Spec No.: DS-20-93-0064 Effective Date: 08/16/2000 Revision: - **LITE-ON DCC** **RELEASE** BNS-OD-FC001/A4 # LITEON ELECTRONICS, INC. Property of Lite-On Only ### **Features** - * Ultra brightness.. - * Versatile mounting on p.c. board or panel. - * I.C. compatible/low current requirement.. - * Reliable and rugged. ### **Package Dimensions** | Part No. | Lens | Source Color | | |-----------------------|-------------|--------------|--| | LTL-4268-H3 / 4268-H4 | Water Clear | AlGaAs Red | | ### Notes: - 1. All dimensions are in millimeters (inches). - 2. Tolerance is ± 0.25 mm(.010") unless otherwise noted. - 3. Protruded resin under flange is 1.0mm(.04") max. - 4. Lead spacing is measured where the leads emerge from the package. - 5. Specifications are subject to change without notice. # LITEON ELECTRONICS, INC. Property of Lite-On Only # Absolute Maximum Ratings at TA=25°C | Parameter | Maximum Rating | Unit | | | |---|---------------------|-------|--|--| | Power Dissipation | 100 | mW | | | | Peak Forward Current (1/10 Duty Cycle, 0.1ms Pulse Width) | 200 | mA | | | | Continuous Forward Current | 40 | mA | | | | Derating Linear From 50°C | 0.5 | mA/°C | | | | Reverse Voltage | 4 | V | | | | Operating Temperature Range | -55°C to + 100°C | | | | | Storage Temperature Range | -55°C to + 100°C | | | | | Lead Soldering Temperature [1.6mm(.063") From Body] | 260°C for 5 Seconds | | | | Part No.: LTL-4268-H3 / 4268-H4 Page: 4 of # LITEON ELECTRONICS, INC. ### Property of Lite-On Only ## Electrical / Optical Characteristics at TA=25°C | Parameter | Symbol | | Min. | Тур. | Max. | Unit | Test Condition | |--------------------------|------------------|---------|------|------|------|---------|-----------------------------------| | Luminous Intensity | Iv | 4268-H3 | 160 | 220 | | mcd | I _F = 20mA
Note 1,4 | | | | 4268-H4 | 230 | 270 | | | | | Viewing Angle | 2 \theta 1/2 | | | 16 | | deg | Note 2 (Fig.5) | | Peak Emission Wavelength | λР | | | 660 | | nm | Measurement @Peak (Fig.1) | | Dominant Wavelength | λd | | | 638 | | nm | Note 3 | | Spectral Line Half-Width | Δλ | | | 20 | | nm | | | Forward Voltage | V_{F} | | | 1.8 | 2.4 | V | $I_F = 20 \text{mA}$ | | Reverse Current | I _R | | | | 100 | μ A | $V_R = 4V$ | | Capacitance | | С | | 30 | | pF | $V_F = 0$, $f = 1MHz$ | Note: 1. Luminous intensity is measured with a light sensor and filter combination that approximates the CIE (Commission International De L'Eclairage) eye-response curve. - 2. $\theta_{1/2}$ is the off-axis angle at which the luminous intensity is half the axial luminous intensity. - 3. The dominant wavelength, λ_d is derived from the CIE chromaticity diagram and represents the single wavelength which defines the color of the device. - 4. The Iv guarantee should be added $\pm 15\%$. ## Typical Electrical / Optical Characteristics Curves (25°C Ambient Temperature Unless Otherwise Noted) Fig.1 Relative Intensity vs. Wavelength Forward Current (mA) Fig.4 Relative Luminous Intensity vs. Forward Current Ambient Temperature Ta(°C) Fig.3 Forward Current Derating Curve Fig.5 Spatial Distribution Part No.: LTL-4268-H3 / 4268-H4 Page: 4 of 4