

Description

Vectron's VT-804 Temperature Compensated Crystal Oscillator (TCXO) is a quartz stabilized, Clipped sine wave or CMOS output, 5th order analog temperature compensated oscillator, operating off a 2.8V to 5.0 volt supply in a hermetically sealed 3.2x5mm ceramic package.

Features

- Clipped Sine Wave or CMOS Output
- 10.000 52.000MHz Output Frequency
- ±50ppb Temperature Stability
- Optional Frequency Tuning
- Fundamental Crystal Design
- Gold over nickel contact pads
- Hermetically Sealed Ceramic SMD package
- Product is compliant to RoHS directive and fully compatible with lead free assembly

Applications

- Femto Cells
- Base Stations
- IP Networking
- Global Positioning Systems
- Point to Point Radio
- Manpack Radio
- Test and Measurement

Block Diagram

Specifications

Parameter	Symbol	Min.	Тур	Max	Units
Output Frequency ¹ , Ordering Option	f _o	10		52	MHz
Supply Voltage ³ , Ordering Option	V _{DD}	+2	.8, +3.0, +3.3, +	5.0	V
Supply Current 10.000MHz - 26.000MHz 26.001MHz - 52.000MHz	I _{DD}			2.0 3.0	mA
Operating Temperature, Ordering Option	T _{OP}	0/55, -10/	70, -20/70, -30/	85, -40/85	°C
	Frequer	ncy Stability			
Stability Over T _{OP} ⁴ , <i>Ordering Option</i>	F _{STAB}	±0.05, ±0.10, ±	0.20, ±0.28, ±0.5	50, ±1.00, ±2.00	ppm
Frequency Tolerance⁵	F _{TOL}			±1.5	ppm
Power Supply Stability, ±5%	F _{PWR}			±0.1	ppm
Load Stability, ±5%	F _{LOAD}			±0.1	ppm
Aging / 1st year	F _{AGE}			±1.0	ppm
F	requency Tuning	(EFC), Ordering O	ption		
Tuning Range ⁶	PR	±5.0, ±8.0, ±10.0, ±12.0		ppm	
Tuning Slope			Positive		
Control Voltage to reach Pull Range	V _c	0.5	1.5	2.5	V
Control Voltage Impedance		100			Kohm
RF C	output (Clipped Si	ne Wave), <i>Orderin</i>	g Option		
Output Level High	V _o p-p	0.8			V
Output Load	C			10k 10pF	
Start Up Time	t _{su}			2	ms
	Phas	e Noise ⁷			
Phase Noise, 30.720MHz ⁷ 10Hz 100Hz 1kHz 10kHz 100kHz	Ø _N		-92 -115 -133 -146 -158		dBc/Hz
Integrated Jitter, 30.720MHz ⁷ 12kHz-5MHz			0.20		ps-rms

1. Refer to Table 8 for Standard Frequencies. Other Frequencies are available on request. Check with factory.

2. Output DC-cut capacitor is optional.

3. The VT-804 power supply pin (Pin4) should be filtered using a by-pass capacitor of 0.1uF for optimal performance.

4. Referenced to the midpoint between minimum and maximum frequency value over Operating Temperature Range.

5. Frequency measured at 25 °C, 1 hour after 2 IR reflows.

6. Referenced to Mid Control Voltage

7. Measured at ambient temperature using Agilent E5052B Signal Source Analyzer.

Parameter	Symbol	Min.	Тур	Max	Units
Output Frequency ¹ , Ordering Option	f _o	10		40	MHz
Supply Voltage ³ , Ordering Option	V _{DD}	+2	.8, +3.0, +3.3, +	5.0	V
Supply Current 10.000MHz - 26.000MHz 26.001MHz - 52.000MHz	I _{DD}			3.5 8.0	mA
Operating Temperature, Ordering Option	T _{OP}	0/55, -10/	70, -20/70, -30/	85, -40/85	°C
	Frequer	ncy Stability			
Stability Over T _{OP} ⁴ , <i>Ordering Option</i>	F _{STAB}	±0.05, ±0.10, ±	0.20, ±0.28, ±0.5	50, ±1.00, ±2.00	ppm
Frequency Tolerance⁵	F _{TOL}			±1.5	ppm
Power Supply Stability, ±5%	F _{PWR}			±0.3	ppm
Load Stability, ±5%	F _{LOAD}			±0.1	ppm
Aging / 1st year	F _{AGE}			±1.0	ppm
F	requency Tuning	(EFC), Ordering O	ption		
Tuning Range ⁶	PR	±5.0), ±8.0, ±10.0, ±	12.0	ppm
Tuning Slope			Positive		
Control Voltage to reach Pull Range	V _c	0.5	1.5	2.5	V
Control Voltage Impedance		100			Kohm
	RF Output (CMC	DS), Ordering Opti	on		
Output Level High Output Level Low	V _{OH} V _{OL}	0.9*V _{DD}		0.1*V _{DD}	V
Output Load	CL			15	pF
Duty Cycle		45		55	%
Start Up Time	t _{su}			2	ms
Rise & Fall Times				5	ns
	Phas	se Noise ⁷			
Phase Noise, 30.720MHz ⁷ 10Hz 100Hz 1kHz 10kHz 100kHz	Ø _N		-90 -112 -134 -150 -156		dBc/Hz
Integrated Jitter, 30.720MHz ⁷ 12kHz - 5MHz			0.22		ps-rms

