875/31104 x 66/64	164.36
56	HLLH		15625/15552 x 66/64 x 255/2 38	172.64
57	HLML		31875/31104 x 66/64 x 255/2 38	176.1
58	HLMM		10625/7776	212.5
59	HLMH		10625/3888	425
60	HLHL		15625/3888 x 66/64	644.53
61	HLHM		31875/7776 x 66/64	657.42
62	HLHH		15625/3888 x 66/64 x 255/23 8	690.57
63	HMLL		31875/7776 x 66/64 x 255/23 8	704.38
64	HMLM	622.080	15625/15552 x 66/64	644.53
65	HMLH		31875/31104 x 66/64	657.42
66	HMML		15625/15552 x 66/64 x 255/2 38	690.57
67	НМММ		31875/31104 x 66/64 x 255/2 38	704.38

Table 10. SONET to Datacom Clock Multiplication Settings (Continued)

3.3.1. Recommended Reset Guidelines

Follow the recommended RESET guidelines in Table 11 when reset should be applied to the device.

Pin #	Si5323 Pin Name	Must Reset after Changing
2	FRQTBL	Yes
11	RATE0	Yes
14	DBL2_BY	No
15	RATE1	Yes
19	DEC	No
20	INC	No
22	BWSEL0	Yes
23	BWSEL1	Yes
24	FRQSEL0	Yes
25	FRQSEL1	Yes
26	FRQSEL2	Yes
27	FRQSEL3	Yes
30	SFOUT1	No, but skew not guaranteed without Reset
33	SFOUT0	No, but skew not guaranteed without Reset

Table 11. Si5323 Pins and Reset

4. Pin Descriptions: Si5323

Pin assignments are preliminary and subject to change.

Pin #	Pin Name	I/O	Signal Level	Description
1	RST	I	LVCMOS	External Reset.
				Active low input that performs external hardware reset of device. Resets all internal logic to a known state. Clock
				outputs are tristated during reset. After rising edge of RST signal, the Si5323 will perform an internal self-calibration
				when a valid input signal is present.
				This pin has a weak pull-up.
2	FRQTBL	I	3-Level	Frequency Table Select.
				Selects SONET/SDH, datacom, or SONET/SDH to datacom
				frequency table.
				L = SONET/SDH
				M = Datacom
				H = SONET/SDH to Datacom
				This pin has a weak pull-up and weak pull-down and defaults to M.
				Some designs may require an external resistor voltage divider when driven by an active device that will tristate.
3	C1B	0	LVCMOS	CKIN1 Loss of Signal.
				Active high loss-of-signal indicator for CKIN1. Once triggered, the alarm will remain active until CKIN1 is validated. 0 = CKIN1 present
				1 = LOS on CKIN1

Table 12. Si5323 Pin Descriptions

Pin #	Pin Name	I/O	Signal Level	Description
4	C2B	0	LVCMOS	CKIN2 Loss of Signal.
				Active high loss-of-signal indicator for CKIN2. Once triggered, the alarm will remain active until CKIN2 is validated. 0 = CKIN2 present 1 = LOS on CKIN2
5 10	V	V	Supply	Supply.
5, 10, 32	V _{DD}	V _{DD}	Supply	The device operates from a 1.8, 2.5, or 3.3 V supply. Bypass capacitors should be associated with the following V_{DD} pins: 5 0.1 μ F 10 0.1 μ F 32 0.1 μ F A 1.0 μ F should also be placed as close to device as is practical.
7	XB	Ι	Analog	External Crystal or Reference Clock.
6	ХА			External crystal should be connected to these pins to use internal oscillator based reference. Refer to Family Reference Manual for interfacing to an external reference. External reference must be from a high-quality clock source (TCXO, OCXO). Frequency of crystal or external clock is set by the RATE pins.
8, 31	GND	GND	Supply	Ground.
				Must be connected to system ground. Minimize the ground path impedance for optimal performance of this device.
9	AUTOSEL	I	3-Level	Manual/Automatic Clock Selection.
				Three level input that selects the method of input clock selection to be used. L = Manual M = Automatic non-revertive H = Automatic revertive This pin has a weak pull-up and weak pull-down and defaults to M. Some designs may require an external resistor voltage divider when driven by an active device that will tri-state.
11 15	RATE0 RATE1	1	3-Level	External Crystal or Reference Clock Rate. Three level inputs that select the type and rate of external crystal or reference clock to be applied to the XA/XB port. Refer to the Family Reference Manual for settings. These pins have both a weak pull-up and a weak pull-down and default to M. Some designs may require an external resistor voltage divider when driven by an active device that will tri-state.
12 13	CKIN2+ CKIN2–	I		Clock Input 2. Differential input clock. This input can also be driven with a single-ended signal. Input frequency selected from a table of values. The same frequency must be applied to CKIN1 and CKIN2.

