
1.1

1.2

1.2.1

1.2.2

1.2.3

1.2.4

1.2.5

1.2.6

1.2.7

1.2.8

1.2.9

1.2.10

1.2.11

1.2.12

1.2.13

1.2.14

1.2.15

1.2.16

1.2.17

1.3

1.3.1

1.3.2

1.3.3

1.3.4

1.3.5

1.3.6

1.3.7

1.3.8

1.3.9

1.3.10

1.4

1.4.1

1.4.2

1.4.3

1.4.4

Table of Contents
Introduction

1 Motion Commands

1.1 Point to point, the target point is Cartesian point

1.2 Point to point, the target point is joint point

1.3 Linear movement

1.4 Arc movement

1.5 Jump movement

1.6 Circle movement

1.7 Cartesian point offset

1.8 Joint point offset

1.9 Move to the Cartesian offset position in a straight line

1.10 Move to the Cartesian offset position in a point-to-point mode

1.11 Move to the joint offset position in a point-to-point mode

1.12 Block the program from executing queue instructions

1.13 Go movement in parallel with output

1.14 Move movement in parallel with output

1.15 MoveJ movement in parallel with output

1.16 Check the status of trajectory after Move command is executed

1.17 Check whether the robot moves to the target point

2 Motion Parameter Commands

2.1 Set the acceleration rate of Go, Jump, or MoveJ

2.2 Set the acceleration rate of Move, Jump, Arc3, Circle3 and MoveR

2.3 Set the velocity rate of Go, MoveJ, GoR and MoveJR

2.4 Set the velocity rate of Move, Jump, Arc3, Circle3 and MoveR

2.5 Set the index of arc parameters in the Jump mode

2.6 CP

2.7 Set the maximum lifting height in Jump mode

2.8 Set global speed ratio

2.9 Set the posture speed rate of Move, Jump, Arc3, Circle3 and MoveR

2.10 Set the posture acceleration rate of Move, Jump, Arc3, Circle3 and MoveR

3 Six-axis Force Sensor Commands

3.1 Homing six-axis force sensor

3.2 Spiral motion to find the hole position

3.3 Rotation motion to find the hole position

3.4 Linear jack movement

1

1.5

1.5.1

1.5.2

1.5.3

1.5.4

1.5.5

1.5.6

1.5.7

1.5.8

1.5.9

1.5.10

1.5.11

1.5.12

1.6

1.6.1

1.6.2

1.6.3

1.6.4

1.6.5

1.6.6

1.6.7

1.7

1.7.1

1.7.2

1.8

1.8.1

1.8.2

1.8.3

1.8.4

1.8.5

1.8.6

1.8.7

1.9

1.9.1

1.9.2

1.9.3

1.10

1.10.1

1.10.2

4 Input&Output Commands

4.1 DI

4.2 DO

4.3 DOExecute

4.4 ToolDI

4.5 ToolDO

4.6 ToolDOExecute

4.7 ToolAnalogMode

4.8 ToolAI

4.9 AI

4.10 AO

4.11 AOExecute

4.12 WaitDI

5 Program Managing Commands

5.1 Motion command waiting

5.2 Set delay time

5.3 Pause program operation

5.4 Start timing

5.5 Stop timing

5.6 Get current time

5.7 Print

6 Pose Getting Commands

6.1 Get Cartesian coordinates

6.2 Get joint coordinates

7 TCP Commands

7.1 Create TCP

7.2 Establish TCP connection

7.3 Receive TCP data

7.4 Send TCP data

7.5 Close TCP

7.6 Get data of a single point

7.7 Get data of multiple points

8 UDP Commands

8.1 Create UDP

8.2 Receive UDP data

8.3 Send UDP data

9 Modbus Commands

9.1 Create Modbus master station

9.2 Disconnect with Modbus slave

2

1.10.3

1.10.4

1.10.5

1.10.6

1.10.7

1.10.8

1.11

1.11.1

1.11.2

1.12

1.12.1

1.12.2

1.12.3

1.12.4

1.13

1.13.1

1.13.2

1.14

1.14.1

1.14.2

1.14.3

1.14.4

1.15

1.15.1

1.15.2

1.16

1.16.1

1.16.2

1.16.3

1.16.4

1.16.5

1.16.6

1.16.7

1.16.8

1.16.9

1.16.10

1.17

9.3 Read the value from the Modbus slave coil register address

9.4 Set the coil register in the Modbus slave

9.5 Read the value from the Modbus slave discrete register address

9.6 Read the value from the Modbus slave input register address

9.7 Read the value from the Modbus slave holding register address

9.8 Set the holding register in the Modbus slave

10 Tool Commands

10.1 Set power state of the tool

10.2 Set tool baud rate

11 Coordinate System Commands

11.1 Modify user coordinate system

11.2 Calculate user coordinate system

11.3 Modify tool coordinate system

11.4 Calculate tool coordinate system

12 Encoder Commands

12.1 Set the current value of the encoder

12.2 Get the current position of the encoder

13 Trajectory Playback Commands

13.1 Trajectory fitting

13.2 Get the first point in trajectory fitting

13.3 Trajectory playback

13.4 Get the first point in trajectory playback

14 Load Commands

14.1 Set the current load

14.2 Switch the parameter-setting status of the load

15 Pallet Commands

15.1 Instantiate matrix pallet

15.2 Set the next stack index to be operated

15.3 Get the current operated stack index

15.4 Set the next pallet layer index to be operated

15.5 Get the current pallet layer index

15.6 Reset pallet

15.7 Check whether the stack assembly or dismantling is completed

15.8 Release palletizing instance

15.9 The robot moves from the current position to the first stack position as the configured stack
assembly path

15.10 The robot moves from the current position to the safe point as the configured stack dismantling
path

16 Conveyer Tracking Commands

3

1.17.1

1.17.2

1.17.3

1.17.4

1.17.5

1.17.6

1.18

1.18.1

1.18.2

1.18.3

16.1 Set conveyor number to create a tracing queue

16.2 Obtain status of the object

16.3 Set X-axis, Y-axis offset under the set User coordinate system

16.4 Set time compensation

16.5 Synchronize the specified conveyor

16.6 Stop synchronous conveyor

17 Other Commands

17.1 Set the on-off state of safeskin

17.2 Set the state of obstacle avoidance of safeskin

17.3 Set collision level

4

Introduction
CC series controller encapsulates the robot dedicated API commands for programming with Lua language. This
section describes commonly used commands for reference.

Copyright © ShenZhen Yuejiang Technology Co., Ltd 2021 all right reserved，powered by GitbookRevision:
2021-08-06 18:43:57

5

Motion Commands
Copyright © ShenZhen Yuejiang Technology Co., Ltd 2021 all right reserved，powered by GitbookRevision:
2021-08-06 18:43:57

6

Point to point, the target point is Cartesian point
Function:

Go(P,” User=1 Tool=2 CP=1 Speed=50 Accel=20 SYNC=1 ”)

Description: move from the current position to a target position in a point-to-point mode under the Cartesian
coordinate system

Required parameter: P: target point, which is user-defined or obtained from the TeachPoint page. Only
Cartesian coordinate points are supported

Optional parameter:

CP: whether to set continuous path function, range: 0~100
Speed: velocity rate, range: 1~100
Accel: acceleration rate, range: 1~100

SYNC: synchronization flag, range: 0 or 1. If SYNC is 0, it indicates asynchronous execution. This
command has a return immediately after being called, regardless of the execution process. If SYNC is 1,
it indicates synchronous execution. it will not return after being called until it is executed completely

Example

Go(P1)

The robot moves to P1 with the default setting.

Copyright © ShenZhen Yuejiang Technology Co., Ltd 2021 all right reserved，powered by GitbookRevision:
2021-08-11 16:37:48

7

Point to point, the target point is joint point
Function:

MoveJ(P,”CP=1 Speed=50 Accel=20 SYNC=1”)

Description: move from the current position to a target position in a point-to-point motion under the Joint
coordinate system

Required parameter: P: joint angle of the target point, which cannot be obtained from the TeachPoint page.
You need to define the joint coordinate point before calling this command

Optional parameter:

CP: whether to set continuous path function. Value range: 0~100
Speed: velocity rate. Value range: 1~100
Accel: acceleration rate. Value range: 1~100
SYNC: synchronization flag, range: 0 or 1. If SYNC is 0, it indicates asynchronous execution. This
command has a return immediately after being called, regardless of the execution process. If SYNC is 1,
it indicates synchronous execution. it will not return after being called until it is executed completely

Example

local P = {joint={0,-0.0674194,0,0,0,0}}
MoveJ(P)

Define the joint coordinate point P. Move the robot to P.

Copyright © ShenZhen Yuejiang Technology Co., Ltd 2021 all right reserved，powered by GitbookRevision:
2021-08-06 18:43:58

8

Linear movement
Function:

Move(P,” User=1 Tool=2 CP=1 SpeedS=50 AccelS=20 SYNC=1”)

Description: Move from the current position to a target position in a straight line under the Cartesian
coordinate system

Required parameter: P: target point, which is user-defined or obtained from the TeachPoint page. Only
Cartesian coordinate points are supported

Optional parameter:

CP: whether to set continuous path function, range: 0~100
SpeedS: velocity rate, range: 1~100
AccelS: acceleration rate, range: 1~100
SYNC: synchronization flag, range: 0 or 1. If SYNC is 0, it indicates asynchronous execution. This
command has a return immediately after being called, regardless of the execution process. If SYNC is 1,
it indicates synchronous execution. it will not return after being called until it is executed completely

Example

Move(P1)

Copyright © ShenZhen Yuejiang Technology Co., Ltd 2021 all right reserved，powered by GitbookRevision:
2021-08-11 16:37:48

9

Arc movement
Function:

Arc3(P1,P2, ” User=1 Tool=2 CP=1 SpeedS=50 AccelS=20 SYNC=1”)

Description: move from the current position to a target position in an arc interpolated mode under the
Cartesian coordinate system This command needs to combine with other motion commands to obtain the
starting point of an arc trajectory

Required parameter:

P1: middle point, which is user-defined or obtained from the TeachPoint page. Only Cartesian
coordinate points are supported
P2: end point, which is user-defined or obtained from the TeachPoint page. Only Cartesian coordinate
points are supported

Optional parameter:

CP: whether to set continuous path function. range: 0~ 100
SpeedS: velocity rate. range: 1~100
AccelS: acceleration rate. range: 1~100
SYNC: synchronization flag, range: 0 or 1. If SYNC is 0, it indicates asynchronous execution. This
command has a return immediately after being called, regardless of the execution process. If SYNC is 1,
it indicates synchronous execution. it will not return after being called until it is executed completely

Example

While true do
 Go(P1)
 Arc3(P2,P3)
end

The robot cycles from P1 to P3 via P2 in the arc interpolated mode.