1. Refer to Table 8 for Standard Frequencies. Other Frequencies are available on request. Check with factory.

2. Output DC-cut capacitor is optional.

3. The VT-804 power supply pin (Pin4) should be filtered using a by-pass capacitor of 0.1uF for optimal performance.

4. Referenced to the midpoint between minimum and maximum frequency value over Operating Temperature Range.

5. Frequency measured at 25 °C, 1 hour after 2 IR reflows.

6. Referenced to Mid Control Voltage.

7. Measured at ambient temperature using Agilent E5052B Signal Source Analyzer

Phase Noise Performance for 30.72MHz Clipped Sine Wave

Phase Noise Performance for 30.72MHz CMOS

Package Outline Drawing

Marking Information

XXMXX - Frequency (Example: 30M720)

YY - Year of Manufacture

WW - Week of the Year

- T Manufacturing Location
- Pin 1 Indicator

Table 3.	Table 3. Pinout							
Pin #	Symbol	Function						
1	Vc or NC	TCXO Control Voltage or No Connect						
2	GND	Ground						
3	OUT	RF Output						
4	V _{DD}	Supply Voltage						

Note:

0.1 uF capacitor is a by-pass power supply filter capacitor placed between Pin4 (Vdd) and Ground for optimal performance.

VCXO Function

VCXO Feature: The VT-804 is supplied with a VCXO function for applications were it will be used in a PLL, or the output frequency needs fine tune or calibration adjustments. This is a high impedance input, 100kOhm, and can be driven with an op-amp or terminated with adjustable resistors etc. **Pin1 should not be left floating on the VCXO optional device.**

Maximum Ratings

Absolute Maximum Ratings and Handling Precautions

Stresses in excess of the absolute maximum ratings can permanently damage the device. Functional operation is not implied or any other excess of conditions represented in the operational sections of this data sheet. Exposure to absolute maximum ratings for extended periods may adversely affect device reliability.

Although ESD protection circuitry has been designed into the VT-804, proper precautions should be taken when handling and mounting, VI employs a Human Body Model and Charged Device Model for ESD susceptibility testing and design evaluation. ESD thresholds are dependent on the circuit parameters used to define the model. Although no industry standard has been adopted for the CDM a standard resistance of 1.5kOhms and capacitance of 100pF is widely used and therefor can be used for comparison purposes.

Table 4. Maximum Ratings			
Parameter	Symbol	Rating	Unit
Storage Temperature	T _{STORE}	-55/125	°C
Supply Voltage	V _{DD}	-0.6/6	V
Control Voltage	V _c	-0.6/V _{DD} +0.6	V
Enable/Disable Voltage	E/D	-0.6/V _{DD} +0.6	V
ESD, Human Body Model		1500	V
ESD, Charged Device Model		1000	V

Reliability

Table 5. Environmental Compliance					
Parameter	Condition				
Mechanical Shock	MIL-STD-883 Method 2002				
Mechanical Vibration	MIL-STD-883 Method 2007				
Temperature Cycle	MIL-STD-883 Method 1010				
Solderability	MIL-STD-883 Method 2003				
Fine and Gross Leak	MIL-STD-883 Method 1014				
Resistance to Solvents	MIL-STD-883 Method 2015				
Moisture Sensitivity Level	MSL1				
Contact Pads	Gold over Nickel				

IR Reflow

Suggested IR Profile

Devices are built using lead free epoxy and can be subjected to standard lead free IR reflow conditions shown in Table 6. Contact pads are gold over nickel and lower maximum temperatures can also be used, such as 220°C.