Pin #	Pin Name	I/O	Signal Level	Description
14	DBL2_BY		3-Level	Output 2 Disable/Bypass Mode Control.
				Controls enable of CKOUT2 divider/output buffer path and PLL bypass mode. L = CKOUT2 enabled M = CKOUT2 disabled H = Bypass mode with CKOUT2 enabled This pin has a weak pull-up and weak pull-down and defaults to M. Some designs may require an external resistor voltage divider when driven by an active device that will tri-state.
16	CKIN1+	1	Multi	Clock Input 1.
17	CKIN1-		india	Differential input clock. This input can also be driven with a single-ended signal. Input frequency selected from a table of values. The same frequency must be applied to CKIN1 and CKIN2.
18	LOL	0	LVCMOS	PLL Loss of Lock Indicator.
				This pin functions as the active high PLL loss of lock indicator. 0 = PLL locked 1 = PLL unlocked
19	DEC	I	LVCMOS	Skew Decrement.
				A pulse on this pin decreases the input to output device skew by 1/f _{OSC} (approximately 200 ps). There is no limit on the range of skew adjustment by this method. If both INC and DEC are tied high, phase buildout is disabled and the device maintains a fixed-phase relationship between the selected input clock and the output clock during an input clock transition. Detailed operations and timing characteristics for this pin may be found in the Any-Frequency Precision Clock Family Reference Manual. This pin has a weak pull-down.
20	INC	I	LVCMOS	Skew Increment.
				A pulse on this pin increases the input to output device skew by 1/f _{OSC} (approximately 200 ps). There is no limit on the range of skew adjustment by this method. If both INC and DEC are tied high, phase buildout is disabled and the device maintains a fixed-phase relationship between the selected input clock and the output clock during an input clock transition. Detailed operations and timing characteristics for this pin may be found in the Any-Frequency Precision Clock Family Reference Manual. Note: If NI_HS = 4, increment is not available. This pin has a weak pull-down.

Table 12. Si5323 Pin Descriptions (Continued)

Pin #	Pin Name	I/O	Signal Level	Description
21	CS_CA	I/O	LVCMOS	Input Clock Select/Active Clock Indicator.
				 Input: If manual clock selection mode is chosen (AUTOSEL = L), this pin functions as the manual input clock selector. This input is internally deglitched to prevent inadvertent clock switching during changes in the CS input state. 0 = Select CKIN1 1 = Select CKIN2 If configured as an input, this pin must be set high or low. Output: If automatic clock selection mode is chosen (AUTOSEL = M or H), this pin indicates which of the two input clocks is currently the active clock. If alarms exist on both CKIN1 and CKIN2, indicating that the digital hold state has been entered, CA will indicate the last active clock that was used before entering the hold state. 0 = CKIN1 active input clock 1 = CKIN2 active input clock
23 22	BWSEL1 BWSEL0	I	3-Level	Bandwidth Select. Three level inputs that select the DSPLL closed loop bandwidth. Detailed operations and timing characteristics for these pins may be found in the Any-Frequency Precision Clock Family Reference Manual. These pins have both weak pull-ups and weak pull-downs and default to M. Some designs may require an external resistor voltage
27	FRQSEL3	1	3-Level	divider when driven by an active device that will tri-state. Multiplier Select.
26 25 24	FRQSEL2 FRQSEL1 FRQSEL0			Three level inputs that select the input clock and clock multiplication ratio, depending on the FRQTBL setting. Consult the Any-Frequency Precision Clock Family Reference Manual or DSPLLsim configuration software for settings, both available for download at www.silabs.com/timing (click on Documentation). These pins have both weak pull-ups and weak pull-downs and default to M. Some designs may require an external resistor voltage divider when driven by an active device that will tri-state.
29	CKOUT1-	0	Multi	Clock Output 1.
28	CKOUT1+			Differential output clock with a frequency selected from a table of values. Output signal format is selected by SFOUT pins. Output is differential for LVPECL, LVDS, and CML compatible modes. For CMOS format, both output pins drive identical single-ended clock outputs.

