

TDA9884

I²C-bus controlled multistandard alignment-free IF-PLL for mobile reception

Rev. 02 — 12 May 2006

Product data sheet

1. General description

The TDA9884 is an alignment-free multistandard (PAL, SECAM and NTSC) vision and sound IF signal PLL demodulator for positive and negative modulation, including sound AM and FM processing.

The device is specially prepared for mobile TV applications.

2. Features

- 5 V supply voltage
- Gain controlled wide-band VIF amplifier, AC-coupled
- Multistandard true synchronous demodulation with active carrier regeneration: very linear demodulation, good intermodulation figures, reduced harmonics, and excellent pulse response
- Gated phase detector for L and L-accent standard
- Fully integrated VIF VCO, alignment-free, frequencies switchable for all negative and positive modulated standards via I²C-bus
- Digital acquisition help, VIF frequencies of 33.4 MHz, 33.9 MHz, 38.0 MHz, 38.9 MHz, 45.75 MHz and 58.75 MHz
- 4 MHz reference frequency input: signal from PLL tuning system or operating as crystal oscillator
- VIF AGC detector for gain control, operating as peak sync detector for negative modulated signals and as a peak white detector for positive modulated signals
- Mobile mode for negative modulation AGC (VIF and SIF) provides very fast reaction time
- External AGC setting via pin AGCSW; VIF-AGC and SIF-AGC monitor outputs
- Precise fully digital AFC detector with 4-bit digital-to-analog converter; AFC bits readable via l²C-bus
- TOP adjustable via I²C-bus or alternatively with potentiometer
- Fully integrated sound carrier trap for 4.5 MHz, 5.5 MHz, 6.0 MHz and 6.5 MHz; controlled by FM-PLL oscillator
- SIF input for single reference QSS mode; PLL controlled
- True split sound mode for sound demodulation at low RF level
- SIF-AGC for gain controlled SIF amplifier, single reference QSS mixer able to operate in high performance single reference QSS mode and in intercarrier mode, switchable via I²C-bus
- AM demodulator without extra reference circuit
- Alignment-free selective FM-PLL demodulator with high linearity and low noise

- Four selectable I²C-bus addresses
- I²C-bus control for all functions
- I²C-bus transceiver with pin programmable MAD

3. Quick reference data

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
V _P	supply voltage		[1][2]	4.5	5.0	5.5	V
I _P	supply current			52	63	70	mA
Video part							
V _{i(VIF)(rms)}	VIF input voltage sensitivity (RMS value)	–1 dB video at output		-	60	100	μV
G _{VIF(cr)}	VIF gain control range	see Figure 10		60	66	-	dB
f _{VIF}	vision carrier operating	see Table 19		-	33.4	-	MHz
	frequencies			-	33.9	-	MHz
				-	38.0	-	MHz
				-	38.9	-	MHz
				-	45.75	-	MHz
				-	58.75	-	MHz
$\Delta f_{\sf VIF}$	VIF frequency window of digital acquisition help	related to f_{VIF} ; see Figure 7		-	±2.3	-	MHz
V _{o(v)(p-p)}	video output voltage	see Figure 9					
	(peak-to-peak value)	normal mode (sound carrier trap active) and sound carrier on		1.7	2.0	2.3	V
		trap bypass mode and sound carrier off		0.95	1.10	1.25	V
G _{dif}	differential gain	"ITU-T J.63 line 330"	[3]				
		B/G standard		-	-	5	%
		L standard		-	-	7	%
Φdif	differential phase	"ITU-T J.63 line 330"		-	2	4	deg
B _{v(-1dB)}	–1 dB video bandwidth	trap bypass mode and sound carrier off; AC load; $C_L < 20 \text{ pF}; R_L > 1 \text{ k}\Omega$		5	6	-	MHz
B _{v(-3dB)(trap)}	-3 dB video bandwidth	$f_{trap} = 4.5 \text{ MHz}$	[4]	3.95	4.05	-	MHz
	including sound carrier trap	$f_{trap} = 5.5 \text{ MHz}$	[4]	4.90	5.00	-	MHz
		$f_{trap} = 6.0 \text{ MHz}$	<u>[4]</u>	5.40	5.50	-	MHz
		$f_{trap} = 6.5 \text{ MHz}$	[4]	5.50	5.95	-	MHz
XSC1	attenuation at first sound carrier	M/N standard; f = 4.5 MHz		30	36	-	dB
		B/G standard; f = 5.5 MHz		30	36	-	dB
S/N _W	weighted signal-to-noise ratio	see Figure 5	[5]	56	59	-	dB
PSRR _{CVBS}	power supply ripple rejection at pin CVBS	f _{ripple} = 70 Hz; video signal; grey level; positive and negative modulation; see Figure 8		20	25	-	dB

Philips Semiconductors

TDA9884

I²C-bus controlled multistandard alignment-free IF-PLL

Table 1.	Quick reference data continued					
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
AFC _{stps}	AFC control steepness	definition: $\Delta I_{AFC} / \Delta f_{VIF}$	0.85	1.05	1.25	μA/kHz
Audio part						
V _{o(AF)(rms)}	AF output voltage (RMS value)	27 kHz FM deviation; 50 μs de-emphasis	430	540	650	mV
THD	total harmonic distortion	FM: 27 kHz FM deviation; 50 μs de-emphasis	-	0.15	0.50	%
		AM: m = 54 %	-	0.5	1.0	%
B _{AF(-3dB)}	–3 dB AF bandwidth	without de-emphasis; measured with FM-PLL filter in <u>Figure 23</u>	80	100	-	kHz
S/N _{W(AF)}	weighted signal-to-noise ratio of audio signal	FM-PLL only: 27 kHz FM deviation; 50 μs de-emphasis	52	56	-	dB
		AM: in accordance with <i>"ITU-R BS.468-4"</i>	45	50	-	dB
α _{AM(sup)}	AM suppression of FM demodulator	referenced to 27 kHz FM deviation; 50 μs de-emphasis; AM: f = 1 kHz; m = 54 %	40	46	-	dB
PSRR	power supply ripple rejection	f _{ripple} = 70 Hz; see <u>Figure 8</u>				
		for FM	14	20	-	dB
		for AM	20	26	-	dB
V _{o(intc)(rms)}	IF intercarrier output level	QSS mode; SC ₁ ; SC ₂ off	90	140	180	mV
	(RMS value)	L standard; without modulation	90	140	180	mV
		intercarrier mode; $PC/SC_1 = 20 \text{ dB}; SC_2 \text{ off}$	<u>[6]</u> _	75	-	mV
Reference	frequency input (pin REF)					
f _{ref}	reference signal frequency		[7] _	4	-	MHz
V _{ref(rms)}	reference signal voltage (RMS value)	operation as input terminal	80	-	400	mV

Table 1. Quick reference data ...continued

[1] Values of video and sound parameters can be decreased at V_P = 4.5 V.

[2] For applications without I²C-bus, the time constant (R × C) at the supply must be > 1.2 μ s (e.g. 1 Ω and 2.2 μ F).

[3] Condition: luminance range (5 steps) from 0 % to 100 %.

[4] AC load: $C_L < 20 \text{ pF}$ and $R_L > 1 \text{ k}\Omega$. The sound carrier frequencies (depending on the TV standard) are attenuated by the integrated sound carrier traps (see Figure 16 to Figure 21; |H (s)| is the absolute value of transfer function).

[5] Measurement using unified weighting filter ("ITU-T J.61"), 200 kHz high-pass filter, 5 MHz low-pass filter and subcarrier notch filter ("ITU-T J.64").

[6] The intercarrier output signal at pin SIOMAD can be calculated by the following formulae taking into account the internal video signal

ith 1.1 V (p-p) as a reference:
$$V_{o(intc)(rms)} = 1.1 \times \frac{1}{2\sqrt{2}} \times 10^r$$
 V and $r = \frac{1}{20} \times \left(\frac{V_{i(SC)}}{V_{i(PC)}} (dB) + 6 \ dB \pm 3 \ dB\right)$, where: $\frac{1}{2\sqrt{2}}$ is

the correction term for RMS value, $\frac{V_{i(SC)}}{V_{i(PC)}}$ (*dB*) is the sound-to-picture carrier ratio at pins VIF1 and VIF2 in dB, 6 dB is the correction

term of internal circuitry and ± 3 dB is the tolerance of video output and intercarrier output V_{o(intc)(rms)}.

[7] Pin REF is able to operate as a 1-pin crystal oscillator input as well as an external reference signal input, e.g. from the tuning system.

w

4. Ordering information

Table 2. Ordering information									
Type number	Package	ackage							
	Name	Description	Version						
TDA9884TS	SSOP24	plastic shrink small outline package; 24 leads; body width 5.3 mm	SOT340-1						
TDA9884HN	HVQFN32	plastic thermal enhanced very thin quad flat package; no leads; 32 terminals; body $5\times5\times0.85$ mm	SOT617-3						

S

Block diagram

Philips

Semiconductors

TDA9884
I²C-bus controlled multistandard alignment-free IF-PLL

Product data sheet

Rev. 02 — 12 May 2006

5 of 58

6. Pinning information

6.1 Pinning

6.2 Pin description

Table 3. Pin description									
Symbol	Pin		Description						
	TDA9884TS	TDA9884HN							
VIF1	1	30	VIF differential input 1						
VIF2	2	31	VIF differential input 2						
n.c.	-	32	not connected						
OP1	3	1	output port 1; open-collector						

6 of 58

TDA9884

I²C-bus controlled multistandard alignment-free IF-PLL

Table 3.	Pin description .	continued	
Symbol	Pin		Description
	TDA9884TS	TDA9884HN	
FMPLL	4	2	FM-PLL for loop filter
DEEM	5	3	de-emphasis output for capacitor
AFD	6	4	AF decoupling input for capacitor
DGND	7	5	digital ground
n.c.	-	6	not connected
AUD	8	7	audio output
TOP	9	8	tuner AGC TakeOver Point (TOP) for resistor adjustment
SDA	10	9	I ² C-bus data input and output
SCL	11	10	I ² C-bus clock input
SIOMAD	12	11	sound intercarrier output and MAD select with resistor
n.c.	-	12	not connected
n.c.	-	13	not connected
AGCSW	13	14	fast external AGC enable switch
TAGC	14	15	tuner AGC output
REF	15	16	4 MHz crystal or reference signal input
VAGC	16	17	VIF-AGC capacitor for L standard
CVBS	17	18	composite video output
n.c.	-	19	not connected
AGND	18	20	analog ground
VPLL	19	21	VIF-PLL for loop filter
V _P	20	22	supply voltage
AFC	21	23	AFC output
OP2	22	24	output port 2; open-collector
n.c.	-	25	not connected
SIF1	23	26	SIF differential input 1 and MAD select with resistor
SIF2	24	27	SIF differential input 2 and MAD select with resistor
n.c.	-	28	not connected
n.c.	-	29	not connected

7. Functional description

Figure 1 shows the simplified block diagram of the device which comprises the following functional blocks:

- VIF amplifier
- Tuner AGC and VIF-AGC
- VIF-AGC detector

- FPLL detector
- VCO and divider
- AFC and digital acquisition help
- Video demodulator and amplifier
- Sound carrier trap
- SIF amplifier
- SIF-AGC detector
- Single reference QSS mixer
- AM demodulator
- FM demodulator and acquisition help
- Audio amplifier and mute time constant
- Internal voltage stabilizer
- I²C-bus transceiver and MAD

7.1 VIF amplifier

The VIF amplifier consists of three AC-coupled differential stages. Gain control is performed by emitter degeneration. The total gain control range is typically 66 dB. The differential input impedance is typically 2 k Ω in parallel with 3 pF.

7.2 Tuner AGC and VIF-AGC

This block adapts the voltages, generated at the VIF-AGC and SIF-AGC detectors, to the internal signal processing at the VIF and SIF amplifiers and performs the tuner AGC control current generation. Normally it is derived from the VIF-AGC, for the true split sound mode it is derived from the SIF-AGC. The onset of the tuner AGC control current generation can be set either via the I²C-bus (see <u>Table 16</u>) or optionally by a potentiometer at pin TOP (in case that the I²C-bus information cannot be stored). The presence of a potentiometer is automatically detected and the I²C-bus setting is disabled.