Copyright © ShenZhen Yuejiang Technology Co., Ltd 2021 all right reserved，powered by GitbookRevision:
2021-08-11 16:37:48

10

Jump movement
Function:

Jump(P,” User=1 Tool=2 SpeedS=50 AccelS=20 Start=10 ZLimit=80 End=50 SYNC=1”)

Description: The robot moves from the current position to a target position in the Move mode. The trajectory
looks like a door. This command should be used combined with other commands

Required parameter: P: target point, which is user-defined or obtained from the TeachPoint page. Only
Cartesian coordinate points are supported. Also, the target point cannot be higher than ZLimit to avoid an
alarm about JUMP parameter error

Optional parameter:

SpeedS: Velocity rate. Value range: 1~100
AccelS: Acceleration rate. Value range: 1~100
Arch: Arch index. Value range: 0~9
Start: Lifting height
ZLimit: Maximum lifting height
End: Dropping height
SYNC: synchronization flag, range: 0 or 1. If SYNC is 0, it indicates asynchronous execution. This
command has a return immediately after being called, regardless of the execution process. If SYNC is 1,
it indicates synchronous execution. it will not return after being called until it is executed completely

Example

Go(P6)
 Jump(P5,"Start=10 ZLimit=600 End=10")

Copyright © ShenZhen Yuejiang Technology Co., Ltd 2021 all right reserved，powered by GitbookRevision:
2021-08-17 12:41:48

11

Circle movement
Function:

Circle3(P1,P2, Count, ”User=1 Tool=2 CP=1 SpeedS=50 AccelS=20 SYNC=1”)

Description: move from the current position to a target position in a circular interpolated mode under the
Cartesian coordinate system

This command needs to combine with other motion commands to obtain the starting point of an arc trajectory

Required parameter:

P1: middle point, which is user-defined or obtained from the TeachPoint page. Only Cartesian
coordinate points are supported
P2: end point, which is user-defined or obtained from the TeachPoint page. Only Cartesian coordinate
points are supported
Count: number of circles, range: 1 - 999

Optional parameter:

CP: Whether to set continuous path function. Value range: 0 - 100
SpeedS: Velocity rate. Value range: 1 - 100
AccelS: Acceleration rate. Value range: 1 - 100
SYNC: synchronization flag, range: 0 or 1. If SYNC is 0, it indicates asynchronous execution. This
command has a return immediately after being called, regardless of the execution process. If SYNC is 1,
it indicates synchronous execution. it will not return after being called until it is executed completely

Example

Go(P1)
 Circle3(P2,P3,1)

The robot cycles from P1 to P2, and then to P3 in the circular interpolated mode.

Copyright © ShenZhen Yuejiang Technology Co., Ltd 2021 all right reserved，powered by GitbookRevision:
2021-08-11 16:37:48

12

Cartesian point offset
Function:

RP(P1, {OffsetX, OffsetY, OffsetZ})

Description: set the X-axis, Y-axis, Z-axis offset under the Cartesian coordinate system to return a new
Cartesian coordinate point The robot can move to this point in all motion commands except MoveJ

Optional parameter:

P1: current Cartesian coordinate point, which is user-defined or obtained from the TeachPoint page.
Only Cartesian coordinate points are supported
OffsetX，OffsetY，OffsetZ: X-axis, Y-axis, Z-axis offset in the Cartesian coordinate system; unit: mm

Return: Cartesian coordinate point
Example

P2=RP(P1, {50,10,32})
Move(P2) or Move(RP(P1, {50,10,32}))

Copyright © ShenZhen Yuejiang Technology Co., Ltd 2021 all right reserved，powered by GitbookRevision:
2021-08-06 18:43:57

13

Joint point offset
Function:

RJ(P1, {Offset1, Offset2, Offset3, Offset4, Offset5, Offset6})

Description: set the joint offset in the Joint coordinate system to return a new joint coordinate point

The robot can move to this point only in MoveJ command

Parameter:

P1: current joint point, which cannot be obtained from the TeachPoint page. You need to define the joint
coordinate point
Offset1~Offset6: J1~J6 axes offset; unit: °

Return: joint coordinate point

Example

local P1 = {joint={0,-0.0674194,0,0,0,0}}
P2=RJ(P1, {60,50,32,30,25,30})
MoveJ(P2)或 MoveJ(RJ(P1, {60,50,32,30,25,30}))

Copyright © ShenZhen Yuejiang Technology Co., Ltd 2021 all right reserved，powered by GitbookRevision:
2021-08-06 18:44:00

14

Move to the Cartesian offset position in a straight
line

Function:

MoveR({OffsetX, OffsetY, OffsetZ},” User=1 Tool=2 CP=1 SpeedS=50 AccelS=20 SYNC=1”)

Description: move from the current position to the offset position in a straight line under the Cartesian
coordinate system

Required parameter: OffsetX, OffsetY, OffsetZ: X-axis, Y-axis, Z-axis offset in the Cartesian coordinate
system; unit: mm

Optional parameter:

CP: whether to set continuous path function, range: 0~100
SpeedS: velocity rate, range: 1~100
AccelS: acceleration rate, range: 1~100
SYNC: synchronization flag, range: 0 or 1. If SYNC is 0, it indicates asynchronous execution. This
command has a return immediately after being called, regardless of the execution process. If SYNC is 1,
it indicates synchronous execution. it will not return after being called until it is executed completely

Example

Go(P1)
MoveR({20,20,20},"AccelS=100 SpeedS=100 CP=100")

Copyright © ShenZhen Yuejiang Technology Co., Ltd 2021 all right reserved，powered by GitbookRevision:
2021-08-11 16:37:48

15

Move to the Cartesian offset position in a point-to-
point mode

Function:

GoR({OffsetX, OffsetY, OffsetZ},” User=1 Tool=2 CP=1 Speed=50 Accel=20 SYNC=1 ”)

Description: move from the current position to the offset position in a point-to-point mode under the Cartesian
coordinate system

Required parameter: OffsetX, OffsetY, OffsetZ: X-axis, Y-axis, Z-axis offset in the Cartesian coordinate
system; unit: mm

Optional parameter:

CP: whether to set continuous path function, range: 0~100
Speed: velocity rate, range: 1~100
Accel: acceleration rate, range: 1~100
SYNC: synchronization flag, range: 0 or 1. If SYNC is 0, it indicates asynchronous execution. This
command has a return immediately after being called, regardless of the execution process. If SYNC is 1,
it indicates synchronous execution. it will not return after being called until it is executed completely

Example

Go(P1)
GoR({10,10,10},"Accel=100 Speed=100 CP=100")

Copyright © ShenZhen Yuejiang Technology Co., Ltd 2021 all right reserved，powered by GitbookRevision:
2021-08-11 16:37:48

16

Move to the joint offset position in a point-to-point
mode

Function:

MoveJR({Offset1, Offset2, Offset3, Offset4, Offset5, Offset6},“CP=1 Speed=50 Accel=20 SYNC=1”)

Description: move from the current position to the offset position in a point-to-point motion under the Joint
coordinate system

Required parameter: Offset1 - Offset6: J1 - J6 axes offset; unit: °

Optional parameter:

CP: whether to set continuous path function, range: 0~100
Speed: velocity rate, range: 1~100
Accel: acceleration rate, range: 1~100
SYNC: synchronization flag, range: 0 or 1. If SYNC is 0, it indicates asynchronous execution. This
command has a return immediately after being called, regardless of the execution process. If SYNC is 1,
it indicates synchronous execution. it will not return after being called until it is executed completely

Example

Go(P1)
MoveJR({20,20,10,0,10,0},"SYNC=1")

Copyright © ShenZhen Yuejiang Technology Co., Ltd 2021 all right reserved，powered by GitbookRevision:
2021-08-06 18:43:57

17

Block the program from executing queue
instructions

Function:

Sync()

Description: block the program from executing queue instructions, and return after all the instructions are
executed

Parameter: null

Copyright © ShenZhen Yuejiang Technology Co., Ltd 2021 all right reserved，powered by GitbookRevision:
2021-08-06 18:43:57

18

Go movement in parallel with output
Function:

GoIO(P, { {Mode, Distance, Index, Status},{Mode, Distance, Index, Status}...}, ”ARM=Left User=1 Tool=2 CP=1 Spee
d=50 Accel=20 SYNC=1”)

Description: set the status of digital output port when the robot is moving under Go mode

Required parameter:

P: target point, which is user-defined or obtained from the TeachPoint page. Only Cartesian coordinate
points are supported.
Mode: set the mode of Distance. 0: distance percentage; 1: distance away from the starting point or
target point
Distance: move specified distance

If Mode is 0, Distance refers to the distance percentage between the starting point and the target
point. range: 0~100
If Mode is 1, Distance refers to the distance away from the starting point or target point
If the Distance value is positive, it refers to the distance away from the starting point
If the Distance value is negative, it refers to the distance away from the target point

Index: digital output index, range: 1~24
Status: digital output status, range: 0 or 1

Optional parameter:

ARM: direction of robot arm. If the robot is a horizontal multi-joint robot (SCARA four-axis), set it to Left
or Right; if it is a vertical multi-joint robot (six-axis), the parameter is invalid
User: user coordinate system, range: 0~9
Tool: tool coordinate system, range: 0~9
CP: whether to set continuous path function, range: 0~100
Speed: velocity rate, range: 1~100
Accel: acceleration rate, range: 1~100
SYNC: synchronization flag, range: 0 or 1. If SYNC is 0, it indicates asynchronous execution. This
command has a return immediately after being called, regardless of the execution process. If SYNC is 1,
it indicates synchronous execution. it will not return after being called until it is executed completely

Return: null

Example

GoIO(P1, {0, 10, 2, 1})

The robot arm moves to P1 with the default setting. When it moves 10% distance, set digital output 2 to ON.