Table 12. Si5323 Pi	in Descriptions	(Continued)
---------------------	------------------------	-------------

Pin #	Pin Name	I/O	Signal Level		Des	cription	
33 30	SFOUT0 SFOUT1	I	3-Level	Signal Format Select. Three level inputs that select the output signal format (common mode voltage and differential swing) for both CKOUT1 and CKOUT2.			
					SFOUT[1:0]	Signal Format	
					HH	Reserved	_
					НМ	LVDS	-
					HL	CML	-
					МН	LVPECL	-
					MM	Reserved	-
					ML	LVDS—Low Swing	
					LH	CMOS	
					LM	Disable	_
					LL	Reserved	_
				and default Some desig divider whe CMOS outp	to M. ons may require a n driven by an ad	pull-ups and weak pull-d an external resistor volta ctive device that will tri-st ort bypass mode. LVPEC en V _{DD} = 1.8 V.	ge tate.
34 35	CKOUT2– CKOUT2+	0	Multi	Clock Output 2. Differential output clock with a frequency selected from a table of values. Output signal format is selected by SFOUT pins. Output is differential for LVPECL, LVDS, and CML compatible modes. For CMOS format, both output pins drive identical single-ended clock outputs.			
36	NC	—	—	No Connec	xt.		
						onnected for normal ope	ration.
GND PAD	GND	GND	Supply	Ground Pa			
FAD					to a ground plan	le a low thermal and elec e.	ctrical

Table 12. Si5323 Pin Descriptions (Continued)

5. Ordering Guide

Ordering Part Number	er Package ROHS6, Pb-Free		Temperature Range		
Si5323-C-GM	36-Lead 6 x 6 mm QFN	Yes	–40 to 85 °C		
Si5322/23-EVB	Evaluation Board				
Note: Add an "R" at the end of the device to denote tape and reel option (i.e., Si5323-C-GMR).					

6. Package Outline: 36-Pin QFN

Figure 7 illustrates the package details for the Si5323. Table 13 lists the values for the dimensions shown in the illustration.

Figure 7. 36-Pin Quad Flat No-Lead (QFN)

Symbol	Millimeters			Symbol		Millimeters	6
	Min	Nom	Max		Min	Nom	Max
Α	0.80	0.85	0.90	L	0.50	0.60	0.70
A1	0.00	0.02	0.05	θ	—	_	12°
b	0.18	0.25	0.30	aaa	—	_	0.10
D		6.00 BSC		bbb	—	_	0.10
D2	3.95	4.10	4.25	CCC	—	_	0.08
е	0.50 BSC			ddd	—	_	0.10
E	6.00 BSC			eee	—	—	0.05
E2	3.95	4.10	4.25				

Table 13. Package Dimensions

Notes:

1. All dimensions shown are in millimeters (mm) unless otherwise noted.

- 2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.
- 3. This drawing conforms to JEDEC outline MO-220, variation VJJD.
- **4.** Recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.

7. Recommended PCB Layout

Figure 8. PCB Land Pattern Diagram

Dimension	MIN	MAX	
е	0.50	BSC.	
E	5.42	REF.	
D	5.42	REF.	
E2	4.00	4.20	
D2	4.00	4.20	
GE	4.53 —		
GD	4.53 —		
Х	_	0.28	
Y	0.89 REF.		
ZE	—	6.31	
ZD	_	6.31	

Table 14. PCB Land Pattern Dimensions

Notes (General):

- 1. All dimensions shown are in millimeters (mm) unless otherwise noted.
- **2.** Dimensioning and Tolerancing is per the ANSI Y14.5M-1994 specification.
- 3. This Land Pattern Design is based on IPC-SM-782 guidelines.

4. All dimensions shown are at Maximum Material Condition (MMC). Least Material Condition (LMC) is calculated based on a Fabrication Allowance of 0.05 mm.