Furthermore, derived from the AGC detector voltage, a comparator is used to test if the corresponding VIF input voltage is higher than 200 μ V. This information can be read out via the l²C-bus (bit VIFLEV = 1).

7.3 VIF-AGC detector

Gain control is performed by sync level detection (negative modulation) or peak white detection (positive modulation).

For negative modulation, the sync level voltage is compared with a reference voltage (nominal sync level) by a comparator which charges or discharges the integrated AGC capacitor directly for the generation of the required VIF gain. With mobile mode the currents are increased by a factor of approximately 8 for very fast reaction. By use of an AGC event detector, the gain increase time constant (discharge current) additionally reduces in with a too-low VIF signal.

For positive modulation, the white peak level voltage is compared with a reference voltage (nominal white level) by a comparator which charges (fast) or discharges (slow) the external AGC capacitor directly for the generation of the required VIF gain. The need of a

very long time constant for VIF gain increase is because the peak white level may appear only once in a field. In order to reduce this time constant, an additional level detector increases the discharging current of the AGC capacitor (fast mode) in the event of a decreasing VIF amplitude step controlled by the detected actual black level voltage. The threshold level for fast mode AGC is typically –6 dB video amplitude. The fast mode state is also transferred to the SIF-AGC detector for speed-up. In case of missing peak white pulses, the VIF gain increase is limited to typically +3 dB by comparing the detected actual black level voltage with a corresponding reference voltage.

7.4 FPLL detector

The VIF amplifier output signal is fed into a frequency detector and into a phase detector via a limiting amplifier for removing the video AM.

During acquisition the frequency detector produces a current proportional to the frequency difference between the VIF and the VCO signals. After frequency lock-in the phase detector produces a current proportional to the phase difference between the VIF and the VCO signals. The currents from the frequency and phase detectors are charged into the loop filter which controls the VIF VCO and locks it to the frequency and phase of the VIF carrier.

For a positive modulated VIF signal, the charging currents are gated by the composite sync in order to avoid signal distortion in case of overmodulation. The gating depth is switchable via the I^2 C-bus.

7.5 VCO and divider

The VCO of the VIF-FPLL operates as an integrated low radiation relaxation oscillator at double the picture carrier frequency. The control voltage, required to tune the VCO to double the picture carrier frequency, is generated at the loop filter by the frequency phase detector. The possible frequency range is 50 MHz to 140 MHz (typical value).

The oscillator frequency is divided-by-two to provide two differential square wave signals with exactly 90 degrees phase difference, independent of the frequency, for use in the FPLL detectors, the video demodulator and the intercarrier mixer.

7.6 AFC and digital acquisition help

Each relaxation oscillator of the VIF-PLL and FM-PLL demodulator has a wide frequency range. To prevent false locking of the PLLs and with respect to the catching range, the digital acquisition help provides an individual control, until the frequency of the VCO is within the preselected standard dependent lock-in window of the PLL.

The in-window and out-window control at the FM-PLL is additionally used to mute the audio stage (if auto mute is selected via the l²C-bus).

The working principle of the digital acquisition help is as follows. The PLL VCO output is connected to a down counter which has a predefined start value (standard dependent). The VCO frequency clocks the down counter for a fixed gate time. Thereafter, the down counter stop value is analyzed. In case the stop value is higher (lower) than the expected value range, the VCO frequency is lower (higher) than the wanted lock-in window frequency range. A positive (negative) control current is injected into the PLL loop filter and consequently the VCO frequency is increased (decreased) and a new counting cycle starts.

The gate time as well as the control logic of the acquisition help circuit is dependent on the precision of the reference signal at pin REF. Operation as a crystal oscillator is possible as well as connecting this input via a serial capacitor to an external reference frequency, e.g. the tuning system oscillator.

The AFC signal is derived from the corresponding down counter stop value after a counting cycle. The last four bits are latched and can be read out via the I²C-bus (see Table 10). Also the digital-to-analog converted value is given as current at pin AFC.

7.7 Video demodulator and amplifier

The video demodulator is realized by a multiplier which is designed for low distortion and large bandwidth. The VIF signal is multiplied with the 'in phase' signal of the VIF-PLL VCO.

The demodulator output signal is fed into the video preamplifier via a level shift stage with integrated low-pass filter to achieve carrier harmonics attenuation.

The output signal of the preamplifier is fed to the VIF-AGC detector (see Section 7.3) and in the sound trap mode also fed internally to the integrated sound carrier trap (see Section 7.8). The differential trap output signal is converted and amplified by the following post-amplifier. The video output level at pin CVBS is 2 V (p-p).

In the bypass mode the output signal of the preamplifier is fed directly through the post-amplifier to pin CVBS. The output video level is 1.1 V (p-p) for using an external sound trap with 10 % overall loss.

Noise clipping is provided in both cases.

7.8 Sound carrier trap

The sound carrier trap consists of a reference filter, a phase detector and the sound trap itself.

A sound carrier reference signal is fed into the reference low-pass filter and is shifted by nominal 90 degrees. The phase detector compares the original reference signal with the signal shifted by the reference filter and produces a DC voltage by charging or discharging an integrated capacitor with a current proportional to the phase difference between both signals, respectively to the frequency error of the integrated filters. The DC voltage controls the frequency position of the reference filter and the sound trap. So the accurate frequency position for the different standards is set by the sound carrier reference signal.

The sound trap itself is constructed of three separate traps to realize sufficient suppression of the first and second sound carriers.

7.9 SIF amplifier

The SIF amplifier consists of three AC-coupled differential stages. Gain control is performed by emitter degeneration. The total gain control range is typically 66 dB. The differential input impedance is typically 2 k Ω in parallel with 3 pF.

7.10 SIF-AGC detector

SIF gain control is performed by the detection of the DC component of the AM demodulator output signal. This DC signal corresponds directly to the SIF voltage at the output of the SIF amplifier so that a constant SIF signal is supplied to the AM demodulator and to the single reference QSS mixer.

By switching the gain of the input amplifier of the SIF-AGC detector via the I²C-bus, the internal SIF level for FM sound is 5.5 dB lower than for AM sound. This is to adapt the SIF-AGC characteristic to the VIF-AGC characteristic. The adaption is ideal for a picture-to-sound FM carrier ratio of 13 dB.

Via a comparator, the integrated AGC capacitor is charged or discharged for the generation of the required SIF gain. Due to AM sound, the AGC reaction time is slow ($f_c < 20$ Hz for the closed AGC loop). For reducing this AM sound time constant in the event of a decreasing IF amplitude step, the charging and discharging currents of the AGC capacitor are increased by a factor of 12 (fast mode) when the VIF-AGC detector (at positive modulation mode) operates in the fast mode too. An additional circuit (threshold approximately 7 dB) ensures a very fast gain reduction for a large increasing IF amplitude step.

For negative modulation and QSS mode the AGC also is set to fast mode. For negative modulation and mobile mode the currents are increased additionally by a factor of 36.

7.11 Single reference QSS mixer

With the present system a high performance Hi-Fi stereo sound processing can be achieved. For a simplified application without a SIF SAW filter, the single reference QSS mixer can be switched to the intercarrier mode via the l²C-bus.

The single reference QSS mixer generates the 2nd FM TV sound intercarrier signal. It is realized by a linear multiplier which multiplies the SIF amplifier output signal and the VIF-PLL VCO signal (90 degrees output) which is locked to the picture carrier. In this way the QSS mixer operates as a quadrature mixer in the intercarrier mode and provides suppression of the low frequency video signals.

In the true split sound mode the VIF-PLL VCO is locked by a synthesizer. By this the 2nd FM TV sound intercarrier signal is generated independently from the vision carrier so that in the case of a low RF level, the sound demodulation is possible where the VIF-PLL would unlock. In the true split sound mode the VIF demodulation is not available.

The QSS mixer output signal is fed internally via a high-pass and low-pass combination to the FM demodulator as well as via an operational amplifier to the intercarrier output pin SIOMAD.

7.12 AM demodulator

The amplitude modulated SIF amplifier output signal is fed both to a two-stage limiting amplifier that removes the AM and to a linear multiplier. The result of the multiplication of the SIF signal with the limiter output signal is AM demodulation (passive synchronous demodulator). The demodulator output signal is fed via a low-pass filter that attenuates the carrier harmonics and via the input amplifier of the SIF-AGC detector to the audio amplifier.

7.13 FM demodulator and acquisition help

The narrow-band FM-PLL detector consists of:

- Gain controlled FM amplifier and AGC detector
- Narrow-band PLL

The intercarrier signal from the intercarrier mixer is fed to the input of an AC-coupled gain controlled amplifier with two stages. The gain controlled output signal is fed to the phase detector of the narrow-band FM-PLL (FM demodulator). For good selectivity and robustness against disturbance caused by the video signal, a high linearity of the gain controlled FM amplifier and of the phase detector as well as a constant signal level are required. The gain control is done by means of an 'in phase' demodulator for the FM carrier (from the output of the FM amplifier). The demodulation output is fed into a comparator for charging or discharging the integrated AGC capacitor. This leads to a mean value AGC loop to control the gain of the FM amplifier.

The FM demodulator is realized as a narrow-band PLL with an external loop filter, which provides the necessary selectivity (bandwidth approximately 100 kHz). To achieve good selectivity, a linear phase detector and a constant input level are required. The gain controlled intercarrier signal from the FM amplifier is fed to the phase detector. The phase detector controls via the loop filter the integrated low radiation relaxation oscillator. The designed frequency range is from 4 MHz to 7 MHz.

The VCO within the FM-PLL is phase-locked to the incoming 2nd SIF signal, which is frequency modulated. As well as this, the VCO control voltage is superimposed by the AF voltage. Therefore, the VCO tracks with the FM of the 2nd SIF signal. So, the AF voltage is present at the loop filter and is typically 5 mV (RMS) for 27 kHz FM deviation. This AF signal is fed via a buffer to the audio amplifier.

The correct locking of the PLL is supported by the digital acquisition help circuit (see Section 7.6).

7.14 Audio amplifier and mute time constant

The audio amplifier consists of two parts:

- AF preamplifier
- AF output amplifier

The AF preamplifier used for FM sound is an operational amplifier with internal feedback, high gain and high common mode rejection. The AF voltage from the PLL demodulator is 5 mV (RMS) for a frequency deviation of 27 kHz and is amplified by 30 dB. By the use of a DC operating point control circuit (with external capacitor C_{AF}), the AF preamplifier is decoupled from the PLL DC voltage. The low-pass characteristic of the amplifier reduces the harmonics of the sound intercarrier signal at the AF output terminal.

For FM sound a switchable de-emphasis network (with external capacitor) is implemented between the preamplifier and the output amplifier.

The AF output amplifier provides the required AF output level by a rail-to-rail output stage. A preceding stage makes use of an input selector for switching between FM sound, AM sound and mute state. The gain can be switched between 10 dB (normal) and 4 dB (reduced).

Switching to the mute state is controlled automatically, dependent on the digital acquisition help in case the VCO of the FM-PLL is not in the required frequency window. This is done by a time constant: fast for switching to the mute state and slow (typically 40 ms) for switching to the no-mute state.

All switching functions are controlled via the I²C-bus:

- AM sound, FM sound and forced mute
- Auto mute enable or disable
- De-emphasis off or on with 50 μs or 75 μs
- Audio gain normal or reduced

7.15 Internal voltage stabilizer

The band gap circuit internally generates a voltage of approximately 2.4 V, independent of supply voltage and temperature. A voltage regulator circuit, connected to this voltage, produces a constant voltage of 3.55 V which is used as an internal reference voltage.

7.16 I²C-bus transceiver and module address

The device can be controlled via the 2-wire I^2C -bus by a microcontroller. Two wires carry serial data (SDA) and serial clock (SCL) information between the devices connected to the I^2C -bus.

