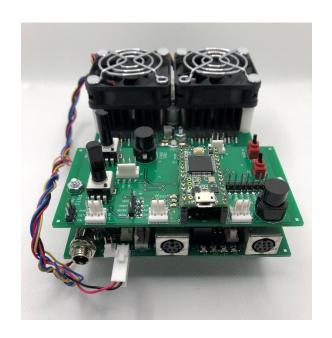
MEFTRONICS

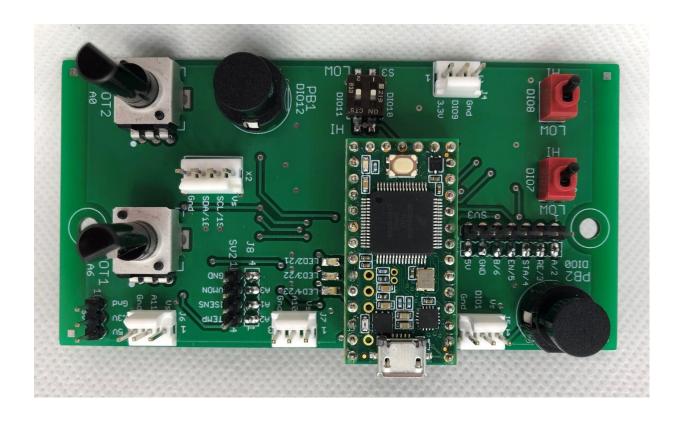
LC-SPI-DCI-NI-1
Datasheet

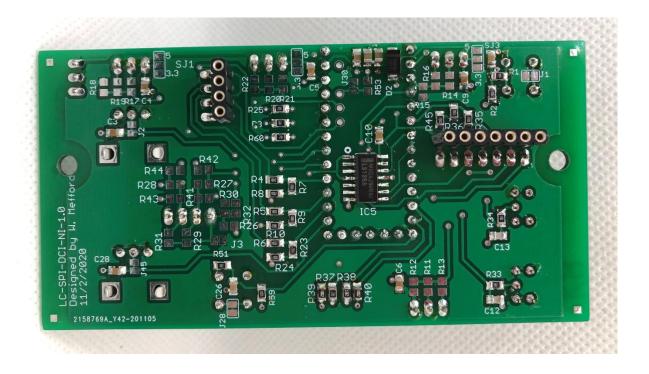

Description:

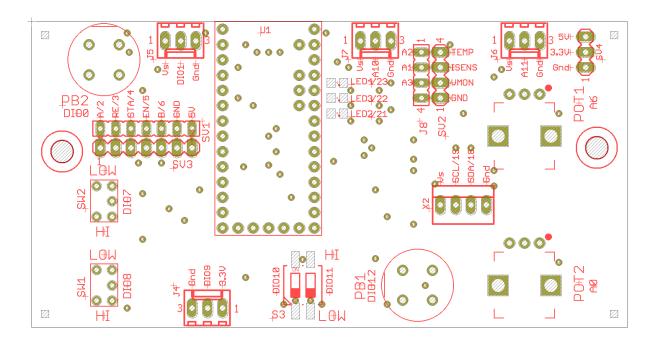
The LC-SPI-DCI-NI-1 is a Teensy based daughter board that provides computational power, tactile and visual interface, and easy I/O connection to any "NI" or "GI" Meftronics inverter, further expediting development and allowing the developer to focus solely on controls programming. System features include:

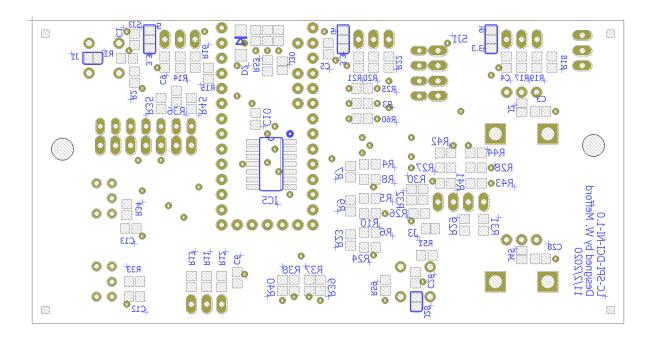
- Directly interfaces with inverter, plugging into monitor pins
- Compatible with Teensy 3.2 and 4.0
- Two potentiometers
- Two toggle switches
- Two push buttons
- Two DIP switches
- Four LEDs of different colors
- Up to four analog inputs
- Up to four digital I/O, including I2C