Notes (Solder Mask Design):

1. All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the metal pad is to be $60 \ \mu m$ minimum, all the way around the pad.

Notes (Stencil Design):

- 1. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder paste release.
- 2. The stencil thickness should be 0.125 mm (5 mils).
- 3. The ratio of stencil aperture to land pad size should be 1:1 for the perimeter pads.
- **4.** A 4 x 4 array of 0.80 mm square openings on 1.05 mm pitch should be used for the center ground pad.

Notes (Card Assembly):

- 1. A No-Clean, Type-3 solder paste is recommended.
- 2. The recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.

8. Si5323 Device Top Mark

Mark Method:	Laser	
Font Size:	0.80 mm Right-Justified	
Line 1 Marking:	Si5323	Customer Part Number See Ordering Guide for options
Line 2 Marking:	C-GM	C = Product Revision G = Temperature Range –40 to 85 °C (RoHS6) M = QFN Package
Line 3 Marking:	YYWWRF	YY = Year WW = Work Week R = Die Revision F = Internal code Assigned by the Assembly House. Corresponds to the year and work week of the mold date.
Line 4 Marking:	Pin 1 Identifier	Circle = 0.75 mm Diameter Lower-Left Justified
	XXXX	Internal Code

Si5323

NOTES:

DOCUMENT CHANGE LIST

Revision 0.1 to Revision 0.2

- Changed LVTTL to LVCMOS in Table 7, "Absolute Maximum Ratings," on page 12.
- Added Figure 5, "Typical Phase Noise Plot," on page 13.
- Updated Figure 6, "Si5323 Typical Application Circuit," on page 14 to show external reference interface.
- Added RATE0 and expanded the RATE[1:0] description in 4. "Pin Descriptions: Si5323".
- Updated 5. "Ordering Guide" on page 33.
- Added 7. "Recommended PCB Layout".

Revision 0.2 to Revision 0.3

- Changed 1.8 V operating range to ±5%.
- Updated Table 1 on page 4.
- Updated Table 7 on page 12.
- Added table under Figure 5 on page 13.
- Updated 3. "Functional Description" on page 15.
- Clarified 4. "Pin Descriptions: Si5323" on page 28 including pull-up/pull-down.
- Updated SFOUT values.

Revision 0.3 to Rev 1.0

- Updated feature list on page 1.
- Updated all Electrical Specification tables.
- Updated Typical phase noise performance plot and table values.
- Added Section 3.3. "Frequency Plan Tables" on page 16.
- Updated package outline drawing.
- Added ground pad layout drawing.
- Added Top Device Mark section.
- Updated Section 5. "Ordering Guide" table
- Added product selection guide

Disclaimer

Silicon Laboratories intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software implementers using or intending to use the Silicon Laboratories products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each specific device, and "Typical" parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon Laboratories reserves the right to make changes without further notice and limitation to product information, specifications, and descriptions herein, and does not give warranties as to the accuracy or completeness of the included information. Silicon Laboratories shall have no liability for the consequences of use of the information supplied herein. This document does not imply or express copyright licenses granted hereunder to design or fabricate any integrated circuits. The products must not be used within any Life Support System without the specific to result in significant personal injury or death. Silicon Laboratories products are generally not intended to support or sustain life and/or health, which, if it fails, can be reasonably expected to result in significant personal injury or death. Silicon Laboratories products are generally not intended for military applications. Silicon Laboratories products shall under no circumstances be used in weapons of mass destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons.

Trademark Information

Silicon Laboratories Inc., Silicon Laboratories, Silicon Labs, SiLabs and the Silicon Labs logo, CMEMS®, EFM, EFM32, EFR, Energy Micro, Energy Micro logo and combinations thereof, "the world's most energy friendly microcontrollers", Ember®, EZLink®, EZMac®, EZRadio®, EZRadioPRO®, DSPLL®, ISOmodem ®, Precision32®, ProSLIC®, SiPHY®, USBXpress® and others are trademarks or registered trademarks of Silicon Laboratories Inc. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of ARM Holdings. Keil is a registered trademark of ARM Limited. All other products or brand names mentioned herein are trademarks of their respective holders.

Silicon Laboratories Inc. 400 West Cesar Chavez Austin, TX 78701 USA

http://www.silabs.com