Table 6. Reflow Profile		
Parameter	Symbol	Value
PreHeat Time Ts-min Ts-max	t _s	200 sec Max 150°C 200°C
Ramp Up	R _{UP}	3°C/sec Max
Time above 217C	t	150 sec Max
Time to Peak Temperature	t _{25C to peak}	480 sec Max
Time at 260C	t _P	30 sec Max
Time at 240C	t _{P2}	60 sec Max
Ramp down	R _{dn}	6°C/sec Max

Solderprofile:

Tape & Reel

Table 7.	Tape and	Reel Info	rmation									
	Tape D	imension	s (mm)				Reel D	imension	s (mm)			
W	F	Do	Ро	P1	А	В	С	D	N	W1	W2	#/Reel
12	5.5	1.5	4	8	180	2.5	13	21	60	12.5	15.5	2000

Ordering Information

Table 8. Sta	Table 8. Standard Frequencies (MHz)								
10.000	12.800	19.200	20.000	24.000	26.000	28.800	30.720	40.000	50.000

Note: Other Frequencies are available on request.

* Add **_SNPBDIP** for tin lead solder dip Example: VT-804-EAE-2870-10M0000000_SNPBDIP

Table 9. Cap	Table 9. Capability Chart [Clipped Sine & CMOS Output]						
	50ppb	100ppb	200ppb	280ppb	500ppb	1ppm	
0/55°C					•	•	
-10/70°C	•	•		•	٠	٠	
-20/70°C	•	•					
-30/85°C	•	•	•				
-40/85°C	•	•	•				

E = Can be provided.

– Under development. Please consult with factory.

E = Cannot be provided.

Revision History

Revision Date	Approved	Description
July 17, 2014	VN	Rev 0.1: VT-804 Product Preliminary Datasheet - Internal Verification
August 28, 2014	VN	Rev 0.2: VT-804 Product Release - Wesbite
November 14, 2016	VN	Rev 0.3: Updated Clipped Sine Wave and CMOS current draw for high frequency range.
August 10, 2018	FB	Rev 0.4: Updated logo and contact information, added "SNPBDIP" ordering option

Microsemi Headquarters One Enterprise, Aliso Viejo, CA 92656 USA Within the USA: +1 (800) 713-4113 Outside the USA: +1 (949) 380-6100 Sales: +1 (949) 380-6136 Fax: +1 (949) 3215-4996 email: sales.support@microsemi.com www.microsemi.com Microsemi, a wholly owned subsidiary of Microchip Technology Inc. (Nasdaq: MCHP), offers a comprehensive portfolio of semiconductor and system solutions for aerospace & defense, communications, data center and industrial markets. Products include high-performance and radiation-hardened analog mixed-signal integrated circuits, FPGAs, SoCs and ASICs, power management products; timing and synchronization devices and precise time solutions, setting the world's standard for time, voice processing devices; RF solutions, discrete components, enterprise storage and communication solutions, security technologies and scalable anti-tamper products; Ethernet solutions; Power-over-Ethernet ICs and midspans; as well as custom design capabilities and services. Learn more at www.microsemic.om.

Microsemi makes no warranty, representation, or guarantee regarding the information contained herein or the suitability of its products and services for any particular purpose, nor does Microsemi assume any liability whatsoever ansing out of the application or use of any product or circuit. The products sold hereunder and any other products sold by Microsemi have been subject to limited testing and should not be used in conjunction with mission-critical equipment or applications. Any performance specifications are believed to be reliable but are not verified, and Buyer must conduct and complete all performance and other testing of the products, alone and together with, or installed in, any end-products. Buyer shall not rely on any data and performance specifications or parameters provided by Microsemi. It is the Buyer's responsibility to independently determine suitability of any products and to test and verify the same. The information provided by Microsemi any pather is "and with a flauts, and the entire fixe associated with such information is entirely with the Buyer. Microsemi des not grant, explicitly or implicitly to any party any pather right, licenses, or any other IP rights, whether with regard to such information itself or anypting described by such information. Information provided in this document is proprietary to Microsemi, and Microsemi reserves the right to make any changes to the information in this document to to any products and services at any time without notice.

©2018 Microsemi, a wholly owned subsidiary of Microchip Technology Inc. All rights reserved. Microsemi and the Microsemi logo are registered trademarks of Microsemi Corporation. All other trademarks and service marks are the property of their respective owners.