The device has an I²C-bus slave transceiver with auto-increment. The circuit operates up to clock frequencies of 400 kHz.

A slave address is sent from the master to the slave receiver. To avoid conflicts in a real application with other devices providing similar or complementing functions, there are four possible slave addresses available. These Module Addresses (MADs) can be selected by connecting resistors on pin SIOMAD and/or pins SIF1 and SIF2 (see Figure 23). Pin SIOMAD relates to bit A0 and pins SIF1 and SIF2 relate to bit A3. The slave addresses of this device are given in Table 4.

The power-on preset value is dependent on the use of pin SIOMAD and can be chosen for 45.75 MHz NTSC as default (pin SIOMAD left open-circuit) or 58.75 MHz NTSC (resistor on pin SIOMAD). In this way the device can be used without the I²C-bus as an NTSC only device.

Remark: In case of using the device without the l^2C -bus, then the rise time of the supply voltage after switching on power must be longer than 1.2 μ s.

Slave address	Selectable addre	ss bit	Resistor on pin				
	A3	A0	SIF1 and SIF2	SIOMAD			
MAD1	0	1	no	no			
MAD2	0	0	no	yes			
MAD3	1	1	yes	no			
MAD4	1	0	yes	yes			

Table 4. Slave address detection

8. I²C-bus control

8.1 Read format

Table 5.	I ² C-bus read	format	(slave	transmits	data)
----------	---------------------------	--------	--------	-----------	-------

S	Byte 1						Α	Byt	e 2							AN	Ρ		
	A6	A5	A4	A3	A2	A1	A0	R/W		D7	D6	D5	D4	D3	D2	D1	D0		
	slav	e ado	dress	3				1		data	ì								

Table 6.Explanation of Table 5

Symbol	Function
S	START condition, generated by the master
Slave address	see Table 7
R/ W = 1	read command, generated by the master
А	acknowledge bit, generated by the slave
Data	8-bit data word, transmitted by the slave, see Table 8
AN	acknowledge-not bit, generated by the master
Ρ	STOP condition, generated by the master

The master generates an acknowledge when it has received the dataword READ. The master next generates an acknowledge, then slave begins transmitting the dataword READ, and so on until the master generates an acknowledge-not bit and transmits a STOP condition.

8.1.1 Slave address

The first module address MAD1 is the standard address, see Table 4.

Table 7. Slave addresses^{[1][2]}

Symbol	Value (hex)	Bit								
		A6	A5	A4	A3	A2	A1	A0		
MAD1	43	1	0	0	0	0	1	1		
MAD2	42	1	0	0	0	0	1	0		
MAD3	4B	1	0	0	1	0	1	1		
MAD4	4A	1	0	0	1	0	1	0		

[1] For MAD activation via external resistor: see Table 4 and Figure 23.

[2] For applications without I^2C -bus: see <u>Table 21</u> and <u>Table 22</u>.

8.1.2 Data byte

Table 8. Data read register (status register)

MSB							LSB
D7	D6	D5	D4	D3	D2	D1	D0
AFCWIN	VIFLEV	CARRDET	AFC4	AFC3	AFC2	AFC1	PONR

Table 9.	Description	of status	register bits
Symbol		Value	Description
AFCWIN			AFC window
		1	VCO in ±1.6 MHz AFC window ^[1]
		0	VCO out of ±1.6 MHz AFC window
VIFLEV			VIF input level
		1	high level; VIF input voltage $\ge 200 \ \mu V$ (typically)
		0	low level
CARRDET			FM carrier detection
		1	detection
		0	no detection
AFC[4:1]			automatic frequency control
			see Table 10
PONR			power-on reset
		1	after power-on reset or after supply breakdown
		0	after a successful reading of the status register

[1] If no IF input is applied, then bit AFCWIN = 1 due to the fact that the VCO is forced to the AFC window border for fast lock-in behavior.

Bit		f _{VIF}		
AFC4	AFC3	AFC2	AFC1	
0	1	1	1	\leq (f ₀ – 187.5 kHz)
0	1	1	0	f ₀ – 162.5 kHz
0	1	0	1	f ₀ – 137.5 kHz
0	1	0	0	f ₀ – 112.5 kHz
0	0	1	1	$f_0 - 87.5 \text{ kHz}$
0	0	1	0	f ₀ – 62.5 kHz
0	0	0	1	f ₀ – 37.5 kHz
0	0	0	0	f ₀ – 12.5 kHz
1	1	1	1	f ₀ + 12.5 kHz
1	1	1	0	f ₀ + 37.5 kHz
1	1	0	1	f ₀ + 62.5 kHz
1	1	0	0	f ₀ + 87.5 kHz
1	0	1	1	f ₀ + 112.5 kHz
1	0	1	0	f ₀ + 137.5 kHz
1	0	0	1	f ₀ + 162.5 kHz
1	0	0	0	\geq (f ₀ + 187.5 kHz)

Table 10. Automatic frequency control bits^[1]

[1] f_0 is the nominal frequency of f_{VIF} .

8.2 Write format

Table 11. I²C-bus write format (slave receive data)^[1]

S	Byte 1		Α	Byte 2	Α	Byte 3	Α	Byte n	Α	Ρ
	A6 to A0	R/W		A7 to A0		bits 7 to 0		bits 7 to 0		
	slave address	0		subaddress		data 1		data 1		

[1] The auto-increment of the subaddress stops if the subaddress is 3.

Table 12. Explanation of Table 11

Symbol	Function
S	START condition, generated by the master
Slave address	see Table 7
$R/\overline{W} = 0$	write command, generated by the master
A	acknowledge bit, generated by the slave
Subaddress (SAD)	see Table 13
Data 1, data n	8-bit data words, transmitted by the master (see <u>Table 14</u> , <u>Table 15</u> and <u>Table 17</u>)
Р	STOP condition

8.2.1 Subaddress

If more than one data byte is transmitted, then auto-increment is performed: starting from the transmitted subaddress and auto-increment of subaddress in accordance with the order of Table 13.

Table 13. Definition of the subaddress (second byte after slave address)[1]

Register	MSB							LSB
	A7 <mark>[2]</mark>	A6[3]	A5[3]	A4[3]	A3[3]	A2[3]	A1	A0
SAD for switching mode	0	Х	Х	Х	Х	Х	0	0
SAD for adjust mode	0	Х	Х	Х	Х	Х	0	1
SAD for data mode	0	Х	Х	Х	Х	Х	1	0

[1] X = don't care.

[2] Bit A7 = 1 is not allowed.

[3] Bits A6 to A2 will be ignored by the internal hardware.

8.2.2 Data byte for switching mode

Table 14. Bit description of SAD register for switching mode (SAD = 00)

Bit	Value	Description
B7		output port 2 e.g. for SAW switching or AGC monitoring
	1	high-impedance, disabled or HIGH
	0	low-impedance, active or LOW
B6		output port 1 e.g. for SAW switching or external AGC input
	1	high-impedance, disabled or HIGH
	0	low-impedance, active or LOW

TDA9884

I²C-bus controlled multistandard alignment-free IF-PLL

Bit	Value	Description			
35		forced audio mute			
	0	on			
	1	off			
34 and B3		TV standard modulation and mobile mode			
	00	positive AM TV ^[1]			
	01	positive AM TV[1][2]			
	10	negative FM TV			
	11	negative TV mobile mode ^{[2][3]}			
32		carrier mode			
	1	QSS mode			
	0	intercarrier mode			
31		auto mute of FM AF output			
	1	active			
	0	inactive			
30		video mode (sound trap)			
	1	sound trap bypass			
	0	sound trap active			

....

[1] For positive AM TV choose 6.5 MHz for the second SIF.

[2] SIF-AGC monitor output at pin AFC.

[3] AGC (VIF/SIF) provides very fast reaction time.

8.2.3 Data byte for adjust mode

Table 15. Bit description of SAD register for adjust mode (SAD = 01)

Bit	Value	Description
C7		audio gain
	1	-6 dB
	0	0 dB
C6		de-emphasis time constant
	1	50 μs
	0	75 μs
C5		de-emphasis
	1	on
	0	off
C4 to C0		tuner takeover point adjustment
		see Table 16

TDA9884

I²C-bus controlled multistandard alignment-free IF-PLL

Bit					Тор
C4	C3	C2	C1	C0	adjustment (dB)
1	1	1	1	1	+15
1	1	1	1	0	+14
1	1	1	0	1	+13
1	1	1	0	0	+12
1	1	0	1	1	+11
1	1	0	1	0	+10
1	1	0	0	1	+9
1	1	0	0	0	+8
1	0	1	1	1	+7
1	0	1	1	0	+6
1	0	1	0	1	+5
1	0	1	0	0	+4
1	0	0	1	1	+3
1	0	0	1	0	+2
1	0	0	0	1	+1
1	0	0	0	0	0 <u>[1]</u>
0	1	1	1	1	-1
0	1	1	1	0	-2
0	1	1	0	1	-3
0	1	1	0	0	-4
0	1	0	1	1	-5
0	1	0	1	0	-6
0	1	0	0	1	-7
0	1	0	0	0	-8
0	0	1	1	1	-9
0	0	1	1	0	-10
0	0	1	0	1	-11
0	0	1	0	0	-12
0	0	0	1	1	-13
0	0	0	1	0	-14
0	0	0	0	1	-15
0	0	0	0	0	-16

Table 16. Tuner takeover point adjustment bits

[1] 0 dB is equal to 17 mV (RMS).

Table 17. Bit descrip	otion of SAI	D register for data mode (SAD = 10)		
Bit	Value	Description		
E7		VIF-AGC features		
		dependent on bit E5; see Table 18		
E6		L standard PLL gating		
	1	gating in case of 36 % positive modulation $(B4 = 0)$		
	0	gating in case of 0 % positive modulation (B4 = 0)		
	1	optimum for multipath condition (B4 = 1)		
	0	optimum for overmodulation condition (B4 = 1)		
E5		VIF, SIF and tuner minimum gain		
		dependent on bit E7; see Table 18		
E4 to E2		vision intermediate frequency selection		
		see Table 19 and Table 20		
E1 and E0		sound intercarrier frequency selection (sound 2nd IF); only valid for setting of bit E4 to bit E2 according to Table 19		
	00	$f_{FM} = 4.5 \text{ MHz}$		
	01	f _{FM} = 5.5 MHz		
	10	$f_{FM} = 6.0 \text{ MHz}$		
	11	f_{FM} = 6.5 MHz (for positive modulation choose 6.5 MHz)		

8.2.4 Data byte for data mode

Table 18. Options

Function	Bit E7 = 0		Bit E7 = 1			
	Bit E5 = 0	Bit E5 = 1	Bit E5 = 0	Bit E5 = 1		
Pin OP1	port function	port function	port function	VIF-AGC external input ^{[1][2][3]}		
Pin OP2	port function	port function	VIF-AGC output ^{[1][2][3]}	VIF-AGC output ^{[1][2][3]}		
Gain	normal gain	minimum gain	normal gain	external gain		

[1] The corresponding port function has to be disabled (set to 'high-impedance'); see Table 14.

[2] If selected by the I²C-bus, the VIF-AGC voltage can be monitored at pin OP2. In this case, OP2 cannot be used for the normal port function.

[3] If selected by the I²C-bus, pin OP1 can alternatively be used for external AGC control, activated by pin AGCSW. In this case, OP1 cannot be used for the normal port function.

Table 19. TV standard selection for VIF

Video IF selec	f _{VIF} (MHz)		
E4	E3	E2	
0	0	0	58.75 <mark>[1]</mark>
0	0	1	45.75 <mark>[1]</mark>
0	1	0	38.9
0	1	1	38.0
1	0	0	33.9
1	0	1	33.4

[1] Pin SIOMAD can be used for the selection of the different NTSC standards without I²C-bus. With a resistor on pin SIOMAD, f_{VIF} = 58.75 MHz; without a resistor on pin SIOMAD, f_{VIF} = 45.75 MHz (NTSC-M).

