Single 2-Input AND Gate

The NL17SG08 MiniGate[™] is an advanced high-speed CMOS 2-input AND gate in ultra-small footprint.

The NL17SG08 input structures provides protection when voltages up to 4.6 V are applied.

Features

- Wide Operating V_{CC} Range: 0.9 V to 3.6 V
- High Speed: $t_{PD} = 2.5$ ns (Typ) at $V_{CC} = 3.0$ V, $C_L = 15$ pF
- Low Power Dissipation: $I_{CC} = 0.5 \ \mu A$ (Max) at $T_A = 25^{\circ}C$
- 4.6 V Overvoltage Tolerant (OVT) Input Pins
- Ultra-Small Packages
- NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q101 Qualified and PPAP Capable
- These are Pb–Free and Halide–Free Devices

Figure 1. SOT-953 (Top Thru View)

Figure 1. SC-88A (Top View)

Figure 2. Logic Symbol

ON Semiconductor®

www.onsemi.com

*Date Code orientation and/or position may vary depending upon manufacturing location.

PIN ASSIGNMENT

PIN	SOT-953	SC-88A	UDFN6
1	IN A	IN B	IN B
2	GND	IN A	IN A
3	IN B	GND	GND
4	OUT Y	OUT Y	OUT Y
5	V _{CC}	V _{CC}	VC
6	_	_	V _{CC}

FUNCTION TABLE

Inputs		Output
Α	в	Y
L	L	L
L	н	L
н	L	L
Н	Н	н

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 5 of this data sheet.

MAXIMUM RATINGS

Symbol	Parameter		Value	Unit
V _{CC}	DC Supply Voltage		–0.5 to +5.5	V
V _{IN}	DC Input Voltage		-0.5 to +4.6	V
V _{OUT}	DC Output Voltage	Output at High or Low State Power–Down Mode ($V_{CC} = 0 V$)	-0.5 to V _{CC} +0.5 -0.5 to +4.6	V
I _{IK}	DC Input Diode Current	V _{IN} < GND	-20	mA
Ι _{ΟΚ}	DC Output Diode Current	V _{OUT} < GND	-20	mA
I _{OUT}	DC Output Source/Sink Current		±20	mA
I _{CC}	DC Supply Current per Supply Pin		±20	mA
I _{GND}	DC Ground Current per Ground Pin		±20	mA
T _{STG}	Storage Temperature Range		-65 to +150	°C
ΤL	Lead Temperature, 1 mm from Case for 10 Seconds		260	°C
TJ	Junction Temperature Under Bias		+150	°C
MSL	Moisture Sensitivity		Level 1	
F _R	Flammability Rating	Oxygen Index: 28 to 34	UL 94 V-0 @ 0.125 in	
V_{ESD}	ESD Withstand Voltage	Human Body Model (Note 2) Machine Model (Note 3)	>2000 >100	V

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. Measured with minimum pad spacing on an FR4 board, using 10 mm-by-1 inch, 2-ounce copper trace with no air flow.

Tested to EIA/JESD22–A114–A.
Tested to EIA/JESD22–A115–A.

RECOMMENDED OPERATING CONDITIONS

Symbol	Characteristics	Min	Max	Unit
V _{CC}	Positive DC Supply Voltage	0.9	3.6	V
V _{IN}	Digital Input Voltage	0.0	3.6	V
V _{OUT}	Output Voltage Output at High or Low State Power–Down Mode (V _{CC} = 0 V)	0.0 0.0	V _{CC} 3.6	V
T _A	Operating Temperature Range	-55	+125	°C
$\Delta t / \Delta V$	Input Transition Rise or Fail Rate $$V_{CC}$$ = 3.3 V \pm 0.3 V	0	10	ns/V