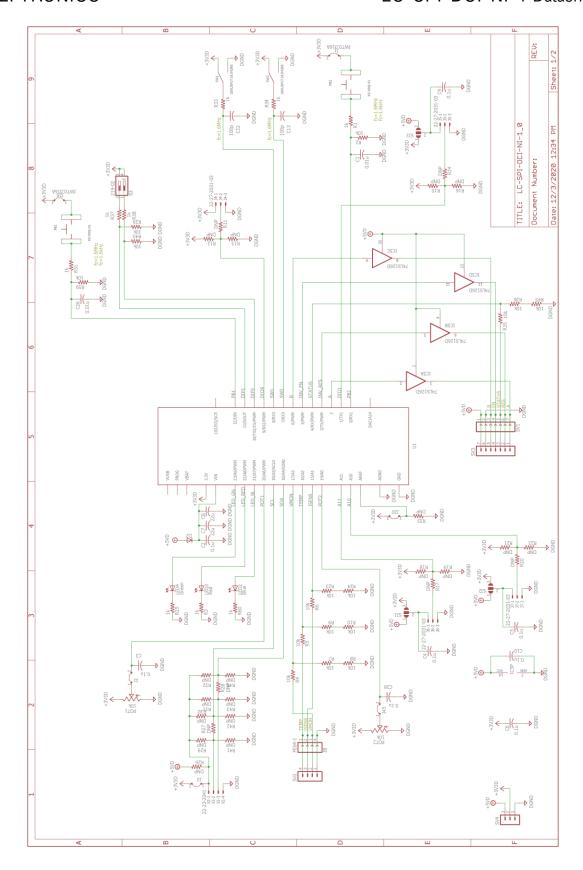
The addition of a microcontroller to a Meftronics inverter makes the platform very flexible and able to stand alone without the need for a separate control system. Applications include using the system as a buck-converter, boost-converter, motor driver, LED driver, sine-wave inverter, class-D amplifier, and many other countless applications.




Analog Inputs


Analog Pin	Description	PCB Reference
A0	Potentiometer	POT2
A1	Phase A Current	SV2/J8
A2	MOSFET Temperature	SV2/J8
A3	DC Bus Voltage	SV2/J8
A4	General Purpose Analog Input	X2
A5	General Purpose Analog Input	X2
A6	Potentiometer	POT1
A10	General Purpose Analog Input	J7
A11	General Purpose Analog Input	J6


Digital Inputs and Outputs


Digital I/O	Description	PCB Reference
0	Push-Button	PB2
1	General Purpose Digital I/O	J5
2	Phase A	SV1/SV5
3	Inverter Reset	J14
4	Inverter Status	J13
5	Inverter Enable	SV1/SV5
6	Phase B	SV1/SV5
7	Toggle Switch	SW2
8	Toggle Switch	SW1
9	General Purpose Digital I/O	J4
10	DIP Switch	S3
11	DIP Switch	S3
12	Push-Button	PB1
13	Orange LED	
18	SDA/General Purpose Digital I/O	X2
19	SCL/General Purpose Digital I/O	X2
21	Blue LED	LED2
22	Red LED	LED3
23	Green LED	LED4

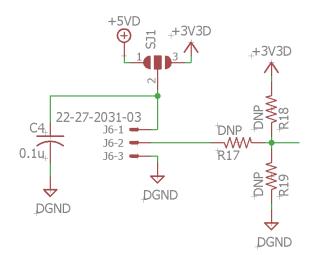
Application Information

1. Architecture

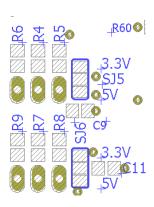
The LC-SPI-DCI-NI-1 is designed to perform three tasks. First, seamlessly connect a Teensy to the inverter, giving the inverter computational power. Second, provide the developer or user with a way to control and interact with the inverter through common tactile interfaces and LEDs. And third, provide a simple and flexible way to connect sensors to the Teensy, allowing for controls feedback.