Table 20.True split sound mode

тν	Bit					Function	Function		
standard	E4	E3	E2	E1	E0	f _{synth} (MHz)	Sound 2nd IF f _{FM} (MHz)		
M/N	1	1	1	0	1	40	5.6		
B/G	1	1	1	1	1	40	6.6		
Ι	1	1	0	0	0	36	3.1		
D/K	1	1	0	1	0	36	3.6		

Table 21. Data setting after power-on reset (default setting with a resistor on pin SIOMAD)

Register	MSB							LSB
	D7	D6	D5	D4	D3	D2	D1	D0
Switching mode	1	1	0	1	0	1	1	0
Adjust mode	0	0	1	1	0	0	0	0
Data mode	0	0	0	0	0	0	0	0

Table 22. Data setting after power-on reset (default setting without a resistor on pin SIOMAD)

Register	MSB							
	D7	D6	D5	D4	D3	D2	D1	D0
Switching mode	1	1	0	1	0	1	1	0
Adjust mode	0	0	1	1	0	0	0	0
Data mode	0	0	0	0	0	1	0	0

For selection of the different NTSC standards without I^2 C-bus, an application on pin SIOMAD is used (see Figure 23). Without a resistor, NTSC-M is selected ($f_{VIF} = 45.75 \text{ MHz}$); with a resistor, the VIF frequency is 58.75 MHz (see Table 19).

9. Limiting values

Table 23. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134).

Symbol	Parameter	Conditions	Min	Max	Unit
VP	supply voltage		-	5.5	V
Vn	voltage on				
	pins VIF1, VIF2, OP1, FMPLL, AGCSW, V _P , AFC, OP2, SIF1 and SIF2		0	VP	V
	pin TAGC		0	8.8	V
t _{sc}	short-circuit time to ground or V_P		-	10	S
T _{stg}	storage temperature		-25	+150	°C
T _{amb}	ambient temperature		-20	+70	°C
V _{esd}	electrostatic discharge	machine model	<u>[1]</u> –400	+400	V
	voltage	human body model	2 -4000	+4000	V

[1] Class C according to EIA/JESD22-A115-A.

[2] Class 3A according to JESD22-A114-B.

10. Thermal characteristics

Table 24.	Thermal characteristics			
Symbol	Parameter	Conditions	Тур	Unit
R _{th(j-a)}	thermal resistance from junction to	ambient		
	TDA9884TS (SSOP24)	in free air	118	K/W
	TDA9884HN (HVQFN32)	in free air	40	K/W

11. Characteristics

Table 25. Characteristics

	1						
Symbol	Parameter	Conditions		Min	Тур	Max	Unit
Supply (pin V _P)							
V _P	supply voltage		[1][2]	4.5	5.0	5.5	V
I _P	supply current			52	63	70	mA
P _{tot}	total power dissipation			-	305	385	mW
Power-On Reset (P	OR)						
V _{P(start)}	supply voltage for start of reset	decreasing supply voltage		2.5	3.0	3.5	V
V _{P(stop)}	supply voltage for end of reset	increasing supply voltage; I ² C-bus transmission enable		-	-	4.4	V
τ _Ρ	time constant (R \times C) for network at pin V _P	for applications without I ² C-bus		1.2	-	-	μs
VIF amplifier (pins	VIF1 and VIF2)						
V _{i(VIF)(rms)}	VIF input voltage sensitivity (RMS value)	–1 dB video at output		-	60	100	μV
V _{i(max)(rms)}	maximum input voltage (RMS value)	+1 dB video at output		150	190	-	mV
V _{i(ovl)(rms)}	overload input voltage (RMS value)		[3]	-	-	440	mV
$\Delta V_{IF(int)}$	internal IF amplitude difference between picture and sound carrier	within AGC range; $\Delta f = 5.5 \text{ MHz}$		-	0.7	-	dB
G _{VIF(cr)}	VIF gain control range	see Figure 10		60	66	-	dB
B _{VIF(-3dB)} (II)	lower limit –3 dB VIF bandwidth			-	15	-	MHz
B _{VIF(-3dB)(ul)}	upper limit –3 dB VIF bandwidth			-	80	-	MHz
FDA9884_2				(© Koninklijke Philip	s Electronics N.V.	2006. All rights reserv
Product data shoot		Pov. 02 - 12 Mov. 2006					21 -

Table 25. Characteristics ...continued

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
R _{i(dif)}	differential input resistance		<u>[4]</u>	-	2	-	kΩ
C _{i(dif)}	differential input capacitance		<u>[4]</u>	-	3	-	pF
VI	DC input voltage			-	1.93	-	V
FPLL and true s	ynchronous video demo	dulator ^[5]					
f _{VCO(max)}	maximum oscillator frequency for carrier regeneration	$f = 2f_{PC}$		120	140	-	MHz
^f VIF	vision carrier	see Table 19		-	33.4	-	MHz
	operating frequencies			-	33.9	-	MHz
	nequencies			-	38.0	-	MHz
				-	38.9	-	MHz
				-	45.75	-	MHz
				-	58.75	-	MHz
Δf _{VIF}	VIF frequency window of digital acquisition help	related to f_{VIF} ; see Figure 7		-	±2.3	-	MHz
t _{acq}	acquisition time	BL = 70 kHz	[6]	-	-	30	ms
Vi(lock)(rms)	input voltage sensitivity for PLL to be locked (RMS value)	measured on pins VIF1 and VIF2; maximum IF gain		-	30	70	μV
T _{cy(DAH)}	cycle time of digital acquisition help			-	64	-	μs
K _{O(VIF)}	VIF VCO steepness	definition: $\Delta f_{VIF} / \Delta V_{VPLL}$		-	20	-	MHz/V
K _{D(VIF)}	VIF phase detector steepness	definition: $\Delta I_{VPLL} / \Delta \phi_{VIF}$		-	23	-	μA/rad
Video output 2 V	V (pin CVBS)						
Normal mode (so	ound carrier trap active) ar	nd sound carrier on					
V _{o(v)(p-p)}	video output voltage (peak-to-peak value)	see <u>Figure 9</u>		1.7	2.0	2.3	V
ΔV _o	video output voltage difference	difference between L and B/G standard		–12	-	+12	%
V/S	ratio between video (black-to-white) and sync level			1.90	2.33	3.00	
V _{sync}	sync voltage level			1.0	1.2	1.4	V
V _{clip(u)}	upper video clipping voltage level			V _P – 1.1	V _P – 1	-	V
V _{clip(I)}	lower video clipping voltage level			-	0.7	0.9	V
DA9884_2				© Ko	oninklijke Philips I	Electronics N.V. 2	006. All rights rese

Table 25. Characteristics ...continued

 $V_P = 5 V$; $T_{amb} = 25 \circ C$; see <u>Table 27</u> for input frequencies; B/G standard is used for the specification ($f_{PC} = 38.9 \text{ MHz}$; $f_{SC} = 33.4 \text{ MHz}$; PC/SC = 13 dB; $f_{mod} = 400 \text{ Hz}$); input level $V_{i(VIF)} = 10 \text{ mV}$ (RMS) (sync level for B/G; peak white level for L); IF input from 50 Ω via broadband transformer 1 : 1; video modulation DSB; residual carrier for B/G is 10 % and for L is 3 %; video signal in accordance with "ITU-T J.63 line 17 and line 330" or "NTC-7 Composite"; measurements taken in test circuit of Figure 23; unless otherwise specified.

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
Ro	output resistance		<u>[4]</u>	-	-	30	Ω
I _{bias(int)}	internal DC bias current for emitter-follower			1.5	2.0	-	mA
I _{o(sink)(max)}	maximum AC and DC output sink current			1	-	-	mA
I _{o(source)(max)}	maximum AC and DC output source current			3.9	-	-	mA
$\Delta V_{o(CVBS)}$	deviation of CVBS	50 dB gain control		-	-	0.5	dB
	output voltage	30 dB gain control		-	-	0.1	dB
$\Delta V_{o(bl)}$	black level tilt	negative modulation		-	-	1	%
$\Delta V_{o(bl)(v)}$	vertical black level tilt for worst case in L standard	vision carrier modulated by test line (VITS) only		-	-	3	%
G _{dif}	differential gain	"ITU-T J.63 line 330"	[7]				
		B/G standard		-	-	5	%
		L standard		-	-	7	%
Φdif	differential phase	"ITU-T J.63 line 330"		-	2	4	deg
S/N _W	weighted signal-to-noise ratio	see Figure 5	<u>[8]</u>	56	59	-	dB
S/N _{UW}	unweighted signal-to-noise ratio		<u>[9]</u>	47	51	-	dB
$\alpha_{IM(blue)}$	intermodulation	see Figure 6	[10]				
	attenuation at 'blue'	f = 1.1 MHz		58	64	-	dB
		f = 3.3 MHz		58	64	-	dB
$\alpha_{IM(yellow)}$	intermodulation	see Figure 6	[10]				
	attenuation at 'yellow'	f = 1.1 MHz		60	66	-	dB
	,	f = 3.3 MHz		59	65	-	dB
$\Delta V_{r(PC)(rms)}$	residual picture carrier (RMS value)	fundamental wave and harmonics		-	2	5	mV
∆f _{unw(p-p)}	robustness for unwanted frequency deviation of picture carrier (peak-to-peak value)	3 % residual carrier; 50 % serration pulses; L standard	[4]	-	-	12	kHz
Δφ	robustness for modulator imbalance	0 % residual carrier; 50 % serration pulses; L standard; L-gating = 0 %	[4]	-	-	3	%
α _H	suppression of video signal harmonics	AC load; $C_L < 20 \text{ pF}$; $R_L > 1 \text{ k}\Omega$	<u>[11]</u>	35	40	-	dB

TDA9884 2

Table 25. Characteristics ...continued

	olnerwise specified.						
Symbol	Parameter	Conditions		Min	Тур	Max	Unit
α_{spur}	suppression of spurious elements		[12]	40	-	-	dB
PSRR _{CVBS}	power supply ripple rejection at pin CVBS	f _{ripple} = 70 Hz; video signal; grey level; positive and negative modulation; see <u>Figure 8</u>		20	25	-	dB
M/N standard incl	uding Korea; see Figure 1	16					
B _{v(-3dB)} (trap)	–3 dB video bandwidth including sound carrier trap	$f_{trap} = 4.5 \text{ MHz}$	[13]	3.95	4.05	-	MHz
α_{SC1}	attenuation at first sound carrier	f = 4.5 MHz		30	36	-	dB
α _{SC1(60kHz)}	attenuation at first sound carrier $f_{SC1} \pm 60 \text{ kHz}$	f = 4.5 MHz		21	27	-	dB
α_{SC2}	attenuation at second sound carrier	f = 4.724 MHz		21	27	-	dB
$\alpha_{SC2(60kHz)}$	attenuation at second sound carrier $f_{SC2}\pm60~\text{kHz}$	f = 4.724 MHz		15	21	-	dB
t _{d(g)(cc)}	group delay at color carrier frequency	f = 3.58 MHz; see <u>Figure 17</u>		110	180	250	ns
B/G standard; see	e <mark>Figure 18</mark>						
B _{v(-3dB)(trap)}	–3 dB video bandwidth including sound carrier trap	$f_{trap} = 5.5 \text{ MHz}$	<u>[13]</u>	4.90	5.00	-	MHz
α_{SC1}	attenuation at first sound carrier	f = 5.5 MHz		30	36	-	dB
α _{SC1(60kHz)}	attenuation at first sound carrier $f_{SC1} \pm 60 \text{ kHz}$	f = 5.5 MHz		24	30	-	dB
α_{SC2}	attenuation at second sound carrier	f = 5.742 MHz		21	27	-	dB
α _{SC2(60kHz)}	attenuation at second sound carrier $\rm f_{SC2}\pm60~kHz$	f = 5.742 MHz		15	21	-	dB
t _{d(g)(cc)}	group delay at color carrier frequency	f = 4.43 MHz; see <u>Figure 19</u>		110	180	250	ns
I standard; see Fi	gure 20						
B _{v(-3dB)(trap)}	–3 dB video bandwidth including sound carrier trap	$f_{trap} = 6.0 \text{ MHz}$	<u>[13]</u>	5.40	5.50	-	MHz
α_{SC1}	attenuation at first sound carrier	f = 6.0 MHz		26	32	-	dB
TDA9884_2				©	Koninklijke Philips	Electronics N.V.	2006. All rights reser