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

DC ELECTRICAL CHARACTERISTICS

					T _A =	25°C	Τ _Α -55°C to	_ =) +125°C	
Symbol	Parameter	Co	onditions	V _{CC} (V)	Min	Max	Min	Max	Unit
V _{IH}	High-Level Input			0.9	V _{CC}		V _{CC}		V
	Voltage			1.1 to 1.3	0.7xV _{CC}		0.7xV _{CC}		
				1.4 to 1.6	$0.65 \mathrm{xV}_{\mathrm{CC}}$		$0.65 \mathrm{xV}_{\mathrm{CC}}$		
				1.65 to 1.95	$0.65 \mathrm{xV}_{\mathrm{CC}}$		$0.65 \mathrm{xV}_{\mathrm{CC}}$		
				2.3 to 2.7	1.7		1.7		
				3.0 to 3.6	2.0		2.0		
VIL	Low-Level Input			0.9		GND		GND	V
	Voltage			1.1 to 1.3		0.3xV _{CC}		0.3xV _{CC}	
				1.4 to 1.6		0.35xV _{CC}		0.35xV _{CC}	
				1.65 to 1.95		0.35xV _{CC}		0.35xV _{CC}	
				2.3 to 2.7		0.7		0.7	
				3.0 to 3.6		0.8		0.8	
V _{OH}	High-Level	V _{IN} =	I _{OH} = –20 μA	0.9	0.75		0.75		V
	Output Voltage	V _{IH} or V _{IL}	I _{OH} = -0.3 mA	1.1 to 1.3	0.75xV _{CC}		0.75xV _{CC}		
			I _{OH} = -1.7 mA	1.4 to 1.6	0.75xV _{CC}		0.75xV _{CC}		
			I _{OH} = -3.0 mA	1.65 to 1.95	Vcc-0.45		Vcc-0.45		
			I _{OH} = -4.0 mA	2.3 to 2.7	2.0		2.0		
			I _{OH} = -8.0 mA	3.0 to 3.6	2.48		2.48		
V _{OL}	Low-Level	V _{IN} =	I _{OL} = 20 μA	0.9		0.1		0.1	V
	Output Voltage	V _{IH} or V _{IL}	I _{OL} = 1.1 mA	1.1 to 1.3		0.25xV _{CC}		0.25xV _{CC}	
			I _{OL} = 1.7 mA	1.4 to 1.6		0.25xV _{CC}		0.25xV _{CC}	
			I _{OL} = 3.0 mA	1.65 to 1.95		0.45		0.45	
			I _{OL} = 4.0 mA	2.3 to 2.7		0.4		0.4	
			I _{OL} = 8.0 mA	3.0 to 3.6		0.4		0.4	
I _{IN}	Input Leakage Current	0 ≤	V _{IN} ≤ 3.6 V	0 to 3.6		±0.1		±1.0	μΑ
I _{CC}	Quiescent Supply Current	V _{IN} =	V _{CC} or GND	3.6		0.5		10.0	μΑ

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

Symbol	Parameter	Test Condition	V _{CC} (V)		T _A = 25° (0		∖ = o +125°C				
				Min	Тур	Max	Min	Max	Unit			
t _{PLH} ,	Propagation Delay,	$C_{L} = 10 \text{ pF},$	0.9	-	10.0	12.4	-	14.8	ns			
t _{PHL}	A or B to Y	$R_L = 1 M\Omega$	1.1 to 1.3	-	8.0	10.7	-	13.6				
			1.4 to 1.6	-	5.9	9.6	-	11.3				
			1.65 to 1.95	-	4.5	7.0	-	7.5				
			2.3 to 2.7	-	2.9	4.4	-	4.9				
			3.0 to 3.6	-	2.2	3.5	-	4.1				
		$C_{L} = 15 \text{ pF},$	0.9	-	11.7	13.5	-	15.0	ns			
		$\bar{R_L} = 1 M\Omega$	1.1 to 1.3	-	8.8	10.2	-	13.7				
			1.4 to 1.6	-	6.5	9.5	-	12.6				
			1.65 to 1.95	-	5.0	7.7	-	8.0				
			2.3 to 2.7	-	3.2	4.9	-	5.6				
						3.0 to 3.6	-	2.5	3.8	-	4.4	
		$C_{L} = 30 \text{ pF},$	0.9	-	13.0	16.0	-	19.0	ns			
		$R_L = 1 M\Omega$	1.1 to 1.3	-	10.0	12.4	-	17.2				
			1.4 to 1.6	-	8.9	11.8	-	14.9				
			1.65 to 1.95	-	6.9	10.3	-	10.8				
			2.3 to 2.7	-	4.4	6.4	-	6.8				
			3.0 to 3.6	-	3.5	4.9	-	5.4				
C _{IN}	Input Capacitance		0 to 3.6		3	-	-	-	pF			
C _{PD}	Power Dissipation Capacitance (Note 4)	f = 10 MHz	0.9 to 3.6	-	4	-	-	-	pF			

AC ELECTRICAL CHARACTERISTICS (Input $t_r = t_f = 3.0 \text{ ns}$)

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

 4. C_{PD} is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load. Average operating current can be obtained by the equation: I_{CC(OPR)} = C_{PD} • V_{CC} • f_{in} + I_{CC}. C_{PD} is used to determine the no-load dynamic power consumption; P_D = C_{PD} • V_{CC}² • f_{in} + I_{CC} • V_{CC}.