Copyright © ShenZhen Yuejiang Technology Co., Ltd 2021 all right reserved，powered by GitbookRevision:
2021-08-11 17:42:12

19

20

Move movement in parallel with output
Function:

MoveIO(P, { {Mode, Distance, Index, Status},{Mode, Distance, Index, Status}...}, ”ARM=Left User=1 Tool=2 CP=1 Sp
eedS=50 AccelS=20 SYNC=1”)

Description: set the status of digital output port when the robot is moving under Move mode

Required parameter:

P: target point, which is user-defined or obtained from the TeachPoint page. Only Cartesian coordinate
points are supported.
Mode: set the mode of Distance. 0: distance percentage; 1: distance away from the starting point or
target point
Distance: move specified distance

If Mode is 0, Distance refers to the distance percentage between the starting point and the target
point. range: 0~100
If Mode is 1, Distance refers to the distance away from the starting point or target point
If the Distance value is positive, it refers to the distance away from the starting point
If the Distance value is negative, it refers to the distance away from the target point

Index: digital output index, range: 1~24
Status: digital output status, range: 0 or 1

Optional parameter:

ARM: direction of robot arm. If the robot is a horizontal multi-joint robot () set it to Left or Right; if it is a
vertical multi-joint robot (six-axis), the parameter is invalid
CP: whether to set continuous path function, range: 0~100
Speed: velocity rate, range: 1~100
Accel: acceleration rate, range: 1~100
SYNC: synchronization flag, range: 0 or 1. If SYNC is 0, it indicates asynchronous execution. This
command has a return immediately after being called, regardless of the execution process. If SYNC is 1,
it indicates synchronous execution. it will not return after being called until it is executed completely

Return: null

Example

MoveIO(P1, {0, 10, 2, 1})

The robot moves to P1 with the default setting. When it moves 10% distance, set the digital output 2 to ON.

Copyright © ShenZhen Yuejiang Technology Co., Ltd 2021 all right reserved，powered by GitbookRevision:
2021-08-11 17:42:44

21

MoveJ movement in parallel with output
Function:

MoveJIO(P, { {Mode, Distance, Index, Status},{Mode, Distance, Index, Status}...}, ”CP=1 Speed=50 Accel=20 SYNC=1
”)

Description: set the status of digital output port when the robot is moving under MoveJ mode

Required parameter:

P: joint angle of the target point, which cannot be obtained from the TeachPoint page. You need to
define the joint coordinate point before calling this command
Mode: mode of Distance. 0: distance percentage; 1: distance away from the starting point or target point
Distance: move specified distance

If Mode is 0, Distance refers to the distance percentage between the starting point and target point;
range: 0~100

If Mode is 1, Distance refers to the distance away from the starting point or target point

If Distance value is positive, it refers to the distance away from the starting point

If Distance value is negative, it refers to the distance away from the target point

Index: digital output index, range: 1~24
Status: digital output status, range: 1~24

Optional parameter:

CP: whether to set continuous path function, range: 0~100
Speed: velocity rate, range: 1~100
Accel: acceleration rate, range: 1~100
SYNC: synchronization flag, range: 0 or 1. If SYNC is 0, it indicates asynchronous execution. This
command has a return immediately after being called, regardless of the execution process. If SYNC is 1,
it indicates synchronous execution. it will not return after being called until it is executed completely

Return: null

Example

MoveJIO (P1, {0, 10, 2, 1})

The robot moves to P1 with the default setting. When it moves 10% distance away from P1, set the digital
output 2 to ON.

Copyright © ShenZhen Yuejiang Technology Co., Ltd 2021 all right reserved，powered by GitbookRevision:
2021-08-11 17:43:12

22

Check the status of trajectory after Move command
is executed

Function:

CheckMove(P,” User=1 Tool=2 CP=1 SpeedS=50 AccelS=20 SYNC=1”)

Description: check the status of trajectory after Move command is executed

Required parameter: P, target point, which can be obtained from Teachpoint page, or self-defined. Only
points under the Cartesian coordinate system are supported.

Optional parameter:

CP: Whether to set continuous path function. Value range: 0~100
SpeedS: Velocity rate. Value range: 1~100
AccelS: Acceleration rate. Value range: 1~100
SYNC: synchronization flag, range: 0 or 1. If SYNC is 0, it indicates asynchronous execution. This
command has a return immediately after being called, regardless of the execution process. If SYNC is 1,
it indicates synchronous execution. it will not return after being called until it is executed completely

Return: trajectory status of motion commands

0: no error
16: The planned point is closed to the shoulder singularity point
17: Inverse kinematics error with no solution
18: Inverse kinematics error with result out of working area
22: Arm orientation error
26: The planned point is closed to the wrist singularity point
27: The planned point is closed to the elbow singularity point
29: Speed parameter is wrong
32: Inverse kinematics error with shoulder singularity when robot moving
33: Inverse kinematics error with no solution when robot moving
34: Inverse kinematics error with result out of working area when robot moving
35: Inverse kinematics with wrist singularity when robot moving
36: Inverse kinematics with elbow singularity when robot moving
37: The Joint angle is changed over 180 degree

Example

local status=CheckMove(P1)

Detect the status of trajectory when the robot moves to P1 at the default speed.

Copyright © ShenZhen Yuejiang Technology Co., Ltd 2021 all right reserved，powered by GitbookRevision:
2021-08-11 16:37:48

23

24

Check whether the robot moves to the target point
Function:

CheckGo(P,” User=1 Tool=2 CP=1 Speed=50 Accel=20 SYNC=1”)

Description: check whether the robot moves to the target point

Required parameter: P, target point, which is user-defined or obtained from the TeachPoint page. Only
Cartesian coordinate points are supported.

Optional parameter:

CP: Whether to set continuous path function, range: 0~100
Speed: Velocity rate, range: 1~100
Accel: Acceleration rate, range: 1~100
SYNC: synchronization flag, range: 0 or 1. If SYNC is 0, it indicates asynchronous execution. This
command has a return immediately after being called, regardless of the execution process. If SYNC is 1,
it indicates synchronous execution. it will not return after being called until it is executed completely

Return: trajectory status of motion commands

0: no error
16: The planned point is closed to the shoulder singularity point
17: Inverse kinematics error with no solution
18: Inverse kinematics error with result out of working area
22: Arm orientation error
26: The planned point is closed to the wrist singularity point
27: The planned point is closed to the elbow singularity point
29: Speed parameter is wrong
32: Inverse kinematics error with shoulder singularity when robot moving
33: Inverse kinematics error with no solution when robot moving
34: Inverse kinematics error with result out of working area when robot moving
35: Inverse kinematics with wrist singularity when robot moving
36: Inverse kinematics with elbow singularity when robot moving
37: The Joint angle is changed over 180 degree

Example

local status=CheckGo (P1)

Detect the status of trajectory when the robot moves to P1 with the default setting.

Copyright © ShenZhen Yuejiang Technology Co., Ltd 2021 all right reserved，powered by GitbookRevision:
2021-08-11 16:37:48

25

Motion Parameter Commands
Copyright © ShenZhen Yuejiang Technology Co., Ltd 2021 all right reserved，powered by GitbookRevision:
2021-08-06 18:44:00

26

Set the acceleration rate of Go, Jump, or MoveJ
Function:

Accel(R)

Description: set the acceleration rate. This command is valid only when the motion mode is Go, Jump, or
MoveJ

Parameter:

R: percentage, range: 1~100
Example

Accel(50)
 Go(P1)

The robot moves to P1 with 50% acceleration rate.

.

Copyright © ShenZhen Yuejiang Technology Co., Ltd 2021 all right reserved，powered by GitbookRevision:
2021-08-06 18:43:57

27

Set the acceleration rate of Move, Jump, Arc3,
Circle3 and MoveR

Function:

AccelR(ratio)

Description: set the acceleration rate of Move, Jump, Arc3, Circle3, MoveR.

Parameter:

ratio: acceleration rate, range: 0~100, exclusive of 0 and 100
Return: null

Example

AccelR (20)
Move(P1)

The robot moves to P1 with the acceleration ratio of 20%.

Copyright © ShenZhen Yuejiang Technology Co., Ltd 2021 all right reserved，powered by GitbookRevision:
2021-08-06 18:44:00

28

Set the velocity rate of Go, MoveJ, GoR and MoveJR
Function:

Speed(R)

Description: set the velocity rate. This command is valid only when the motion mode is Go, MoveJ, GoR and
MoveJR

Parameter:

R: percentage, range: 1~100
Example

Speed(20)
Go(P1)

The robot moves to P1 with 20% velocity rate.

Copyright © ShenZhen Yuejiang Technology Co., Ltd 2021 all right reserved，powered by GitbookRevision:
2021-08-11 16:37:48

29

Set the velocity rate of Move, Jump, Arc3, Circle3
and MoveR

Function:

SpeedS(R)

Description: set the velocity ratio of Move, Jump, Arc3, Circle3 and MoveR

Parameter:

R: percentage, range: 1~100
Example

SpeedS(20)
Move(P1)

The robot moves to P1 with 20% velocity ratio.

Copyright © ShenZhen Yuejiang Technology Co., Ltd 2021 all right reserved，powered by GitbookRevision:
2021-08-11 16:37:48

30

Set the index of arc parameters in the Jump mode
Function:

Arch(Index)

Description: set the index of arc parameters (StartHeight, zLimit, EndHeight) in the Jump mode

Parameter: Index: arc parameters index, range: 0~9 This parameter needs to be set in Setting >
PlaybackArch of the APP

Example

Arch(1)
Jump(P1)

Copyright © ShenZhen Yuejiang Technology Co., Ltd 2021 all right reserved，powered by GitbookRevision:
2021-08-06 18:43:57

31

CP
Function:

CP(R)

Description: set the continuous path rate. This command is valid only when the motion mode is Go, Move,
Arc3, Circle3, or MoveJ

Parameter: R: continuous path rate, range: 0~100 0 indicates that the continuous path function is locked

Example

CP(50)
Move(P1)
Move(P2)
Move(P3)

The robot moves from P1 to P2 with 50% continuous path rate.

Copyright © ShenZhen Yuejiang Technology Co., Ltd 2021 all right reserved，powered by GitbookRevision:
2021-08-06 18:43:57

32

Set the maximum lifting height in Jump mode
Function:

LimZ(zValue)

Description: set the maximum lifting height in Jump mode

Parameter: zValue: maximum lifting height which cannot exceed the Z-axis limiting position of the robot

Example

LimZ(80)
Jump(P,” Start=10 Zlimit=LimZ End=50”)

Copyright © ShenZhen Yuejiang Technology Co., Ltd 2021 all right reserved，powered by GitbookRevision:
2021-08-06 18:44:00

33

Set global speed ratio
Function:

SpeedFactor(ratio)

Description: set the global speed ratio

Parameter:

ratio: speed ratio, range: 0~100, exclusive of 0 and 100
Return: null

Example

SpeedFactor (20)

Set the global speed ratio as 20%.