Table 25. Characteristics ...continued

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
α _{SC1(60kHz)}	attenuation at first sound carrier $f_{SC1} \pm 60 \text{ kHz}$	f = 6.0 MHz		20	26	-	dB
α_{SC2}	attenuation at second sound carrier	f = 6.55 MHz		12	18	-	dB
α _{SC2(60kHz)}	attenuation at second sound carrier $f_{SC2} \pm 60 \text{ kHz}$	f = 6.55 MHz		10	15	-	dB
t _{d(g)(cc)}	group delay at color carrier frequency	f = 4.43 MHz		-	90	160	ns
D/K standard; see F	Figure 21						
B _{v(-3dB)(trap)}	 –3 dB video bandwidth including sound carrier trap 	$f_{trap} = 6.5 \text{ MHz}$	<u>[13]</u>	5.50	5.95	-	MHz
α_{SC1}	attenuation at first sound carrier	f = 6.5 MHz		26	32	-	dB
α _{SC1(60kHz)}	attenuation at first sound carrier $f_{SC1} \pm 60 \text{ kHz}$	f = 6.5 MHz		20	26	-	dB
α_{SC2}	attenuation at second sound carrier	f = 6.742 MHz		18	24	-	dB
α _{SC2(60kHz)}	attenuation at second sound carrier $f_{SC2} \pm 60 \text{ kHz}$	f = 6.742 MHz		13	18	-	dB
t _{d(g)(cc)}	group delay at color carrier frequency	f = 4.28 MHz		-	60	130	ns
Video output 1.1 V	(pin CVBS)						
Trap bypass mode a	and sound carrier off[14]						
V _{o(v)(p-p)}	video output voltage (peak-to-peak value)	see Figure 9		0.95	1.10	1.25	V
V _{sync}	sync voltage level			1.35	1.5	1.6	V
V _{clip(u)}	upper video clipping voltage level			3.5	3.6	-	V
V _{clip(I)}	lower video clipping voltage level			-	0.9	1.0	V
B _{v(-1dB)}	–1 dB video bandwidth	AC load; C _L < 20 pF; R _L > 1 k Ω		5	6	-	MHz
B _{v(-3dB)}	–3 dB video bandwidth	AC load; C _L < 20 pF; R _L > 1 k Ω		7	8	-	MHz
S/N _W	weighted signal-to-noise ratio	Figure 5	[8]	56	59	-	dB
S/N _{UW}	unweighted signal-to-noise ratio		<u>[9]</u>	48	52	-	dB

Table 25. Characteristics ...continued

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
VIF-AGC ^[15]							
t _{resp(inc)}	AGC response time to an increasing VIF	negative modulation; normal mode	[16]	-	4.3	-	μs/dB
	step	negative modulation; mobile mode	[16]	-	1.5	-	μs/dB
		positive modulation; VIF step: 20 dB	[16]	-	2.6	-	ms
t _{resp(dec)}	AGC response time	negative modulation					
	to a decreasing VIF	normal mode	[16]	-	1.9	-	ms/dB
	step	fast normal mode	[16][17]	-	0.08	-	ms/dB
		mobile mode	[16]	-	0.25	-	ms/dB
		fast mobile mode	[16][17]	-	0.01	-	ms/dB
		positive modulation					
		normal mode; VIF step: 20 dB	[16]	-	890	-	ms
		normal mode	[16]	-	143	-	ms/dB
		fast mode	[16][18]	-	2.6	-	ms/dB
$\Delta V_{i(VIF)}$	VIF amplitude step for activating AGC fast mode	L standard		-2	-6	-10	dB
V _{VAGC}	gain control voltage range	see Figure 10		0.8	-	3.5	V
CR _{stps}	control steepness	definition: $\Delta G_{VIF} / \Delta V_{VAGC}$; $V_{VAGC} = 2 V \text{ to } 3 V$		-	-80	-	dB/V
V _{th(VIF)}	threshold voltage for high level VIF input	see Table 8 and Table 9		120	200	320	μV
Pin VAGC							
I _{ch(max)}	maximum charge current	L standard		-	100	-	μΑ
Ich(add)	additional charge current	L standard: in the event of missing VITS pulses and no white video content		-	100	-	nA
I _{dch}	discharge current	L standard; normal mode		-	35	-	nA
		L standard; fast mode		-	1.8	-	μA
AGC input swite	ch (pin AGCSW) <u>^[19];</u> see	Table 18					
V _{ext(AGCOFF)}	voltage level for external AGC = OFF	bit E5 = 1; bit E7 = 1		-	-	0.3	V
V _{ext(AGCON)}	voltage level for external AGC = ON	bit E5 = 1; bit E7 = 1		2.5	-	-	V
R _i	input resistance	bit E5 = 1; bit E7 = 1		8	-	-	kΩ

Table 25. Characteristics ...continued

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
li	input current	bit E5 = 1; bit E7 = 1; V _{AGCSW} = 0 V	-	5	-	μΑ
Vi	input voltage	bit E5 = 1; bit E7 = 1; pin AGCSW open-circuit	V _P – 1.7	-	-	V
t _{d1}	switching delay for external AGC = ON	bit E5 = 1; bit E7 = 1; V _{AGCSW} = 2.5 V	-	-	150	ns
d2	switching delay for external AGC = OFF	bit E5 = 1; bit E7 = 1; V _{AGCSW} = 0.3 V	-	-	150	ns
Tuner AGC (pin TA	GC); see <mark>Figure 4</mark> , <mark>Fig</mark>	ure 10 and Figure 11				
Vi(VIF)(start1)(rms)	VIF input signal voltage for minimum starting point of tuner takeover at pins VIF1 and VIF2 (RMS value)	I_{TAGC} = 120 μA; R_{TOP} = 22 kΩ or no R_{TOP} and –15 dB via l ² C-bus (see Table 16)	-	2	5	mV
√i(VIF)(start2)(rms)	VIF input signal voltage for maximum starting point of tuner takeover at pins VIF1 and VIF2 (RMS value)	$I_{TAGC} = 120 \ \mu A; R_{TOP} = 0 \ \Omega$ or no R _{TOP} and +15 dB via I^2C -bus (see <u>Table 16</u>)	45	90	-	mV
Vi(SIF)(start1)(rms)	SIF input signal voltage for minimum starting point of tuner takeover at pins SIF1 and SIF2 (RMS value)	true split sound mode; $I_{TAGC} = 120 \ \mu A$; $R_{TOP} = 22 \ k\Omega$ or no R_{TOP} and -15 dB via l ² C-bus (see Table 16)	-	1	2.5	mV
√i(SIF)(start2)(rms)	SIF input signal voltage for maximum starting point of tuner takeover at pins SIF1 and SIF2 (RMS value)	true split sound mode; $I_{TAGC} = 120 \ \mu A; R_{TOP} = 0 \ \Omega$ or no R_{TOP} and +15 dB via I^2C -bus (see <u>Table 16</u>)	22.5	45	-	mV
QV _{TOP}	tuner takeover point accuracy	I_{TAGC} = 120 μA; R_{TOP} = 10 kΩ; or no R_{TOP} and 0 dB via I ² C-bus (see <u>Table 16</u>)				
		normal mode	7	17	43	mV
		true split sound mode	4	9	22	mV
ΔQV _{TOP} /ΔT	takeover point variation with temperature	I _{TAGC} = 120 μΑ	-	0.03	0.07	dB/K
,	permissible output	from external source	-	-	8.8	V
Vo	voltage					

Table 25. Characteristics ...continued

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
I _{sink}	sink current	no tuner gain reduction; $V_{TAGC} = 8.8 V$		•	-	0.75	μΑ
		maximum tuner gain reduction; V _{TAGC} = 1 V		450	600	750	μΑ
∆G _{IF}	IF slip by automatic gain control	tuner gain current from 20 % to 80 %		3	5	8	dB
AFC circuit (pir	n AFC) <u>[20][21]</u> ; see <u>Figure 7</u>	7					
V _{sat(ul)}	lower limit saturation voltage			V _P – 0.6	$V_P - 0.3$	-	V
V _{sat(II)}	lower limit saturation voltage			-	0.3	0.6	V
I _{o(source)}	output source current			160	200	240	μA
I _{o(sink)}	output sink current			160	200	240	μΑ
AFC _{stps}	AFC control steepness	definition: $\Delta I_{AFC} / \Delta f_{VIF}$		0.85	1.05	1.25	μA/kHz
Qf _{VIF(a)}	analog accuracy of AFC circuit	$I_{AFC} = 0 A$; $f_{REF} = 4 MHz$		-20	-	+20	kHz
Qf _{VIF(d)}	digital accuracy of AFC circuit via I ² C-bus	I _{AFC} = 0 A; f _{REF} = 4 MHz; 1 digit = 25 kHz		–20 – 1 digit	-	+20 + 1 digit	kHz
SIF-AGC monit	or (pin AFC) ^[20] ; see <u>Table</u>	e 14					
I _{o(source)}	SIF-AGC monitor source current		,	•	-	600	μΑ
I _{o(sink)}	SIF-AGC monitor sink current			-	-	270	μΑ
SIF amplifier (p	oins SIF1 and SIF2)						
V _{i(SIF)(rms)}	SIF input voltage sensitivity (RMS value)	FM mode; –3 dB at intercarrier output pin SIOMAD		-	30	70	μV
		AM mode; –3 dB at AF output pin AUD		-	70	100	μV
V _{i(max)(rms)}	maximum input voltage (RMS value)	FM mode; 1 dB at intercarrier output pin SIOMAD		50	70	-	mV
		AM mode; 1 dB at AF output pin AUD		80	140	-	mV
V _{i(ovl)(rms)}	overload input voltage (RMS value)		<u>[3]</u>	-	-	320	mV
G _{SIF(cr)}	SIF gain control range	FM and AM mode; see <u>Figure 11</u>		60	66	-	dB
B _{SIF(-3dB)} (II)	lower limit −3 dB SIF bandwidth			-	15	-	MHz

Table 25. Characteristics ...continued

 $V_P = 5 V$; $T_{amb} = 25 \circ C$; see <u>Table 27</u> for input frequencies; B/G standard is used for the specification ($f_{PC} = 38.9 \text{ MHz}$; $f_{SC} = 33.4 \text{ MHz}$; PC/SC = 13 dB; $f_{mod} = 400 \text{ Hz}$); input level $V_{i(VIF)} = 10 \text{ mV}$ (RMS) (sync level for B/G; peak white level for L); IF input from 50 Ω via broadband transformer 1 : 1; video modulation DSB; residual carrier for B/G is 10 % and for L is 3 %; video signal in accordance with "ITU-T J.63 line 17 and line 330" or "NTC-7 Composite"; measurements taken in test circuit of Figure 23; unless otherwise specified.