The footprint on the PCB accommodates both the Teensy 3.2 and the Teensy 4.0. Plugging the board into the inverter's signal monitors connects the Teensy through buffers to the control lines of the inverter as well as connecting the sensor outputs of the inverter directly to the Teensy. The board is supplied by the 5V regulator on the inverter, and the 3.3V that the Teensy operates at is provided by the regulator on the Teensy itself.

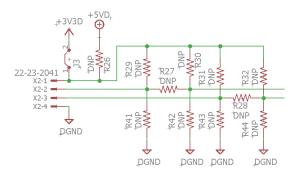
Connections to interfaces are already made giving the user several ways to interact with the inverter. The switches, buttons, and potentiometers are low-pass filtered so that no debouncing or digital filtering should be required to accurately read input states. An abridged table of interface pins is printed below.


Output	Reference
DIO2	A
DIO3	INV RESET
DIO5	INV EN
DIO6	В
DIO21	LED BLUE
DIO22	LED RED
DIO23	LED GREEN

Input	Reference	
A0	POT2	
A1	CURRENT	
A2	TEMPERATURE	
A3	BUS VOLTAGE	
A6	POT1	
DIO0	PB2	
DIO4	STATUS	
DIO7	SW2	
DIO8	SW1	
DIO10	DIP2	
DIO11	DIP1	
DIO12	PB1	


Connectors are provided to bring digital and analog peripherals into the Teensy. Each connector has a supply and ground pin, as well as positions for a pull-up resistor, a pull-down resistor, a voltage divider, or a filter. The supply pin may be connected via solder jumper to either the 3.3V supply or the 5V supply. When connecting an input to the board, it is important to keep in mind that the Teensy expects inputs to be between 0V and 3.3V.

2. Connecting Peripherals


As stated before, each accessible Teensy I/O has a connector, configurable supply, and positions for resistors. An example is shown in the schematic below.

As manufactured, no I/O resistors are populated and none of the supply pins are connected. At the very least, the series resistor position will need to be populated or jumpered to gain access to the Teensy. In this example, that would be R17. These resistors and jumpers are on the bottom side of the board next to their respective connectors. Labeling is printed in the silkscreen where it could be afforded.

Most external connections to the Teensy are made through three pin connectors, but DIO18 and DIO19 go through a four pin connector and have a slightly different resistor network to accommodate I2C communication and make the pins more flexible.

3. Grounding, Hazards, and Protection

The LC-SPI-DCI-NI-1 is connected to the inverter's ground through the monitor pins. It is important to keep in mind that in non-isolated Meftronics inverters, this ground is

tied to the negative DC bus in the power portion of the inverter. The references of external devices may conflict with this arrangement if care is not taken. Possible conflicts may arise from a connected sensor, an oscilloscope probe, or worse, through the USB cable used to program and monitor the Teensy. There is also an electrical shock hazard if the module is "floating" and the user attempts to use the tactile interfaces. In general, it is recommended that the negative DC bus be tied to ground and a USB isolator used when connecting a computer to the Teensy.

4. Recommended Parts for Self-Assembly

Description	Manufacturer	Part #
Toggle Switch	E-Switch	200USP1T1 A1M2RE
DIP Switch	CTS	219-2MST
Push-Button	C&K	D6R90 F1 LFS
Potentiometer	Bourns Inc.	PTV09A- 4025F-B103
Standoff	RAF Electronic Hardware	4538-632- AL
Female Socket	Mill-Max	801-47-020- 10-001000