Copyright © ShenZhen Yuejiang Technology Co., Ltd 2021 all right reserved，powered by GitbookRevision:
2021-08-06 18:43:57

34

Set the posture speed rate of Move, Jump, Arc3,
Circle3 and MoveR

Function:

SpeedR(ratio)

Description: set the posture speed rate of Move, Jump, Arc3, Circle3, MoveR

Parameter:

* Ratio: speed ratio, range: 0~100, exclusive of 0 and 100

Return: null

Example

SpeedR (20)
Move(P1)

The robot moves to P1 at the speed ratio of 20%.

Copyright © ShenZhen Yuejiang Technology Co., Ltd 2021 all right reserved，powered by GitbookRevision:
2021-08-06 18:43:57

35

Set the posture acceleration rate of Move, Jump,
Arc3, Circle3 and MoveR

Function:

AccelR(ratio)

Description: set the acceleration rate of Move, Jump, Arc3, Circle3, MoveR.

Parameter:

ratio: acceleration rate, range: 0~100, exclusive of 0 and 100
Return: null

Example

AccelR (20)
Move(P1)

The robot moves to P1 with the acceleration ratio of 20%.

Copyright © ShenZhen Yuejiang Technology Co., Ltd 2021 all right reserved，powered by GitbookRevision:
2021-08-06 18:44:00

36

Six-axis Force Sensor Commands
Copyright © ShenZhen Yuejiang Technology Co., Ltd 2021 all right reserved，powered by GitbookRevision:
2021-08-06 18:43:57

37

Homing six-axis force sensor
Function:

SixForceHome()

Description: homing six-axis force sensor

Parameter: null

Example

SixForceHome()

Execute the command to home six-axis force sensor.

Copyright © ShenZhen Yuejiang Technology Co., Ltd 2021 all right reserved，powered by GitbookRevision:
2021-08-11 16:37:48

38

Spiral motion to find the hole position
Function:

Spiral(P, User, Tool, Direction, SpeedC, Force, Insertion, Perturn, PeckMode, MaxValue)

Description: the robot arm performs a spiral motion between the current position and the specified position to
find the hole position. The specified point needs to be close to the hole position, which is the starting point for
hole position exploration.

Parameter:

P: specified position
User: user coordinate system, range: 0~9
Tool: tool coordinate system, range: 0~9
Direction: Jack direction (0: Forward, 1: Reverse)
SpeedC: Jack speed (mm/s)
Force: rotation threshold (N)
Insertion: jack threshold (N)
Perturn: spiral radius (mm)
PeckMode: point contact mode (ON/OFF)
MaxValue: maximum spiral radius (mm)

Example

Spiral(P1,“User=1 Tool=2 Dirction=0 SpeedC=5 Force =10 Insertion=3 Perturn=0.7 PeckMode=OFF MaxValue =5”)

Do a spiral motion between the current position and P1 to find the hole position. When the resistance in the
direction of the jack is greater than the Force threshold, the robot performs a spiral motion to explore the hole
position. When the resistance in the direction of the jack is less than the Insertion threshold, the robot moves
in the direction of the jack to perform the jack work.

Copyright © ShenZhen Yuejiang Technology Co., Ltd 2021 all right reserved，powered by GitbookRevision:
2021-08-06 18:43:57

39

Rotation motion to find the hole position
Function:

Rotation (P, User, Tool, Direction, SpeedC, Force, RotationSpeed, MaxTorque, PeckMode, MaxValue)

Description: the robotic arm rotates between the current position and the specified position to find the hole
position. The specified point needs to be close to the hole position, which is the starting point for hole
position exploration.

Parameter:

P: specified position
User: user coordinate system, range: 0~9
Tool: tool coordinate system, range: 0~9
Direction: Jack direction (0: Forward, 1: Reverse)
SpeedC: Jack speed (mm/s)
Force: rotation threshold (N)
RotationSpeed: rotation speed (°/s)
MaxTorque: maximum torque (Nm)
PeckMode: point contact mode (ON/OFF)
MaxValue: maximum spiral radius (mm)

Example

Rotation (P1, “User=1 Tool=2 Dirction=0 SpeedC =5 Force =10 RotationSpeed=5 MaxTorque=1 PeckMode=OFF MaxValue =4
5”)

Do a rotation between the current position and P1 to find the hole position. When the resistance in the
direction of the jack is greater than the Force threshold, the robot performs a rotation to explore the hole
position. When the resistance in the direction of the jack is less than the Force threshold, the robot moves in
the direction of the jack to perform the jack work.

Copyright © ShenZhen Yuejiang Technology Co., Ltd 2021 all right reserved，powered by GitbookRevision:
2021-08-06 18:43:57

40

Linear jack movement
Function:

Linear (User, Tool, Direction, SpeedC, Force, MaxValue)

Description: the robot arm makes a linear jack movement in the direction of the hole

Parameter:

User: user coordinate system, range: 0~9
Tool: tool coordinate system, range: 0~9
Direction: Jack direction (0: forward, 1: reverse)
SpeedC: Jack speed (mm/s)
Force: rotation threshold (N)
MaxValue: maximum spiral radius (mm)

Example

Linear(“User=1 Tool=2 Dirction=0 SpeedC =5 Force=10 MaxValue=45”)

Do a linear jack movement at the current hole position. When the resistance in the insertion direction is
greater than the Force threshold, the insertion is considered complete.

Copyright © ShenZhen Yuejiang Technology Co., Ltd 2021 all right reserved，powered by GitbookRevision:
2021-08-06 18:43:57

41

Input&Output Commands
Copyright © ShenZhen Yuejiang Technology Co., Ltd 2021 all right reserved，powered by GitbookRevision:
2021-08-06 18:43:57

42

DI
Function:

DI(index)

Description: get the status of the digital input port

Parameter:

index: digital input index, range: 1~32
Return:

When an index is set in the DI function, DI(index) returns the status (ON/OFF) of this speicified input
port
When there is no index in the DI function, DI() returns the status of all the input ports, which are saved in
a table For example, local di=(), the saving format is {num = 24 value = {0x55, 0xAA, 0x52}}, you can
obtain the status of the specified input port through di.num and di.value[n]

Example

if (DI(1))==ON then
Move(P1)
end

The robot moves to P1 when the status of the digital input port 1 is ON.

Copyright © ShenZhen Yuejiang Technology Co., Ltd 2021 all right reserved，powered by GitbookRevision:
2021-08-06 18:43:57

43

DO
Function:

DO(index,ON | OFF)

Description: set the status of digital output port (queue command)

Parameter:

index: digital output index, range: 1~24
ON/OFF: status of the digital output port. ON: High level; OFF: Low level

Example

DO(1,ON)

Set the status of the digital output port 1 to OFF.

Copyright © ShenZhen Yuejiang Technology Co., Ltd 2021 all right reserved，powered by GitbookRevision:
2021-08-06 18:43:57

44

DOExecute
Function：

DOExecute(index,ON | OFF)

Description: Set the status of digital output port (Immediate command)

Parameter:

index: digital output index, range: 1~16
ON/OFF: status of the digital output port. ON: High level; OFF: Low level

Example

DOExecute(1,OFF)

Set the status of the digital output port 1 to OFF.

Copyright © ShenZhen Yuejiang Technology Co., Ltd 2021 all right reserved，powered by GitbookRevision:
2021-08-06 18:43:57

45

ToolDI
Function:

ToolDI(index)

Description: get the status of tool input port

Parameter:

index: digital input index, range: 1 or 2
Return:

status (ON/OFF) of the specified input port corresponding to the index type: number; value: 0: low level,
1: high level

If local di=(), the saving format is {num = 24 value = {0x55, 0xAA, 0x52}}, you can obtain the status of
the specified input port through di.num and di.value[n]

Example

if (ToolDI (1))==1 then
Move(P1)
end

The robot moves to P1 in a straight line when the status of the digital input port 1 of the tool is ON.

Copyright © ShenZhen Yuejiang Technology Co., Ltd 2021 all right reserved，powered by GitbookRevision:
2021-08-06 18:43:57

46

ToolDO
Function:

ToolDO(index, ON | OFF)

Description: get the status of digital output port (arithmetic command)

Parameter:

index: digital output index, range: 1 or 2
ON/OFF: status of digital output port. ON: high level, OFF: low level

Return: null

Example

ToolDO (1,OFF)

Set the status of the digital output port 1 to OFF.

Copyright © ShenZhen Yuejiang Technology Co., Ltd 2021 all right reserved，powered by GitbookRevision:
2021-08-06 18:43:57

47

ToolDOExecute
Function:

ToolDOExecute(index, ON | OFF)

Description: set the status of digital output port (immediate command)

Parameter:

index: digital output index, range: 1 or 2
ON/OFF: status of the digital output port. ON: high level; OFF: low level

Return: null

Example

ToolDOExecute (1,OFF)

Set the status of the digital output port 1 to OFF

Copyright © ShenZhen Yuejiang Technology Co., Ltd 2021 all right reserved，powered by GitbookRevision:
2021-08-06 18:44:00

48

ToolAnalogMode
Function:

ToolAnalogMode(mode)

Description: set the status of analog input port (Immediate command)

Parameter:

mode: mode of analog input port

00: default, 485 mode

10: current acquisition mode

11: 0~3.3V voltage input mode

12: 0~10V voltage input mode

Return: null

Example

ToolAnalogMode(11)

Set the status of analog input port as voltage input mode.

Copyright © ShenZhen Yuejiang Technology Co., Ltd 2021 all right reserved，powered by GitbookRevision:
2021-08-06 18:44:00

49

ToolAI
Function:

ToolAI(index)

Description: get the voltage of analog input port of tool

Parameter:

index: analog input index, range: 1 or 2

Note: Please set the mode before using, see ToolAnalogMode for details; the analog input port and RS485
communication port are multiplexed.

Return: voltage of corresponding index

Example

Voltage = ToolAI (1)

Get the voltage of input port 1 on the controller.

Copyright © ShenZhen Yuejiang Technology Co., Ltd 2021 all right reserved，powered by GitbookRevision:
2021-08-06 18:44:00

50

AI
Function:

AI(index)

Description: get the voltage of analog input port of controller (immediate command)

Parameter:

index: input index of controller, range: 1 or 2
Return: voltage of corresponding index

Example

Voltage = AI(1)

Get the voltage of analog input port 1 on the controller.

Copyright © ShenZhen Yuejiang Technology Co., Ltd 2021 all right reserved，powered by GitbookRevision:
2021-08-06 18:44:00

51

AO
Function:

AO(index,value)

Description: set the voltage of analog output port of controller

Parameter:

index: analog output index of controller, range: 1 or 2
value: voltage of corresponding index, range: 0~10, type: number

Return: null

Example

AO(1,2)

Set the voltage of analog output port of controller as 2V.

Copyright © ShenZhen Yuejiang Technology Co., Ltd 2021 all right reserved，powered by GitbookRevision:
2021-08-06 18:43:57

52

AOExecute
Function:

AOExecute(index,value)

Description: set the voltage of analog output port of controller (immediate command)

Parameter:

index: analog output index of controller, range: 1 or 2
value: voltage corresponding to index, range: 0~10, type: number

Return:

index: analog output index of controller, range: 1 or 2
value: voltage corresponding to index, range: 0~10, type: number

Example

ToolDOExecute (1,OFF)

Set the voltage of analog output port 1 of controller as 2V.

Copyright © ShenZhen Yuejiang Technology Co., Ltd 2021 all right reserved，powered by GitbookRevision:
2021-08-06 18:43:57

53

WaitDI
Function:

WaitDI(index, ON | OFF, period)

Description: get the status of the digital input port. If the status is consistent with specified status, the
program will continue to run. Otherwise, get the status of the digital input port at specified interval

Parameter:

index: digital input index, range: 1~32
ON | OFF: status of digital input port, ON: high level; OFF: low level
period: interval, 50ms by default

Return: null

Example

WaitDI(1, ON)
Move(P1)

Get the status of the digital input port 1 at the interval of 50ms. If the digital input port 1 is ON, the robot
moves to P1 in a straight line.

Copyright © ShenZhen Yuejiang Technology Co., Ltd 2021 all right reserved，powered by GitbookRevision:
2021-08-12 19:04:27

54

Program Managing Commands
Copyright © ShenZhen Yuejiang Technology Co., Ltd 2021 all right reserved，powered by GitbookRevision:
2021-08-06 18:43:57

55

Motion command waiting
Function:

Wait(time)

Description: set the delay time for robot motion commands

Parameter:

time: delay time, unit: ms
Example

Go(P1)
Wait(1000)

Wait for 1000ms after the robot moves to P1.

Copyright © ShenZhen Yuejiang Technology Co., Ltd 2021 all right reserved，powered by GitbookRevision:
2021-08-06 18:43:57

56

Set delay time
Function:

Sleep(time)

Description: set the delay time for all commands

Parameter:

time: delay time, unit: ms

Example

while true do
Speed(100)
Go(P1)
sleep(3)
Speed(100)
Accel(40)
Go(P2)
sleep(3)
end

Copyright © ShenZhen Yuejiang Technology Co., Ltd 2021 all right reserved，powered by GitbookRevision:
2021-08-06 18:43:57

57

Pause program operation
Function:

Pause()

Description: pause the running program When the program runs to this command, robot pauses running and

the button on the APP turns into . If you want to run the robot, please click

Parameter: null

Example

while true
do
Go(P1)
Go(P2)
Pause()
Go(P3)
Go(P4)
end

The robot moves to P2 and then pauses running.

Copyright © ShenZhen Yuejiang Technology Co., Ltd 2021 all right reserved，powered by GitbookRevision:
2021-08-06 18:43:57

58

Start timing
Function:

ResetElapsedTime()

Description: start timing after all commands before this command are executed completely. The command
should be used combined with ElapsedTime() command For example: calculate the time it takes to execute
a piece of code

Return: null

Example

Go(P2, " Speed=100 Accel=100")
ResetElapsedTime()
for i=1,10 do
Jump(P1, " Speed=100 Accel=100 Start=0 End=0 ZLimit=185")
Jump(P2, " Speed=100 Accel=100 Start=0 End=0 ZLimit=185")
end
print (ElapsedTime())
Sleep(1000)

Copyright © ShenZhen Yuejiang Technology Co., Ltd 2021 all right reserved，powered by GitbookRevision:
2021-08-06 18:44:00

59

Stop timing
Function:

ElapsedTime()

Description: stop timing and return the time difference. The command should be used combined with
ResetElapsedTime() command

Parameter: null

Return: time difference., unit: ms

Example

Go(P2, " Speed=100 Accel=100")
ResetElapsedTime()
for i=1,10 do
Jump(P1, " Speed=100 Accel=100 Start=0 End=0 ZLimit=185")
Jump(P2, " Speed=100 Accel=100 Start=0 End=0 ZLimit=185")
end
print (ElapsedTime())
Sleep(1000)

Copyright © ShenZhen Yuejiang Technology Co., Ltd 2021 all right reserved，powered by GitbookRevision:
2021-08-06 18:44:00

60

Get current time
Function:

Systime()

Description: get the current time

Parameter: null

Return: current time

Example

Go(P2, " Speed=100 Accel=100")
local time1=Systime()
for i=1,10 do
Jump(P1, " Speed=100 Accel=100 Start=0 End=0 ZLimit=185")
Jump(P2, " Speed=100 Accel=100 Start=0 End=0 ZLimit=185")
end
local time2=Systime()
local time = time2 - time1
Sleep(1000)

Copyright © ShenZhen Yuejiang Technology Co., Ltd 2021 all right reserved，powered by GitbookRevision:
2021-08-06 18:43:57

61

Print
Function:

print(value)

Description: print the debug information

Parameter:

value: data to be printed. supported data type: table, number, string and bool
Return: null

Example

print("hello world")

Copyright © ShenZhen Yuejiang Technology Co., Ltd 2021 all right reserved，powered by GitbookRevision:
2021-08-06 18:44:00

62

Pose Getting Commands
Copyright © ShenZhen Yuejiang Technology Co., Ltd 2021 all right reserved，powered by GitbookRevision:
2021-08-06 18:43:57

63

Get Cartesian coordinates
Function:

GetPose()

Description: get the current pose of the robot under the Cartesian coordinate system If you have set the User
or Tool coordinate system, the current pose is under the current User or Tool coordinate system

Parameter: null

Return: Cartesian coordinate of the current pose

Example

local currentPose = GetPose()
--Get the current pose
local liftPose = {coordinate = {currentPose.coordinate[1], currentPose. coordinate[2], currentPose. coordinate[3
],currentPose. coordinate[4] }, tool = currentPose.tool, user = currentPose.user}
-- Lift a certain height
Go(liftPose,"Speed=100 Accel=100")
Go(P1)

Copyright © ShenZhen Yuejiang Technology Co., Ltd 2021 all right reserved，powered by GitbookRevision:
2021-08-06 18:43:57

64

Get joint coordinates
Function:

GetAngle()

Description: get the current pose of the robot under the Joint coordinate system

Parameter: null

Return: joint coordinate of the current pose

Example

local armPose
local joint = GetAngle()
--Get the current pose
local liftPose = { joint = {joint.joint[1], joint.joint[2], joint.joint[3], joint.joint[4]}, tool = 0, user = 0}

Copyright © ShenZhen Yuejiang Technology Co., Ltd 2021 all right reserved，powered by GitbookRevision:
2021-08-06 18:43:58

65

TCP Commands
Copyright © ShenZhen Yuejiang Technology Co., Ltd 2021 all right reserved，powered by GitbookRevision:
2021-08-06 18:44:00

66

Create TCP
Function:

err, socket = TCPCreate(isServer, IP, port)

Description: Create a TCP network

Only a single connection is supported

Parameter:

isServer: whether to create a server. 0: Create a client; 1: Create a server
IP: IP address of the server, which is in the same network segment of the client without conflict
port: server port When the robot is set as a server, port cannot be set to 502 and 8080. Otherwise, it will
be in conflict with the Modbus default port or the port used in the conveyor tracking application, causing
the creation to fail

Return:

err: 0: TCP network is created successfully 1: TCP network failed to be created
socket: socket object

Example 1: TCP server demo

local ip="192.168.5.1" // IP address of the robot as a server
local port=6001 // Server port
local err=0
local socket=0
err, socket = TCPCreate(true, ip, port)

Example 2: TCP client demo

``` local ip="192.168.5.25" // External equipment such as a camera is set as the server local port=6001 //
Server port local err=0 local socket=0 err, socket = TCPCreate(false, ip, port)

```

Copyright © ShenZhen Yuejiang Technology Co., Ltd 2021 all right reserved，powered by GitbookRevision:
2021-08-06 18:44:00

67

Establish TCP connection
Function:

TCPStart(socket, timeout)

Description: connect a client to a server with the TCP protocol

Parameter:

socket: socket object
timeout: wait timeout. unit: s. If timeout is 0, the connection is still waiting. If not, the connection is exited
after exceeding the timeout,

Return:
0: TCP connection is successful
1: input parameters are incorrect
2: socket object is not found
3: timeout setting is incorrect
4: If the robot is set as a client, it indicates that the connection is wrong. If the robot is set as a server, it
indicates that receiving data is wrong

Example 1: TCP server demo

local ip="192.168.5.1" // IP address of the robot as a server
local port=6001 // Server port
local err=0
local socket=0
err, socket = TCPCreate(true, ip, port)
if err == 0 then
err = TCPStart(socket, 0)

Example 2: TCP client demo

local ip="192.168.5.25" // External equipment such as a camera is set as the server
local port=6001 // Server port
local err=0
local socket=0
err, socket = TCPCreate(false, ip, port)
if err == 0 then
err = TCPStart(socket, 0)

Copyright © ShenZhen Yuejiang Technology Co., Ltd 2021 all right reserved，powered by GitbookRevision:
2021-08-06 18:44:00

68

Receive TCP data
Function:

err, Recbuf = TCPRead(socket, timeout, type)

Description:

Robot as a client receives data from a server
Robot as a server receives data from a client

Parameter:

socket: socket object
timeout: receiving timeout. unit: s. v
type: buffer type. If type is not set, the buffer format of RecBuf is a table. If type is set to string, the buffer
format is a string

Return:
err: 0: receiving data is successful 1: receiving data is failed
Recbuf: data buffer

Example 1: TCP server demo

local ip="192.168.5.1" // IP address of the robot as a server
local port=6001 // Server port
local err=0
local socket=0
err, socket = TCPCreate(true, ip, port)
if err == 0 then
err = TCPStart(socket, 0)
if err == 0 then
local RecBuf
while true do
TCPWrite(socket, "tcp server test") // Server sends data to client
err, RecBuf = TCPRead(socket,0,"string") // Server receives the data from client

Example 2: TCP client demo

local ip="192.168.5.25" // External equipment such as a camera is set as the server
local port=6001 // Server port
local err=0
local socket=0
err, socket = TCPCreate(false, ip, port)
if err == 0 then
err = TCPStart(socket, 0)
if err == 0 then
local RecBuf
while true do
TCPWrite(socket, "tcp client test") // Client sends data to server
TCPWrite(socket, {0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07})
err, RecBuf = TCPRead(socket, 0) // Client receives data from server

Copyright © ShenZhen Yuejiang Technology Co., Ltd 2021 all right reserved，powered by GitbookRevision:
2021-08-06 18:43:57

69

70

Send TCP data
Function:

TCPWrite(socket, buf, timeout)

Description:

The robot as a client sends data to a server
The robot as a server sends data to a client

Parameter:
socket: socket object
buf: data sent by the robot
timeout: timeout. unit: s. If timeout is 0 or not set, this command is a block reading, namely, the program
will not continue to run until sending data is completed. If timeout is not 0, after exceeding the timeout,
the program will continue to run regardless of whether sending data is completed

Return:
0: sending data is successful
1: sending data is failed

Example 1: TCP server demo

 local ip="192.168.5.1" // IP address of the robot as a server
 local port=6001 // Server port
 local err=0
 local socket=0
 err, socket = TCPCreate(true, ip, port)
 if err == 0 then
 err = TCPStart(socket, 0)
 if err == 0 then
 local RecBuf
 while true do
 TCPWrite(socket, "tcp server test") // Server sends data to client

Example 2: TCP client demo

local ip="192.168.5.25" // External equipment such as a camera is set as the server
local port=6001 // Server port
local err=0
local socket=0
err, socket = TCPCreate(false, ip, port)
if err == 0 then
err = TCPStart(socket, 0)
if err == 0 then
local RecBuf
while true do
TCPWrite(socket, "tcp client test") // Client sends data to server
TCPWrite(socket, {0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07})
err, RecBuf = TCPRead(socket, 0) // Client receives data from server

Copyright © ShenZhen Yuejiang Technology Co., Ltd 2021 all right reserved，powered by GitbookRevision:
2021-08-06 18:44:00

71

72

Close TCP
Function:

TCPDestroy(socket)

Description: release a TCP network

Parameter:

socket: socket object

Return:
0: releasing TCP is successful
1: releasing TCP is failed

Example 1: TCP server demo

local ip="192.168.5.1" // IP address of the robot as a server
local port=6001 // Server port
local err=0
local socket=0
err, socket = TCPCreate(true, ip, port)
if err == 0 then
err = TCPStart(socket, 0)
if err == 0 then
local RecBuf
while true do
TCPWrite(socket, "tcp server test") // Server sends data to client
err, RecBuf = TCPRead(socket,0,"string") // Server receives the data from client
if err == 0 then
Go(P1) //Start to run motion commands after the server receives data
Go(P2)
print(buf)
else
print("Read error ".. err)
break
end
end
else
print("Create failed ".. err)
end
TCPDestroy(socket)
else
print("Create failed ".. err)
end

Example 2: TCP client demo

local ip="192.168.5.25" // External equipment such as a camera is set as the server
local port=6001 // Server port
local err=0
local socket=0
err, socket = TCPCreate(false, ip, port)
if err == 0 then
err = TCPStart(socket, 0)
if err == 0 then
local RecBuf

73

while true do
TCPWrite(socket, "tcp client test") // Client sends data to server
TCPWrite(socket, {0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07})
err, RecBuf = TCPRead(socket, 0) // Client receives data from server
if err == 0 then
Go(P1) // Start to run motion commands after the client receives the data
Go(P2)
print(buf)
else
print("Read error ".. err)
break
end
end
else
print("Create failed ".. err)
end
TCPDestroy(socket)
else
print("Create failed ".. err)
end

Copyright © ShenZhen Yuejiang Technology Co., Ltd 2021 all right reserved，powered by GitbookRevision:
2021-08-06 18:44:00

74

Get data of a single point
Function:

err, Recbuf = TCPReadVision(socket, timeout，type)

Description: get the data of a single point

Parameter:

socket: socket object
timeout: receiving timeout, unit: s. If timeout is 0 or is not set, this command is a block reading. If timeout
is not 0, the program will continue to run after exceeding the timeout.
type: buffer type. If type is not set, the buffer format of RecBuf is a table. If type is set to string, the buffer
format is a string

Return:

err： 0: receiving data is successful 1: receiving data is failed
Recbuf: data buffer

Example

local err, RecBuf = TCPReadVision (socket, timeout, “string”);

The content of RecBuf is { coordinate={x，y，z，Rx，Ry，Rz}}.

Copyright © ShenZhen Yuejiang Technology Co., Ltd 2021 all right reserved，powered by GitbookRevision:
2021-08-17 12:41:48

75

Get data of multiple points
Function:

err, Recbuf = TCPReadMultiVision(socket, timeout，type)

Description: get the data of multiple points

Parameter:

socket：socket object
timeout：receiving timeout, unit: s. If timeout is 0 or is not set, this command is a block reading. If timeout
is not 0, the program will continue to run after exceeding the timeout.
type: buffer type. If type is not set, the buffer format of RecBuf is a table. If type is set to string, the buffer
format is a string

Return:

err： 0：receiving data is successful 1：receiving data is failed
Recbuf：data buffer

Example

local err, RecBuf = TCPReadMultiVision (socket, timeout, “string”)

The content of RecBuf is { coordinate0={x，y，z，Rx，Ry，Rz}， coordinate1={x，y，z，Rx，Ry，Rz}}.

Copyright © ShenZhen Yuejiang Technology Co., Ltd 2021 all right reserved，powered by GitbookRevision:
2021-08-17 13:09:55

76

UDP Commands
Copyright © ShenZhen Yuejiang Technology Co., Ltd 2021 all right reserved，powered by GitbookRevision:
2021-08-06 18:43:57

77

Create UDP
Function:

err, socket = UDPCreate(isServer, IP, port)

Description: create a UDP network Only a single connection is supported

Parameter:
isServer: whether to create a server. 0: Create a client; 1: Create a server
IP: IP address of the server, which is in the same network segment of the client without conflict
port: server port When the robot is set as a server, port cannot be set to 502 or 8080. Otherwise, it will
be in conflict with the Modbus default port or the port used in the conveyor tracking application, causing
the creation to fail

Return:
err: 0: The UDP network is created successfully 1: The UDP network failed to be created
socket: socket object

Example 1: UDP server demo

local ip="192.168.5.1" // IP address of the robot as a server
local port=6201 // Server port
local err=0
local socket=0
err, socket = UDPCreate(true, ip, port)

Example 2: UDP client demo

 local ip="192.168.1.25" // IP address of the external equipment as a
server
 local port=6200 // server port
 local err=0
 local socket=0
err, socket = UDPCreate(false, ip, port)

Copyright © ShenZhen Yuejiang Technology Co., Ltd 2021 all right reserved，powered by GitbookRevision:
2021-08-06 18:44:00

78

Receive UDP data
Function:

err, Recbuf = UDPRead(socket, timeout, type)

Description:

The robot as a client receives data from a server
The robot as a server receives data from a client

Parameter:

socket: socket object
timeout: Receiving timeout. Unit: s. If timeout is 0 or not set, this command is a block reading. Namely,
the program will not continue to run until receiving data is complete. If not, after exceeding the timeout,
the program will continue to run regardless of whether receiving data is complete
type: Buffer type. If type is not set, the buffer format of RecBuf is a table. If type is set to string, the buffer
format is a string

Return:

err: 0: Receiving data is successful 1: Receiving data is failed
Recbuf: Data buffer

Example 1: UDP server demo

local ip="192.168.5.1" // IP address of the robot as a server
local port=6201 // Server port
local err=0
local socket=0
err, socket = UDPCreate(true, ip, port)
if err == 0 then
local RecBuf
while true do
UDPWrite(socket, "udp server test") // Server sends data to client
err, RecBuf = UDPRead(socket, 0) //Server receives the data from client

Example 2: UDP client demo

 local ip="192.168.1.25" // IP address of the external equipment as a
server
 local port=6200 // server port
 local err=0
 local socket=0
err, socket = UDPCreate(false, ip, port)
if err == 0 then
local RecBuf
while true do
UDPWrite(socket, "udp client test") // Client sends data to server
UDPWrite(socket, {0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07})
err, RecBuf = UDPRead(socket, 0) // Client receives the data from server

Copyright © ShenZhen Yuejiang Technology Co., Ltd 2021 all right reserved，powered by GitbookRevision:
2021-08-06 18:43:57

79

80

Send UDP data
Function:

UDPWrite(socket, buf, timeout)

Description:

The robot as a client sends data to a server
The robot as a server sends data to a client

Parameter:
socket: Socket object
buf: Data sent by the robot
timeout: Timeout. Unit: s. If timeout is 0 or not set, this command is a block reading. Namely, the
program will not continue to run until sending data is complete. If not, after exceeding the timeout, the
program will continue to run regardless of whether sending data is complete

Return:
0: Sending data is successful
1: Sending data is failed

Example 1: UDP server demo

local ip="192.168.5.1" // IP address of the robot as a server
local port=6201 // Server port
local err=0
local socket=0
err, socket = UDPCreate(true, ip, port)
if err == 0 then
local RecBuf
while true do
UDPWrite(socket, "udp server test") // Server sends data to client

Example 2: UDP client demo

 local ip="192.168.1.25" // IP address of the external equipment as a
server
 local port=6200 // server port
 local err=0
 local socket=0
err, socket = UDPCreate(false, ip, port)
if err == 0 then
local RecBuf
while true do
UDPWrite(socket, "udp client test") // Client sends data to server
UDPWrite(socket, {0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07})

Copyright © ShenZhen Yuejiang Technology Co., Ltd 2021 all right reserved，powered by GitbookRevision:
2021-08-06 18:43:57

81

82

Modbus Commands
Copyright © ShenZhen Yuejiang Technology Co., Ltd 2021 all right reserved，powered by GitbookRevision:
2021-08-06 18:43:57

83

Create Modbus master station
Function:

ModbusCreate()

Description: create Modbus master station, and establish connection with the slave station

Parameter:

IP: IP address of slave station
port: slave station port
slave_id: ID of slave station

Return:

err:
0: Modbus master station is created successfully
1: Modbus master station fails to be created

id: device ID of slave station, supporting at most five devices, range: 0~4

Note: When ip, port, slave_id is void, or ip is 127.0.0.1 or 0.0.0.1, connect the Modbus slave station. For
example, if you input any one of the following commands, it indicates connecting Modbus slave station.

ModbusCreate()
ModbusCreate(“127.0.0.1”)
ModbusCreate(“0.0.0.1”)
ModbusCreate(“127.0.0.1”,xxx,xxx) //xxx arbitrary value
ModbusCreate(“0.0.0.1”,xxx,xxx) //xxx arbitrary value

Copyright © ShenZhen Yuejiang Technology Co., Ltd 2021 all right reserved，powered by GitbookRevision:
2021-08-17 12:41:48

84

Disconnect with Modbus slave
Function:

ModbusClose()

Description: disconnect with Modbus slave station

Parameter:

id: device ID of slave station, supporting at most five devices, range: 0~4
Return:

0: Modbus master station is closed successfully
1: Modbus master station fails to be closed

Example

err, id = ModbusCreate(ip, port,slave_id)
if err == 0 then
coils = {0, 1, 1, 1, 0}
SetCoils(id,1024, #coils, coils)
ModbusClose(id)
else
print("Create failed:",err)
end

Copyright © ShenZhen Yuejiang Technology Co., Ltd 2021 all right reserved，powered by GitbookRevision:
2021-08-12 19:04:27

85

Read the value from the Modbus slave coil register
address

Function:

GetCoils(id, addr, count)

Description: read the coil value from the Modbus slave

Parameter:
id: device ID of slave station, supporting at most five devices, range: 0~4
addr: starting address of the coils to read, range: 0~4095
count: number of the coils to read, range: 0 to 4096-addr

Return: coil value stored in a table, where the first value in the table corresponds to the coil value at the
starting address; data type: bit

Example

 Read 5 coils starting at address 0
 Coils = GetCoils(id,0,5)
 Return:
 Coils={1,0,0,0,0}
 As shown in Table 16.3, it indicates that the robot is in the starting state

Coil register address (e.g.: PLC)	Coil register address (Robot system)	Data type	Description
------------------------	----------------------------- -	-------	----------
00001	0	Bit	Start
00002	1	Bit	Pause
00003	2	Bit	Continue
00004	3	Bit	Stop
00005	4	Bit	Emergency stop
00006	5	Bit	Clear alarm
00007~0999	6~998	Bit	Reserved
01001~04096	999~4095	Bit	User-defined

Copyright © ShenZhen Yuejiang Technology Co., Ltd 2021 all right reserved，powered by GitbookRevision:
2021-08-11 16:37:48

86

Set the coil register in the Modbus slave
Function:

SetCoils(id, addr, count, table)

Description: set the address value of coil register in the Modbus slave This command is not supported when
the coil register address is from 0 to 5

Parameter:
id: device ID of slave station, supporting at most five devices, range: 0~4
Addr: starting address of the coils to set, range: 6 - 4095
count: number of the coils to set, range: 0 to 4096-addr
table: coil value, stored in a table, data type: bit

Return: null

Example

local Coils = {0,1,1,1,0}
SetCoils(id, 1024, #coils, Coils)

Set 5 coils starting at address 1024.

Copyright © ShenZhen Yuejiang Technology Co., Ltd 2021 all right reserved，powered by GitbookRevision:
2021-08-11 16:37:48

87

Read the value from the Modbus slave discrete
register address

Function:

GetInBits(id, addr, count)

Description: read the discrete input value from Modbus slave

Parameter:

id: device ID of slave station, supporting at most five devices, range: 0~4
addr: starting address of the discrete inputs to read, range: 0~4095
count: number of the discrete inputs to read, range: 0 to 4096-addr

Return: coil value stored in a table, where the first value in the table corresponds to the input register value at
the starting address; data type: bit

Example

Read 5 discrete inputs starting at address 0
inBits = GetInBits(id,0,5)
Return:
inBits = {0,0,0,1,0}
As shown in Table 17.1, it indicates the robot is in running state

Coil register address (e.g.:
PLC)

Coil register address (Robot
system)

Data
type Description

00001 0 Bit Start

00002 1 Bit Pause

00003 2 Bit Continue

00004 3 Bit Stop

00005 4 Bit Emergency
stop

00006 5 Bit Clear alarm

00007~0999 6~998 Bit Reserved

01001~04096 999~4095 Bit User-defined

Copyright © ShenZhen Yuejiang Technology Co., Ltd 2021 all right reserved，powered by GitbookRevision:
2021-08-11 16:37:48

88

Read the value from the Modbus slave input register
address

Function:

GetInRegs(id, addr, count, type)

Description: read the input register value with the specified data type from the Modbus slave

Parameter:

id: device ID of slave station, supporting at most five devices, range: 0~4
addr: starting address of the input registers, range: 0 - 4095
count: number of the input registers to read, range: 0 ~ 4096-addr
type: data type

Empty: read 16-bit unsigned integer (two bytes, occupy one register)
“U16”: read 16-bit unsigned integer (two bytes, occupy one register)
“U32”: read 32-bit unsigned integer (four bytes, occupy two registers)
“F32”: read 32-bit single-precision floating-point number (four bytes, occupy two registers)
“F64”: read 64-bit double-precision floating-point number (eight bytes, occupy four registers)

Return: value of input register stored in a table, where the first value in the table corresponds to the input
register value at the starting address

Example 1

data = GetInRegs(id,2048,1)

Read a 16-bit unsigned integer starting at address 2048.

Example 2

data = GetInRegs(id, 2048, 1, “U32”)

Read a 32-bit unsigned integer starting at address 2048.

Copyright © ShenZhen Yuejiang Technology Co., Ltd 2021 all right reserved，powered by GitbookRevision:
2021-08-11 16:37:48

89

Read the value from the Modbus slave holding
register address

Function:

GetHoldRegs(id, addr, count, type)

Description: Read the holding register value from the Modbus slave according to the specified data type

Parameter:

id: device ID of slave station, supporting at most five devices, range: 0~4
addr: starting address of the holding registers. Value range: 0 - 4095
count: number of the holding registers to read. Value range: 0 to 4096-addr
type: data type

Empty: read 16-bit unsigned integer (two bytes, occupy one register)
“U16”: read 16-bit unsigned integer (two bytes, occupy one register)
“U32”: read 32-bit unsigned integer (four bytes, occupy two registers)
“F32”: read 32-bit single-precision floating-point number (four bytes, occupy two registers)
“F64”: read 64-bit double-precision floating-point number (eight bytes, occupy four registers)

Return: coil value stored in a table, where the first value in the table corresponds to the input register value at
the starting address

Example 1:

data = GetHoldRegs(id,2048,1)

Read a 16-bit unsigned integer starting at address 2048.

Example 2:

data = GetHoldRegs(id, 2048, 1, “U32”)

Read a 32-bit unsigned integer starting at address 2048.

Copyright © ShenZhen Yuejiang Technology Co., Ltd 2021 all right reserved，powered by GitbookRevision:
2021-08-11 16:37:48

90

Set the holding register in the Modbus slave
Function:

SetHoldRegs(id, addr, count, table, type)

Description: set the holding register in the Modbus slave

Parameter:

id: device ID of slave station, supporting at most five devices, range: 0~4
addr: starting address of the holding registers to set, range: 0 - 4095
count: number of the holding registers to set, range: 0 to 4096-addr
table: holding register value, stored in a table
type: datatype

Empty: read 16-bit unsigned integer (two bytes, occupy one register)
“U16”: read 16-bit unsigned integer (two bytes, occupy one register)
“U32”: read 32-bit unsigned integer (four bytes, occupy two registers)
“F32”: read 32-bit single-precision floating-point number (four bytes, occupy two registers)
“F64”: read 64-bit double-precision floating-point number (eight bytes, occupy four registers)

Return: null

Example 1

local data = {6000}
SetHoldRegs(id, 2048, #data, data, “U16”)

Set a 16-bit unsigned integer starting at address 2048.

Example 2

local data = {95.32105}
SetHoldRegs(id, 2048, #data, data, “F64”)

Set a 64-bit double-precision floating-point number starting at address 2048.

Copyright © ShenZhen Yuejiang Technology Co., Ltd 2021 all right reserved，powered by GitbookRevision:
2021-08-11 16:37:48

91

Tool Commands
Copyright © ShenZhen Yuejiang Technology Co., Ltd 2021 all right reserved，powered by GitbookRevision:
2021-08-06 18:44:00

92

10.1 Set power state of the tool
Copyright © ShenZhen Yuejiang Technology Co., Ltd 2021 all right reserved，powered by GitbookRevision:
2021-08-06 18:44:34

93

Set tool baud rate
Function:

SetToolBaudRate(baud)

Description: set the baud rate of RS485 port of the tool

Parameter:

baud: baud rate of RS485 port
Return: null

Example

SetToolBaudRate(115200)

Set the baud rate of RS485 port as 115200Hz.

Copyright © ShenZhen Yuejiang Technology Co., Ltd 2021 all right reserved，powered by GitbookRevision:
2021-08-06 18:44:00

94

Coordinate System Commands
Copyright © ShenZhen Yuejiang Technology Co., Ltd 2021 all right reserved，powered by GitbookRevision:
2021-08-06 18:43:58

95

Modify user coordinate system
Function:

SetUser(index,table)

Description: modify user coordinate system

Parameter:

index: index of coordinate system, range: 0~9 (0 is default coordinate system)
table: matrix for coordinate system, usually the return value of CalcUser()

Return: null

Example

Go(P1)
local u = {}
u = CalcUser(2,0,{10,10,0,0,0,0}) --User coordinate system 2 left multiplies {x,y,z,rx,ry,rz}; if the second par
ameter is 1, then user coordinate system 2 right multiplies {x,y,z,rx,ry,rz}.
 SetUser(2, u) --Modify user coordinate system 2.
Go(P1,"User=2") --Use the modified user coordinate system 2.