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
B _{SIF(-3dB)(ul)}	upper limit –3 dB SIF bandwidth			-	80	-	MHz
R _{i(diff)}	differential input resistance		<u>[4]</u>	-	2	-	kΩ
C _{i(diff)}	differential input capacitance		<u>[4]</u>	-	3	-	pF
VI	DC input voltage			-	1.93	-	V
SIF-AGC detecto	or						
tresp	AGC response time to an increasing or	FM or AM fast step; normal mode	[20]				
	decreasing SIF step of 20 dB	increasing		-	8	-	ms
		decreasing		-	25	-	ms
		FM or AM fast step; mobile mode	[20]				
		increasing		-	0.25	-	ms
		decreasing		-	0.7	-	ms
		AM slow step					
		increasing		-	80	-	ms
		decreasing		-	250	-	ms
Single reference	e QSS intercarrier mixer	(pin SIOMAD)					
V _{o(intc)(rms)}	IF intercarrier output level (RMS value)	QSS mode; SC_1 ; SC_2 off		90	140	180	mV
		L standard; without modulation		90	140	180	mV
		intercarrier mode; $PC/SC_1 = 20 \text{ dB}; SC_2 \text{ off}$	[22]	-	75	-	mV
Bintc(-3dB)(ul)	upper limit –3 dB intercarrier bandwidth			12	15	-	MHz
$\Delta V_{r(SC)(rms)}$	residual sound carrier (RMS value)	fundamental wave and harmonics					
		QSS mode		-	2	5	mV
		intercarrier mode		-	2	5	mV
$\Delta V_{r(PC)(rms)}$	residual picture carrier (RMS value)	fundamental wave and harmonics					
		QSS mode		-	2	5	mV
		intercarrier mode		-	5	20	mV
α _H	suppression of video signal harmonics	intercarrier mode; f _{video} = 5 MHz		35	40	-	dB
R _o	output resistance		[4]	-	-	30	Ω
Vo	DC output voltage			-	2	-	V

TDA9884_2 Product data sheet

Table 25. Characteristics ...continued

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
I _{bias(int)}	internal DC bias current for emitter follower			0.90	1.15	-	mA
I _{o(sink)(max)}	maximum AC output sink current			0.6	0.8	-	mA
I _{o(source)(max)}	maximum AC output source current			0.6	0.8	-	mA
I _{o(source)}	DC output source current	MAD2 activated	[23]	0.75	0.93	1.20	mA
FM-PLL demodul	ator <u>[21][24][25][26][27][28]</u>						
Sound intercarrier	output (pin SIOMAD)						
V _{FM(rms)}	IF intercarrier level for gain controlled operation of FM-PLL (RMS value)	corresponding PC/SC ratio at input pins VIF1 and VIF2 is 7 dB to 47 dB		3.2	-	320	mV
V _{FM(lock)(rms)}	IF intercarrier level for lock-in of PLL (RMS value)			-	-	2	mV
V _{FM(det)(rms)}	IF intercarrier level for FM carrier detect (RMS value)	see <u>Table 9</u>		-	-	2.3	mV
f _{FM}	sound intercarrier operating FM frequencies	see Table 17		-	4.5	-	MHz
				-	5.5	-	MHz
				-	6.0	-	MHz
				-	6.5	-	MHz
		true split sound mode; see <u>Table 20</u>		-	3.1	-	MHz
				-	3.6	-	MHz
				-	5.6	-	MHz
A 11 - 2 - 2 - 2				-	6.6	-	MHz
Audio output (pin A							
V _{o(AF)(rms)}	AF output voltage (RMS value)	25 kHz FM deviation; 75 μs de-emphasis		400	500	600	mV
		27 kHz FM deviation; 50 μs de-emphasis		430	540	650	mV
Vo(AF)(cl)(rms)	AF output clipping level (RMS value)	THD < 1.5 %		1.3	1.4	-	V
$\Delta V_{o(AF)} / \Delta T$	AF output voltage variation with temperature			-	3×10 ⁻³	7 × 10 ⁻³	dB/K
THD	total harmonic distortion	27 kHz FM deviation; 50 μs de-emphasis		-	0.15	0.50	%

Table 25. Characteristics ...continued

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
Δf_{AF}	frequency deviation	THD < 1.5 %	[25]	-	-	±55	kHz
		–6 dB AF output via I ² C-bus	[25]	-	-	±110	kHz
B _{AF(-3dB)}	–3 dB AF bandwidth	without de-emphasis; measured with FM-PLL filter in <u>Figure 23</u>		80	100	-	kHz
S/N _{W(AF)}	weighted signal-to-noise ratio of audio signal	FM-PLL only; 27 kHz FM deviation; 50 μs de-emphasis		52	56	-	dB
		black picture; see <u>Figure 12</u>		50	56	-	dB
$\Delta V_{\text{r(SC)(rms)}}$	residual sound carrier (RMS value)	fundamental wave and harmonics; without de-emphasis		-	-	2	mV
$\alpha_{AM(sup)}$	AM suppression of FM demodulator	referenced to 27 kHz FM deviation; 50 μs de-emphasis; AM: f = 1 kHz; m = 54 %		40	46	-	dB
PSRR	power supply ripple rejection	f _{ripple} = 70 Hz; see <u>Figure 8</u>		14	20	-	dB
FM-PLL filter (pin F	FMPLL)						
V _{loop}	DC loop voltage			1.5	-	3.3	V
I _{o(source)} (PD)(max)	maximum phase detector output source current			-	60	-	μΑ
I _{o(sink)} (PD)(max)	maximum phase detector output sink current			-	60	-	μΑ
I _{o(source)} (DAH)	output source current of digital acquisition help			-	55	-	μΑ
I _{o(sink)} (DAH)	output sink current of digital acquisition help			-	55	-	μΑ
t _{W(DAH)}	pulse width of digital acquisition help current			-	16	-	μs
T _{cy(DAH)}	cycle time of digital acquisition help			-	64	-	μs
K _{O(FM)}	VCO steepness	definition: $\Delta f_{FM} / \Delta V_{FMPLL}$		-	3.3	-	MHz/V
K _{D(FM)}	phase detector steepness	definition: $\Delta I_{FMPLL}/\Delta \phi_{FM}$		-	4	-	μA/rad

Table 25. Characteristics ...continued

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
Audio amplifier	r						
De-emphasis ne	etwork (pin DEEM)						
R _o	output resistance	50 μs de-emphasis; see <u>Table 15</u>		4.4	5.0	5.6	kΩ
		75 μs de-emphasis; see <u>Table 15</u>		6.6	7.5	8.4	kΩ
V _{AF(rms)}	audio signal (RMS value)	f _{AF} = 400 Hz; V _{AUD} = 500 mV		-	170	-	mV
Vo	DC output voltage			-	2.37	-	V
AF decoupling (pin AFD)						
V _{dec}	DC decoupling voltage	dependent on f _{FM} intercarrier frequency		1.5	-	3.3	V
۱L	leakage current	$\Delta V_{O(AUD)} < \pm 50 \text{ mV}$		-	-	±25	nA
I _{ch(max)}	maximum charge current			1.15	1.50	1.85	μΑ
I _{dch(max)}	maximum discharge current			1.15	1.50	1.85	μΑ
Audio output (pi	n AUD)						
Ro	output resistance		[4]	-	-	300	Ω
V _{O(AUD)}	DC output voltage			-	2.37	-	V
RL	load resistance	AC-coupled		10	-	-	kΩ
R _{L(DC)}	DC load resistance			100	-	-	kΩ
CL	load capacitance			-	-	1.5	nF
B _{AF(-3dB)(ul)}	upper limit –3 dB AF bandwidth of audio amplifier			150	-	-	kHz
B _{AF(-3dB)} (II)	lower limit –3 dB AF bandwidth of audio amplifier		[26]	-	-	20	Hz
α_{mute}	mute attenuation of AF signal	via I ² C-bus		70	75	-	dB
ΔV_{jump}	DC jump voltage for switching AF output to mute state and vice versa	activated by digital acquisition help or via I ² C-bus mute		-	±50	±150	mV

Table 25. Characteristics ...continued

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
FM operation	27][29]					
Intercarrier AF	performance ^[30]					
S/N _W	weighted signal-to-noise ratio	PC/SC ratio is 21 dB to 27 dB at pins VIF1 and VIF2				
		black picture	50	56	-	dB
		white picture	45	51	-	dB
		6 kHz sine wave (black-to-white modulation)	40	46	-	dB
		sound carrier subharmonics; f = 2.75 MHz ± 3 kHz	35	40	-	dB
Single reference	e QSS AF performance[31][(32]				
S/N _{W(SC1)}	weighted signal-to-noise ratio for SC ₁	PC/SC ₁ ratio at pins VIF1 and VIF2; 27 kHz (54 % FM deviation); <i>"ITU-R BS.468-4"</i>	40	-	-	dB
		black picture	53	58	-	dB
		white picture	50	53	-	dB
		6 kHz sine wave (black-to-white modulation)	44	48	-	dB
	250 kHz square wave (black-to-white modulation)	40	45	-	dB	
	sound carrier subharmonics; f = 2.75 MHz ± 3 kHz	45	51	-	dB	
		sound carrier subharmonics; f = 2.87 MHz ± 3 kHz	46	52	-	dB

Philips Semiconductors

I²C-bus controlled multistandard alignment-free IF-PLL

Table 25. Characteristics ...continued

 $V_P = 5 V$; $T_{amb} = 25 \circ C$; see <u>Table 27</u> for input frequencies; B/G standard is used for the specification ($f_{PC} = 38.9 \text{ MHz}$; $f_{SC} = 33.4 \text{ MHz}$; PC/SC = 13 dB; $f_{mod} = 400 \text{ Hz}$); input level $V_{i(VIF)} = 10 \text{ mV}$ (RMS) (sync level for B/G; peak white level for L); IF input from 50 Ω via broadband transformer 1 : 1; video modulation DSB; residual carrier for B/G is 10 % and for L is 3 %; video signal in accordance with "ITU-T J.63 line 17 and line 330" or "NTC-7 Composite"; measurements taken in test circuit of Figure 23; unless otherwise specified.

Symbol	Parameter	Conditions		Min	Тур	Мах	Unit
S/N _{W(SC2)}	weighted signal-to-noise ratio for SC ₂	PC/SC ₂ ratio at pins VIF1 and VIF2; 27 kHz (54 % FM deviation); <i>"ITU-R BS.468-4"</i>		40	-	-	dB
		black picture		48	55	-	dB
		white picture		46	51	-	dB
		6 kHz sine wave (black-to-white modulation)		42	46	-	dB
		250 kHz square wave (black-to-white modulation)		29	34	-	dB
		sound carrier subharmonics; f = 2.75 MHz \pm 3 kHz		44	50	-	dB
		sound carrier subharmonics; f = 2.87 MHz \pm 3 kHz		45	51	-	dB
AM operation							
L standard (pin A	AUD) <u>^[33];</u> see <mark>Figure 13</mark> and	d Figure 14					
V _{o(AF)(rms)}	AF output voltage (RMS value)	54 % modulation		400	500	600	mV
THD	total harmonic distortion	54 % modulation		-	0.5	1.0	%
B _{AF(-3dB)}	-3 dB AF bandwidth			100	125	-	kHz
S/N _{W(AF)}	weighted signal-to-noise ratio of audio signal	in accordance with "ITU-R BS.468-4"		45	50	-	dB
V _{O(AUD)}	DC potential voltage			-	2.37	-	V
PSRR	power supply ripple rejection	f _{ripple} = 70 Hz; see <u>Figure 8</u>		20	26	-	dB
Reference frequ	uency input (pin REF)						
VI	DC input voltage			2.3	2.6	2.9	V
R _i	input resistance		[4]	-	5	-	kΩ
R _{xtal}	resonance resistance of crystal	operation as crystal oscillator		-	-	200	Ω
C _x	pull-up/down capacitance		<u>[34]</u>	-	-	-	pF

f_{ref}

Table 25. Characteristics ... continued

 $V_P = 5 V$; $T_{amb} = 25 \circ C$; see <u>Table 27</u> for input frequencies; B/G standard is used for the specification ($f_{PC} = 38.9 \text{ MHz}$; $f_{SC} = 33.4 \text{ MHz}$; PC/SC = 13 dB; $f_{mod} = 400 \text{ Hz}$); input level $V_{i(VIF)} = 10 \text{ mV}$ (RMS) (sync level for B/G; peak white level for L); IF input from 50 Ω via broadband transformer 1 : 1; video modulation DSB; residual carrier for B/G is 10 % and for L is 3 %; video signal in accordance with "ITU-T J.63 line 17 and line 330" or "NTC-7 Composite"; measurements taken in test circuit of Figure 23; unless otherwise specified.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{ref(rms)}	reference signal voltage (RMS value)	operation as input terminal	80	-	400	mV
R _{o(ref)}	output resistance of reference signal source		-	-	4.7	kΩ
Сĸ	decoupling capacitance to external reference signal source	operation as input terminal	22	100	-	pF
² C-bus transceiv	ver (pins SDA and SCL)	[36][37]				
f _{SCL}	SCL clock frequency		0	-	400	kHz
V _{IH}	HIGH-level input voltage		3	-	V_{CC}	V
V _{IL}	LOW-level input voltage		-0.3	-	+1.5	V
Ін	HIGH-level input current		-10	-	+10	μA
lıL	LOW-level input current		-10	-	+10	μA
V _{OL}	LOW-level output voltage	I _{OL} = 3 mA	-	-	0.4	V
o(sink)	output sink current	$V_P = 0 V$	-	-	10	μA
l _{o(source)}	output source current	$V_P = 0 V$	-	-	10	μA
Output ports (pin	IS OP1 and OP2)[15][19][38]				
V _{OL}	LOW-level output voltage	I _{OL} = 2 mA (sink current)	-	-	0.4	V
V _{OH}	HIGH-level output voltage		-	-	6	V
I _{o(sink)}	output sink current		-	-	2	mA
I _{o(sink/source)(max)}	maximum output sink or source current	pin OP2 functions as VIF-AGC output	-	-	10	μΑ

[1] Values of video and sound parameters can be decreased at V_P = 4.5 V.