*Includes all probe and jig capacitance. A 1–MHz square input wave is recommended for propagation delay tests.

Figure 3. Test Circuit

ORDERING INFORMATION

Device	Package	Shipping [†]
NL17SG08P5T5G	SOT-953 (Pb-Free)	8000 / Tape & Reel
NL17SG08DFT2G	SC–88A (Pb–Free)	3000 / Tape & Reel
NLV17SG08DFT2G*	SC–88A (Pb–Free)	3000 / Tape & Reel
NL17SG08AMUTCG	UDFN6 1.45x1 mm (Pb-Free)	3000 / Tape & Reel
NL17SG08CMUTCG	UDFN6 1x1 mm (Pb-Free)	3000 / Tape & Reel

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

*NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC–Q101 Qualified and PPAP Capable.

PACKAGE DIMENSIONS

SOT-953 CASE 527AE ISSUE E

NOTES:
DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
CONTROLLING DIMENSION: MILLIMETERS
MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF THE BASE MATERIAL.
DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS.

•		H, PRO			
		МІ	LIMETE	RS	
	DIM	MIN	NOM	MAX	
	Α	0.34	0.37	0.40	
	b	0.10	0.15	0.20	
	С	0.07	0.12	0.17	
	D	0.95	1.00	1.05	
	Е	0.75	0.80	0.85	
	е		0.35 BS	С	
	ΗE	0.95	1.00	1.05	
	L	(0.175 RE	F	

SOLDERING FOOTPRINT*

0.05 0.10 0.15

0.15

L2

13

*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

PACKAGE DIMENSIONS

UDFN6 1.0x1.0, 0.35P CASE 517BX ISSUE O

NOTES:

- NOTES: 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. 2. CONTROLLING DIMENSION: MILLIMETERS. 3. DIMENSION 6 APPLIES TO PLATED TERMINAL AND 15 MEASURED BETWEEN 0.15 AND 0.20 MM FROM TERMINAL TIP. 4. PACKAGE DIMENSIONS EXCLUSIVE OF PURPER AND MOUD ELASE BURRS AND MOLD FLASH.

	MILLIMETERS					
DIM	MIN MAX					
Α	0.45	0.55				
A1	0.00 0.05					
A3	0.13 REF					
b	0.12 0.22					
D	1.00	BSC				
Е	1.00	BSC				
е	0.35	BSC				
L	0.25 0.35					
L1	0.30	0.40				

RECOMMENDED **SOLDERING FOOTPRINT***

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

PACKAGE DIMENSIONS

UDFN6 1.45x1.0, 0.5P CASE 517AQ ISSUE O

PACKAGE DIMENSIONS

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.

2. CONTROLLING DIMENSION: INCH. 3. 419A–01 OBSOLETE. NEW STANDARD

419A-02. I. DIMENSIONS A AND B DO NOT INCLUDE

MOLD FLASH, PROTRUSIONS, OR GATE BURRS.

	INC	HES	MILLIN	METERS	
DIM	MIN	MAX	MIN	MAX	
Α	0.071	0.087	1.80	2.20	
В	0.045	0.053	1.15	1.35	
С	0.031	0.043	0.80	1.10	
D	0.004	0.012	0.10	0.30	
G	0.026	BSC	0.65 BSC		
Η		0.004		0.10	
J	0.004	0.010	0.10	0.25	
Κ	0.004	0.012	0.10	0.30	
Ν	0.008 REF		0.20	REF	
S	0.079	0.087	2.00	2.20	

*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

MiniGate is a trademark of Semiconductor Components Industries, LLC (SCILLC).

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor roducts, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor dates sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights or the rights of others. ON Semiconductor and is officers, employees or use ON Semiconductor products harmers, affliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly, or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative A

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81–3–5817–1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative