

MX775EBD322M265

Ultra-Low Jitter 322.265625MHz HCSL XO

with Integrated Quartz Crystal

General Description

The MX775EBD322M265 is an ultra-low phase jitter XO with HCSL output optimized for high line rate applications.

Features

- 322.265625MHz HCSL
- Typical phase noise:
 - 85fs (Integration range: 12kHz-20MHz)
- ±50ppm total frequency stability
- -40°C to +85°C temperature range
- Standard 6-Pin 7mm x 5mm LGA package
- Both the package and the crystal are MSL-1

Absolute Maximum Ratings¹

Supply Voltage (VDD)	+4.6V
Input Voltage (VIN)	0.50V to VDD +4.6V
ESD Protection (HBM)	2kV
ESD Protection (MM)	200V

Operating Ratings²

Supply Voltage (VDD)	+2.375V to +3.465V
Junction Thermal Resistance	
$LGA(\theta_{IA})$	52.8°C/W

Electrical Characteristics

VDD = $3.3V \pm 5\%$ to $2.5V \pm 5\%$, TA = -40° C to $+85^{\circ}$ C, unless otherwise noted. RL = 50Ω to VSS.

Parameter	Symbol	Min.	Тур.	Max.	Units	Condition	
Supply Voltage	VDD	2.375	2.5	2.625	v	2.5V Operation	
Supply Voltage	VDD	3.135	3.3	3.465	v	3.3V Operation	
Current Consumption	IDD	-	135	180	mA	@3.3V	
Frequency Stability				±50	ppm	Note 4	
Output High Voltage	VOH	660	700	850	mV		
Output Low Voltage	VOL	-150	0	27	mV		
Crossing Point Voltage	VCROSS	-	350	-	V		
Output Rise/Fall Time	tR/tF	175	200	400	ps		
Output Duty Cycle	ODC	45	50	55	%	All output frequencies	
Output Duty Cycle	ODC	48	50	52	%0	< 450MHz output frequencies	
PLL Lock Time	TLOCK	-	5	20	ms	Time from 90% VDD	
RMS Phase Jitter ³	tJIT(Ø)	-	85	-	fs	156.25MHz, Integration range (12kHz-20MHz)	

Notes:

1. Exceeding the absolute maximum ratings may damage the device.

2. The device is not guaranteed to function outside its operating ratings.

3. All phase noise measurements were taken with an Agilent 5052B phase noise system.

4. Inclusive of initial accuracy, temperature drift, aging, shock, vibration.

ClockWorks is a registered trademark of Microchip Technology Inc.

Microchip Technology Inc.

March 18, 2021 MX775EB1-9826 https://www.microchip.com

Revision 1.0 tcghelp@microchip.com

Ordering Information

Ordering Part Number	Marking Line 1	Marking Line 3	Shipping	Package
MX775EBD322M265	MX775EB	D322M265	Tube	6-Pin 7mm x 5mm LGA
MX775EBD322M265-TR	MX775EB	D322M265	Tape and Reel	6-Pin 7mm x 5mm LGA

Devices are Green and RoHS compliant. Sample material may have only a partial top mark.

Pin Configuration

Pin Description

Pin Number	Pin Name	Pin Type	Pin Level	Pin Function	
1	OE	I, SE	LVCMOS	Output Enable, disables to tri-state, 0 = Disabled, 1 = Enabled, $75k\Omega$ Pull-Up (Internal)	
2	NC			No connect No internal connections to the ASIC are made	
3	GND-VSS	PWR		Power Supply Ground	
4, 5	Q, /Q	O, Diff	HCSL	Clock Output Frequency = 322.265625MHz	
6	VDD	PWR		Power Supply	

Environmental Specifications

Thermal Shock	MIL-STD-883, Method 1011, Condition A
Moisture Resistance	MIL-STD-883, Method 1004
Mechanical Shock	MIL-STD-883, Method 2002, Condition C
Mechanical Vibration	MIL-STD-883, Method 2007, Condition B
Resistance to Soldering Heat	J-STD-020C, Table 5-2 Pb-free devices (except 2 cycles max)
Hazardous Substance	Pb-free / RoHS / Green Compliant
Solderability	JESD22-B102-D Method 2 (Preconditioning E)
Terminal Strength	MIL-STD-883, Method 2004, Test Condition D
Gross Leak	MIL-STD-883, Method 1014, Condition C
Fine Leak	MIL-STD-883, Method 1014, Condition A2, R1=2x10-8 atm cc/s
MSL Level	Crystal and Package MSL-1
Solvent Resistance	MIL-STD-202, Method 215
	·

Package Information

Microchip Technology Drawing C04-499 Rev A Sheet 1 of 2

© 2020 Microchip Technology Incorporated

6-Lead Low Profile Land Grid Array (LLX) - 5x7x1.22 mm Body [LLGA]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units			MILLIMETERS			
Dimensior	I Limits	MIN	NOM	MAX			
Number of Terminals	N	6					
Pitch	е	2.54 BSC					
Overall Height	Α	1.08 1.15 1.22					
Standoff	A1	—	-	0.03			
Mold Cap Thickness	A3	0.85	0.90	0.95			
Overall Length	D	7.00 BSC					
Overall Width	E	5.00 BSC					
Terminal Width	b	1.35	1.40	1.45			
Terminal Length	L	1.05	1.10	1.15			
Terminal Pullback	L1	0.10 REF					
Terminal Offset	L2	0.26 REF					

Notes:

Pin 1 visual index feature may vary, but must be located within the hatched area.
Dimensioning and tolerancing per ASME Y14.5M BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-499 Rev A Sheet 2 of 2

© 2020 Microchip Technology Incorporated

6-Lead Low Profile Land Grid Array (LLX) - 5x7x1.22 mm Body [LLGA]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	MILLIMETERS			
Dimension	MIN	NOM	MAX	
Contact Pitch	E		2.54 BSC	
Contact Pad Spacing	С		3.70	
Contact Pad Width (Xnn)	Х			1.50
Contact Pad Length (Xnn)	Y			1.30

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-2499 Rev A

© 2020 Microchip Technology Incorporated

Microchip makes no representations or warranties with respect to the accuracy or completeness of the information furnished in this data sheet. This information is not intended as a warranty and Microchip does not assume responsibility for its use. Microchip reserves the right to change circuitry, specifications and descriptions at any time without notice. No license, whether express, implied, arising by estoppel or otherwise, to any intellectual property rights is granted by this document. Except as provided in Microchip's terms and conditions of sale for such products, Microchip assumes no liability whatsoever, and Microchip disclaims any express or implied warranty relating to the sale and/or use of Microchip products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright or other intellectual property right.

© 2021 Microchip Technology Inc.