[2] For applications without l²C-bus, the time constant (R × C) at the supply must be > 1.2 μ s (e.g. 1 Ω and 2.2 μ F).

[3] Level headroom for input level jumps during gain control setting.

[4] This parameter is not tested during the production and is only given as application information for designing the receiver circuit.

Philips Semiconductors

I²C-bus controlled multistandard alignment-free IF-PLL

DA9884

[5] Loop bandwidth BL = 70 kHz (damping factor d = 1.9; calculated with sync level within gain control range). Calculation of the VIF-PLL filter can be done by use of the following formulae: $BL_{-3dB} = \frac{1}{2\pi}K_O K_D R$, valid for d \ge 1.2; $d = \frac{1}{2}R_{\sqrt{K_O K_D C}}$, where: K_O is the VCO

steepness $\left(\frac{rad}{V}\right)$ or $\left(2\pi\frac{Hz}{V}\right)$; K_D is the phase detector steepness $\left(\frac{\mu A}{rad}\right)$; R is the loop resistor; C is the loop capacitor; BL_{-3dB} is the loop bandwidth for -3 dB; d is the damping factor.

- [6] $V_{i(V|F)} = 10 \text{ mV}$ (RMS); $\Delta f = 1 \text{ MHz}$ (VCO frequency offset related to picture carrier frequency); white picture video modulation.
- [7] Condition: luminance range (5 steps) from 0 % to 100 %.
- [8] Measurement using unified weighting filter ("*ITU-T J.61*"), 200 kHz high-pass filter, 5 MHz low-pass filter and subcarrier notch filter ("*ITU-T J.64*").
- [9] Noise analyzer setting: 200 kHz high-pass and SC-trap switched on.
- [10] The intermodulation figures are defined for:

a) f = 1.1 MHz (referenced to black and white signal) as $\alpha_{IM} = 20 \log \left(\frac{V_0 \text{ at } 4.4 \text{ MHz}}{V_0 \text{ at } 1.1 \text{ MHz}} \right) + 3.6 \text{ dB}.$

b) f = 3.3 MHz (referenced to color carrier) as $\alpha_{IM} = 20 \log \left(\frac{V_0 \text{ at } 4.4 \text{ MHz}}{V_0 \text{ at } 3.3 \text{ MHz}} \right)$.

- [11] Measurements taken with SAW filter M1963M (sound shelf: 20 dB); loop bandwidth BL = 70 kHz. Modulation VSB; sound carrier off; f_{video} > 0.5 MHz.
- [12] Measurements taken with SAW filter M1963M (sound shelf: 20 dB); loop bandwidth BL = 70 kHz. Sound carrier on; f_{video} = 10 kHz to 10 MHz.
- [13] AC load; $C_L < 20 \text{ pF}$ and $R_L > 1 \text{ k}\Omega$. The sound carrier frequencies (depending on TV standard) are attenuated by the integrated sound carrier traps (see Figure 16 to Figure 21; |H (s)| is the absolute value of transfer function).
- [14] The sound carrier trap can be bypassed by switching the I²C-bus. In this way the full composite video spectrum appears at pin CVBS. The amplitude is 1.1 V (p-p).
- [15] If selected by the I²C-bus, the VIF-AGC voltage can be monitored at pin OP2. In this case, OP2 cannot be used for the normal port function.
- [16] The response time is valid for a VIF input level range from 200 μ V to 70 mV.
- [17] The fast mode will be activated automatically, if within a time of typically 150 µs for mobile mode and 1.2 ms for normal mode no AGC event occurs. An AGC event is a charge current pulse into the AGC capacitor due to reaching AGC reference voltage the sync level.
- [18] The fast mode will be activated automatically, if the black level drops down by half of the sync amplitude.
- [19] If selected by the I²C-bus, pin OP1 can alternatively be used for external AGC control, activated by pin AGCSW. In this case, OP1 cannot be used for the normal port function.
- [20] Pin AFC is usable as AFC output or as SIF-AGC.
 - a) To match the AFC output signal to different tuning systems a current source output is provided. The test circuit is given in Figure 7. The AFC steepness can be changed by resistors R1 and R2.
 - b) In mobile mode the internal SIF-AGC is switched to pin AFC. In this case AFC out is disabled.
- [21] The tolerance of the reference frequency determines the accuracy of the VIF-AFC, FM demodulator center frequency and maximum FM deviation.
- [22] The intercarrier output signal at pin SIOMAD can be calculated by the following formulae taking into account the internal video signal

with 1.1 V (p-p) as a reference:
$$V_{o(intc)(rms)} = 1.1 \times \frac{1}{2\sqrt{2}} \times 10^r$$
 V and $r = \frac{1}{20} \times \left(\frac{V_{i(SC)}}{V_{i(PC)}} (dB) + 6 dB \pm 3 dB\right)$, where: $\frac{1}{2\sqrt{2}}$ is

the correction term for RMS value, $\frac{V_{i(SC)}}{V_{i(PC)}}$ (*dB*) is the sound-to-picture carrier ratio at pins VIF1 and VIF2 in dB, 6 dB is the correction

term of internal circuitry and ± 3 dB is the tolerance of video output and intercarrier output V_{o(intc)(rms)}.

- [23] For normal operation (with the I²C-bus) no DC load at pin SIOMAD is allowed. The second module address (MAD2) will be activated by the application of a 2.2 kΩ resistor between pin SIOMAD and ground. If this MAD2 is activated, also the power-on setup state activates a VIF frequency of 58.75 MHz.
- [24] SIF input level is 10 mV (RMS); VIF input level is 10 mV (RMS) unmodulated.

TDA9884 2
TDA9884

I²C-bus controlled multistandard alignment-free IF-PLL

- [25] Measured with an FM deviation of 25 kHz and the typical AF output voltage of 500 mV (RMS). The AF output signal can be attenuated by 6 dB to 250 mV (RMS) via the I²C-bus. For handling a frequency deviation of more than 55 kHz, the AF output signal has to be reduced in order to avoid clipping (THD < 1.5 %).</p>
- [26] The lower limit of the audio bandwidth depends on the value of the capacitor at pin AFD. A value of C_{AF} = 470 nF leads to $f_{AF(-3dB)} \approx 20$ Hz and C_{AF} = 220 nF leads to $f_{AF(-3dB)} \approx 40$ Hz.
- [27] For all S/N measurements the VIF modulator in use has to meet the following specifications:
 - a) Incidental phase modulation for black-to-white jump less than 0.5 degrees.
 - b) QSS AF performance, measured with the television demodulator AMF2 (audio output, weighted S/N ratio) better than 60 dB (at deviation 27 kHz) for 6 kHz sine wave black-to-white video modulation.
 - c) Picture-to-sound carrier ratio $PC/SC_1 = 13 \text{ dB}$ (transmitter).
- [28] Calculation of the loop filter parameters can be done approximately using the following formulae: $f_o = \frac{1}{2\pi_b} \left| \frac{K_O K_D}{C_P} \right|$;

 $\vartheta = \frac{I}{2R\sqrt{K_O K_D C_P}}$; BL_{3dB} = f_o(1.55 - \vartheta²). The formulae are only valid under the following conditions: $\vartheta \le 1$ and C_S > 5C_P, where:

 K_{O} is the VCO steepness $\left(\frac{rad}{V}\right)$ or $\left(2\pi\frac{Hz}{V}\right)$; K_{D} is the phase detector steepness $\left(\frac{\mu A}{rad}\right)$; R is the loop resistor; C_{S} is the series

capacitor; C_P is the parallel capacitor; f_o is the natural frequency of the PLL; BL_{-3dB} is the loop bandwidth for -3 dB; ϑ is the damping factor. For examples, see Table 26.

- [29] The PC/SC ratio is calculated as the addition of TV transmitter PC/SC₁ ratio and SAW filter PC/SC₁ ratio. This PC/SC ratio is necessary to achieve the S/N_W values as noted. A different PC/SC ratio will change these values.
- [30] Measurements taken with SAW filter G1984 (Siemens) for vision and sound IF (sound shelf: 14 dB). Picture-to-sound carrier ratio of transmitter PC/SC = 13 dB. Input level on pins VIF1 and VIF2 of V_{i(SIF)} = 10 mV (RMS) sync level, 27 kHz FM deviation for sound carrier, f_{AF} = 400 Hz. Measurements in accordance with *"ITU-R BS.468-4"*. De-emphasis is 50 μs.
- [31] The QSS signal output on pin SIOMAD is analyzed by a test demodulator TDA9820. The S/N ratio of this device is more than 60 dB, related to a deviation of ±27 kHz, in accordance with *"ITU-R BS.468-4"*.
- [32] Measurements taken with SAW filter K3953 for vision IF (suppressed sound carrier) and K9453 for sound IF (suppressed picture carrier). Input level V_{i(SIF)} = 10 mV (RMS), 27 kHz (54 % FM deviation).
- [33] Measurements taken with SAW filter K9453 (Siemens) for AM sound IF (suppressed picture carrier).
- [34] The value of C_x determines the accuracy of the resonance frequency of the crystal. It depends on the type of crystal used.
- [35] Pin REF is able to operate as a 1-pin crystal oscillator input as well as an external reference signal input, e.g. from the tuning system.
- [36] The SDA and SCL lines will not be pulled down if V_{CC} is switched off.
- [37] The AC characteristics are in accordance with the l²C-bus specification for fast mode (maximum clock frequency is 400 kHz). Information about the l²C-bus can be found in the brochure *"The l²C-bus and how to use it" (order number 9398 393 40011).*
- [38] Port P1 and port P2 are open-collector outputs.

Table 26. Examples for Table note 28 of Table 25 (FM-PLL filter)

BL _{-3dB} (kHz)	C _S (nF)	C _P (pF)	R (k Ω)	ϑ
100	10	390	5.6	0.5
160	10	150	9.1	0.5

Table 27. Input frequencies and carrier ratios

Description	Symbol	B/G standard	M/N standard	L standard	L accent standard	Unit
VIF carrier	f _{PC}	38.9	45.75 or 58.75	38.9	33.9	MHz
SIF carrier	f _{SC1}	33.4	41.25 or 54.25	32.4	40.4	MHz
	f _{SC2}	33.158	-	-	-	MHz
Picture-to-sound carrier ratio	SC ₁	13	7	10	10	dB
	SC ₂	20	-	-	-	dB

TDA9884

TDA9884

TDA9884

I²C-bus controlled multistandard alignment-free IF-PLL

Conditions: PC/SC ratio measured at pins VIF1 and VIF2; via transformer; 27 kHz FM deviation; 50 µs de-emphasis.

- (1) Signal.
- (2) Noise at H-picture (weighted in accordance with "ITU-R BS.468-4" quasi peak).
- (3) Noise at black picture (weighted in accordance with "ITU-R BS.468-4" quasi peak).

Fig 12. Audio signal-to-noise ratio as a function of picture-to-sound carrier ratio in intercarrier mode

Philips Semiconductors

TDA9884

TDA9884

TDA9884

12. Application information

Philips

Semiconductors

I²C-bus controlled multistandard alignment-free IF-PLL

TDA9884

Product data sheet

Rev. 02 — 12 May 2006

48 of 58

Philips Semiconductors

ີ່

Test information

I²C-bus controlled multistandard alignment-free IF-PLL

DA9884

Option	R1 not used	R1 = 2.2 kΩ
R2 and R3 not used	1000 011S	1000 010S
R2 = R3 = 150 kΩ	1001 011S	1001 010S

[1] $S = R/\overline{W}$ selection bit.

TDA9884

I²C-bus controlled multistandard alignment-free IF-PLL

14. Package outline

Fig 24. Package outline SOT340-1 (SSOP24)

I²C-bus controlled multistandard alignment-free IF-PLL

HVQFN32: plastic thermal enhanced very thin quad flat package; no leads; 32 terminals; body 5 x 5 x 0.85 mm

SOT617-3

Fig 25. Package outline SOT617-3 (HVQFN32)

15. Soldering

15.1 Introduction to soldering surface mount packages

This text gives a very brief insight to a complex technology. A more in-depth account of soldering ICs can be found in our *Data Handbook IC26; Integrated Circuit Packages* (document order number 9398 652 90011).

There is no soldering method that is ideal for all surface mount IC packages. Wave soldering can still be used for certain surface mount ICs, but it is not suitable for fine pitch SMDs. In these situations reflow soldering is recommended.

15.2 Reflow soldering

Reflow soldering requires solder paste (a suspension of fine solder particles, flux and binding agent) to be applied to the printed-circuit board by screen printing, stencilling or pressure-syringe dispensing before package placement. Driven by legislation and environmental forces the worldwide use of lead-free solder pastes is increasing.

Several methods exist for reflowing; for example, convection or convection/infrared heating in a conveyor type oven. Throughput times (preheating, soldering and cooling) vary between 100 seconds and 200 seconds depending on heating method.

Typical reflow peak temperatures range from 215 °C to 260 °C depending on solder paste material. The top-surface temperature of the packages should preferably be kept:

- below 225 °C (SnPb process) or below 245 °C (Pb-free process)
 - for all BGA, HTSSON..T and SSOP..T packages
 - for packages with a thickness \geq 2.5 mm
 - for packages with a thickness < 2.5 mm and a volume ≥ 350 mm³ so called thick/large packages.
- below 240 °C (SnPb process) or below 260 °C (Pb-free process) for packages with a thickness < 2.5 mm and a volume < 350 mm³ so called small/thin packages.

Moisture sensitivity precautions, as indicated on packing, must be respected at all times.

15.3 Wave soldering

Conventional single wave soldering is not recommended for surface mount devices (SMDs) or printed-circuit boards with a high component density, as solder bridging and non-wetting can present major problems.

To overcome these problems the double-wave soldering method was specifically developed.

If wave soldering is used the following conditions must be observed for optimal results:

- Use a double-wave soldering method comprising a turbulent wave with high upward pressure followed by a smooth laminar wave.
- For packages with leads on two sides and a pitch (e):
 - larger than or equal to 1.27 mm, the footprint longitudinal axis is preferred to be parallel to the transport direction of the printed-circuit board;

TDA9884 2

- smaller than 1.27 mm, the footprint longitudinal axis **must** be parallel to the transport direction of the printed-circuit board.

The footprint must incorporate solder thieves at the downstream end.

• For packages with leads on four sides, the footprint must be placed at a 45° angle to the transport direction of the printed-circuit board. The footprint must incorporate solder thieves downstream and at the side corners.

During placement and before soldering, the package must be fixed with a droplet of adhesive. The adhesive can be applied by screen printing, pin transfer or syringe dispensing. The package can be soldered after the adhesive is cured.

Typical dwell time of the leads in the wave ranges from 3 seconds to 4 seconds at 250 °C or 265 °C, depending on solder material applied, SnPb or Pb-free respectively.

A mildly-activated flux will eliminate the need for removal of corrosive residues in most applications.

15.4 Manual soldering

Fix the component by first soldering two diagonally-opposite end leads. Use a low voltage (24 V or less) soldering iron applied to the flat part of the lead. Contact time must be limited to 10 seconds at up to 300 $^{\circ}$ C.

When using a dedicated tool, all other leads can be soldered in one operation within 2 seconds to 5 seconds between 270 $^\circ C$ and 320 $^\circ C.$

15.5 Package related soldering information

Table 29. Suitability of surface mount IC packages for wave and reflow soldering methods

Package ^[1]	Soldering method		
	Wave	Reflow ^[2]	
BGA, HTSSONT ^[3] , LBGA, LFBGA, SQFP, SSOPT ^[3] , TFBGA, VFBGA, XSON	not suitable	suitable	
DHVQFN, HBCC, HBGA, HLQFP, HSO, HSOP, HSQFP, HSSON, HTQFP, HTSSOP, HVQFN, HVSON, SMS	not suitable ^[4]	suitable	
PLCC ^[5] , SO, SOJ	suitable	suitable	
LQFP, QFP, TQFP	not recommended ^{[5][6]}	suitable	
SSOP, TSSOP, VSO, VSSOP	not recommended ^[7]	suitable	
CWQCCNL ^[8] , PMFP ^[9] , WQCCNL ^[8]	not suitable	not suitable	

 For more detailed information on the BGA packages refer to the (LF)BGA Application Note (AN01026); order a copy from your Philips Semiconductors sales office.

- [2] All surface mount (SMD) packages are moisture sensitive. Depending upon the moisture content, the maximum temperature (with respect to time) and body size of the package, there is a risk that internal or external package cracks may occur due to vaporization of the moisture in them (the so called popcorn effect). For details, refer to the Drypack information in the Data Handbook IC26; Integrated Circuit Packages; Section: Packing Methods.
- [3] These transparent plastic packages are extremely sensitive to reflow soldering conditions and must on no account be processed through more than one soldering cycle or subjected to infrared reflow soldering with peak temperature exceeding 217 °C ± 10 °C measured in the atmosphere of the reflow oven. The package body peak temperature must be kept as low as possible.

- [4] These packages are not suitable for wave soldering. On versions with the heatsink on the bottom side, the solder cannot penetrate between the printed-circuit board and the heatsink. On versions with the heatsink on the top side, the solder might be deposited on the heatsink surface.
- [5] If wave soldering is considered, then the package must be placed at a 45° angle to the solder wave direction. The package footprint must incorporate solder thieves downstream and at the side corners.
- [6] Wave soldering is suitable for LQFP, QFP and TQFP packages with a pitch (e) larger than 0.8 mm; it is definitely not suitable for packages with a pitch (e) equal to or smaller than 0.65 mm.
- [7] Wave soldering is suitable for SSOP, TSSOP, VSO and VSSOP packages with a pitch (e) equal to or larger than 0.65 mm; it is definitely not suitable for packages with a pitch (e) equal to or smaller than 0.5 mm.
- [8] Image sensor packages in principle should not be soldered. They are mounted in sockets or delivered pre-mounted on flex foil. However, the image sensor package can be mounted by the client on a flex foil by using a hot bar soldering process. The appropriate soldering profile can be provided on request.
- [9] Hot bar soldering or manual soldering is suitable for PMFP packages.

16. Abbreviations

Table 30.	Abbreviations	
Acronym		Description
AFC		Automatic Frequency Control
AGC		Automatic Gain Control
FPLL		Frequency Phase-Locked Loop
MAD		Module Address
NTSC		National Television Standards Committee
PAL		Phase Alternating Line
PLL		Phase-Locked Loop
QSS		Quasi Split Sound
SECAM		Sequentiel Couleur avec Memoire
SIF		Sound Intermediate Frequency
TOP		TakeOver Point
VCO		Voltage-Controlled Oscillator
VIF		Vision Intermediate Frequency
VSB		Vestigial Side Band

17. Revision history

Table 31.Revision history

	· · · · · · · · · · · · · · · · · · ·					
Document ID	Release date	Data sheet status	Change notice	Supersedes		
TDA9884_2	20060512	Product data sheet	-	TDA9884TS_1		
Modifications:	 The format of this data sheet has been redesigned to comply with the new presen information standard of Philips Semiconductors 					
	 Added type 	number TDA9884HN				
	 <u>Table 25</u>: inserted the value for t_{resp}, FM or AM fast step, mobile mode, increasing 					
TDA9884TS_1	20031128	Product specification	-	-		

18. Legal information

18.1 Data sheet status

Document status ^{[1][2]}	Product status ^[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

[1] Please consult the most recently issued document before initiating or completing a design.

[2] The term 'short data sheet' is explained in section "Definitions".

[3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.semiconductors.philips.com.

18.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. Philips Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local Philips Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

18.3 Disclaimers

General — Information in this document is believed to be accurate and reliable. However, Philips Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information.

Right to make changes — Philips Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — Philips Semiconductors products are not designed, authorized or warranted to be suitable for use in medical, military, aircraft, space or life support equipment, nor in applications where failure or malfunction of a Philips Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. Philips Semiconductors accepts no liability for inclusion and/or use of Philips Semiconductors products in such equipment or applications and therefore such inclusion and/or use is for the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) may cause permanent damage to the device. Limiting values are stress ratings only and operation of the device at these or any other conditions above those given in the Characteristics sections of this document is not implied. Exposure to limiting values for extended periods may affect device reliability.

Terms and conditions of sale — Philips Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.semiconductors.philips.com/profile/terms, including those pertaining to warranty, intellectual property rights infringement and limitation of liability, unless explicitly otherwise agreed to in writing by Philips Semiconductors. In case of any inconsistency or conflict between information in this document and such terms and conditions, the latter will prevail.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

18.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

I²C-bus — logo is a trademark of Koninklijke Philips Electronics N.V.

19. Contact information

For additional information, please visit: http://www.semiconductors.philips.com

For sales office addresses, send an email to: sales.addresses@www.semiconductors.philips.com

I²C-bus controlled multistandard alignment-free IF-PLL

Notes

TDA9884

I²C-bus controlled multistandard alignment-free IF-PLL

20. Contents

1	General description 1
2	Features 1
3	Quick reference data 2
4	Ordering information 4
5	Block diagram 5
6	Pinning information 6
6.1	Pinning
6.2	Pin description
7	Functional description
7.1	VIF amplifier
7.2	Tuner AGC and VIF-AGC 8
7.3	VIF-AGC detector 8
7.4	FPLL detector
7.5	VCO and divider
7.6	AFC and digital acquisition help
7.7 7.8	Video demodulator and amplifier 10 Sound carrier trap 10
7.8 7.9	Sound camer trap
7.10	SIF-AGC detector
7.11	Single reference QSS mixer
7.12	AM demodulator
7.13	FM demodulator and acquisition help 12
7.14	Audio amplifier and mute time constant 12
7.15	Internal voltage stabilizer 13
7.16	I ² C-bus transceiver and module address 13
8	I ² C-bus control 14
8.1	Read format 14
8.1.1	Slave address 14
8.1.2	Data byte
8.2	Write format 16
8.2.1 8.2.2	Subaddress
8.2.3	Data byte for switching mode 16 Data byte for adjust mode 17
8.2.4	Data byte for data mode
9.2.4	Limiting values
9 10	Thermal characteristics
11	Characteristics
12	Application information
13	Test information 48
14	Package outline 50
15	Soldering 52
15.1	Introduction to soldering surface mount
	packages 52
15.2	Reflow soldering
15.3	Wave soldering 52

15.4 15.5	Manual soldering	
16	Abbreviations	55
17	Revision history	55
18	Legal information	56
18.1	Data sheet status	56
18.2	Definitions	56
18.3	Disclaimers	56
18.4	Trademarks	56
19	Contact information	56
20	Contents	58

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.

© Koninklijke Philips Electronics N.V. 2006. All rights reserved.

For more information, please visit: http://www.semiconductors.philips.com. For sales office addresses, email to: sales.addresses@www.semiconductors.philips.com.

Date of release: 12 May 2006 Document identifier: TDA9884_2