Copyright © ShenZhen Yuejiang Technology Co., Ltd 2021 all right reserved，powered by GitbookRevision:
2021-08-06 18:43:57

96

Calculate user coordinate system
Function:

CalcUser(index,matrix_direction,table)

Description: calculate user coordinate system

Parameter:

Index: index of coordinate system, range: 0~9 (0 is default coordinate system)
matrix_direction: direction for calculation

0: user coordinate system corresponding to the index left multiplies {x,y,z,rx,ry,rz}
1: user coordinate system corresponding to the index right multiplies {x,y,z,rx,ry,rz}

Table: matrix for coordinate system {x,y,z,rx,ry,rz}

Return: calculated matrix for coordinate system

Example

Go(P1)
local u = {}
u = CalcUser(2,0,{10,10,0,0,0,0}) --User coordinate system 2 left multiplies {x,y,z,rx,ry,rz}; if the second par
ameter is 1, then user coordinate system 2 right multiplies {x,y,z,rx,ry,rz}.
 SetUser(2, u) --Modify user coordinate system 2.
Go(P1,"User=2") --Use the modified user coordinate system 2.

Copyright © ShenZhen Yuejiang Technology Co., Ltd 2021 all right reserved，powered by GitbookRevision:
2021-08-06 18:44:00

97

Modify tool coordinate system
Function:

SetTool(indexl,table)

Description: modify tool coordinate system

Parameter:

indexl: index of coordinate system, range: 0~9 (0 is default coordinate system)
Table: matrix for coordinate system, usually the return value of CalcUser()

Return: null

Example

Go(P1)
local u = {}
u = CalcTool(2,0,{10,10,0,0,0,0}) --Tool coordinate system 2 left multiplies {x,y,z,rx,ry,rz}; if the second par
ameter is 1, then tool coordinate system 2 right multiplies {x,y,z,rx,ry,rz}.
 SetTool(2, u) --Modify tool coordinate system 2.
Go(P1,"Tool=2") --Use the modified tool coordinate system 2.

Copyright © ShenZhen Yuejiang Technology Co., Ltd 2021 all right reserved，powered by GitbookRevision:
2021-08-06 18:43:57

98

Calculate tool coordinate system
Function:

CalcTool(index,matrix_direction,table)

Description: calculate tool coordinate system

Parameter:

Index: index of coordinate system, range: 0~9 (0 is default coordinate system)
matrix_direction：direction for calculation

0: tool coordinate system corresponding to the index left multiplies {x,y,z,rx,ry,rz}
1: tool coordinate system corresponding to the index right multiplies {x,y,z,rx,ry,rz}

Table: matrix for coordinate system {x,y,z,rx,ry,rz}
Return: calculated matrix for coordinate system

Example

Go(P1)
local u = {}
u = CalcTool(2,0,{10,10,0,0,0,0}) --Tool coordinate system 2 left multiplies {x,y,z,rx,ry,rz}; if the second par
ameter is 1, then tool coordinate system 2 right multiplies {x,y,z,rx,ry,rz}.

Copyright © ShenZhen Yuejiang Technology Co., Ltd 2021 all right reserved，powered by GitbookRevision:
2021-08-11 19:44:24

99

Encoder Commands
Copyright © ShenZhen Yuejiang Technology Co., Ltd 2021 all right reserved，powered by GitbookRevision:
2021-08-06 18:43:57

100

Set the current value of the encoder
Function:

SetABZPPC(value)

Description: set the current value of the encoder

Parameter:

value: position of the encoder

 The counter of the encoder is 32-bit

Return: null

Example

SetABZPPC(3000)

Set the current value of the encoder as 3000.

Copyright © ShenZhen Yuejiang Technology Co., Ltd 2021 all right reserved，powered by GitbookRevision:
2021-08-06 18:43:57

101

Get the current position of the encoder
Function:

GetABZ()

Description: get the current position of the encoder

Parameter: null

Return: current position of the encoder

Example

local value=GetABZ()
printf(value)

Get and print the current position of the encoder.

Copyright © ShenZhen Yuejiang Technology Co., Ltd 2021 all right reserved，powered by GitbookRevision:
2021-08-06 18:44:00

102

Trajectory Playback Commands
Copyright © ShenZhen Yuejiang Technology Co., Ltd 2021 all right reserved，powered by GitbookRevision:
2021-08-06 18:44:00

103

Trajectory fitting
Function:

StartTrace(string, Option)

Description: trajectory fitting

Parameter:

String: name of the trace file (with the suffix)
option: settings for trajectory playback

CP: whether to set continuous path function, range: 0~100
SpeedS: velocity rate, range: 1~100
AccelS: acceleration rate, range: 1~100
SYNC: synchronization flag, range: 0 or 1. If SYNC is 0, it indicates asynchronous execution. This
command has a return immediately after being called, regardless of the execution process. If SYNC
is 1, it indicates synchronous execution. it will not return after being called until it is executed
completely

Return: null

Example

 local string=“demo.json”
 StartTrace(string, “CP=10 SpeedS=50 AccelS=20 SYNC=1”)

Copyright © ShenZhen Yuejiang Technology Co., Ltd 2021 all right reserved，powered by GitbookRevision:
2021-08-13 16:57:15

104

Get the first point in trajectory fitting
Function:

GetTraceStartPose(string)

Description: get the first point of the trajectory

Parameter:

string: name of the trajectory file (with the suffix)
Return: coordinate value

Example

local P1 = GetTraceStartPose(string)

Get the first point of the trajectory, and assign the value to P1.

Copyright © ShenZhen Yuejiang Technology Co., Ltd 2021 all right reserved，powered by GitbookRevision:
2021-08-13 16:57:37

105

Trajectory playback
Function:

StartPath(string, option)

Description: trajectory playback

Parameter:

String: name of the path file (with the suffix)
option: settings for trajectory playback

Multi: speed multiples, scope：0.01~2.0
isConst: When isConst=1, it plays back at a constant speed, and the pauses and dead zones in the
trajectory are removed
isCart: value is 0 or 1 (default value is 0)

0: move joint points
1: move Cartesian points

isRev: When isRev=1, the trajectory is reversed
isRel: When isRel=1, the overall trajectory offsets with the current point as the starting point

Return: null

Example

local string=”demo.json”
StartPath(string, “Multi=1 isConst=1 isCart=1 isRev=1 isRel=1”)

The robot plays back at a one-multiple constant speed; at the same time, the trajectory is reversed,, and the
overall trajectory offsets.

Copyright © ShenZhen Yuejiang Technology Co., Ltd 2021 all right reserved，powered by GitbookRevision:
2021-08-13 16:58:57

106

Get the first point in trajectory playback
Function:

GetPathStartPose（string）

Description: get the first point of the trajectory

Parameter:

string: name of the trajectory file (with the suffix)
Example

local P1 = GetPathStartPose(string)

Get the first point of the trajectory, and assign the value to P1.

Copyright © ShenZhen Yuejiang Technology Co., Ltd 2021 all right reserved，powered by GitbookRevision:
2021-08-13 16:57:56

107

Load Commands
Copyright © ShenZhen Yuejiang Technology Co., Ltd 2021 all right reserved，powered by GitbookRevision:
2021-08-06 18:44:00

108

Set the current load
Function:

LoadSet(weight,inertia)

Description: set the current load

Parameter:

weight: load weight (kg)
inertia: load inertia (kgm^2^)

Return: null

Example

LoadSet(3,0.4)

Set the load weight of the robot as 3 kg, and inertia as 0.4 kgm^2^.

Copyright © ShenZhen Yuejiang Technology Co., Ltd 2021 all right reserved，powered by GitbookRevision:
2021-08-06 18:43:57

109

Switch the parameter-setting status of the load
Function:

LoadSwitch(status)

Description: switch the parameter-setting status of the load

Parameter:

status:
0: lock the parameter setting of load
1: unlock the parameter setting of load, which will enhance the sentitivity of collision detection

Return: null

Example

LoadSwitch(1)

Unlock the parameter setting of load.

Copyright © ShenZhen Yuejiang Technology Co., Ltd 2021 all right reserved，powered by GitbookRevision:
2021-08-06 18:44:00

110

Pallet Commands
Copyright © ShenZhen Yuejiang Technology Co., Ltd 2021 all right reserved，powered by GitbookRevision:
2021-08-06 18:44:00

111

Instantiate matrix pallet
Function:

Pallet = MatrixPallet (index, “IsUnstack= true Userframe= 1”)

Description: instantiate matrix pallet

Parameter:

Index: matrix pallet index
Optional parameter:

IsUnstack: stack mode, range: true or false. true: dismantling mode; false: assembly mode. If not set,
the default is assembly mode
Userframe: user coordinate system index. If not set, the default is User 0 coordinate system

Return: matrix pallet object

Example

myPallet = MatrixPallet(0,“IsUnstack=true Userframe=8”)

Copyright © ShenZhen Yuejiang Technology Co., Ltd 2021 all right reserved，powered by GitbookRevision:
2021-08-09 17:59:44

112

15.2 Set the next stack index to be operated
Function:

SetPartIndex (Pallet, index)

Description: set the next stack index which is to be operated

Parameter:

Pallet: Pallet object
index: the next stack index, initial value: 0

Return: null

Example

local myPallet = MatrixPallet(0, “IsUnstack=true Userframe=8”)
SetPartIndex(myPallet,1)

The next stack index to be operated is 2.

Copyright © ShenZhen Yuejiang Technology Co., Ltd 2021 all right reserved，powered by GitbookRevision:
2021-08-17 12:41:48

113

Get the current operated stack index
Function:

GetPartIndex (Pallet)

Description: get the current operated stack index

Parameter:

Pallet：pallet object
Return: current operated stack index

Example

local index=GetPartIndex(myPallet)

If the return value is 1, it indicates that the current operated stack index is 2

Copyright © ShenZhen Yuejiang Technology Co., Ltd 2021 all right reserved，powered by GitbookRevision:
2021-08-06 18:44:00

114

Set the next pallet layer index to be operated
Function:

SetLayerIndex (Pallet, index)

Description: set the next pallet layer index which is to be operated

Parameter:

Pallet: pallet object
index: next pallet layer index. initial value: 0

Return: null

Example

local myPallet = MatrixPallet(0, “IsUnstack=true Userframe=8”)
SetLayerIndex(myPallet,1)

The next pallet layer index to be operated is 2.

Copyright © ShenZhen Yuejiang Technology Co., Ltd 2021 all right reserved，powered by GitbookRevision:
2021-08-17 12:41:48

115

Get the current pallet layer index
Function:

GetLayerIndex (Pallet)

Description: get the current pallet layer index

Parameter:

Pallet: pallet object
Return: current pallet layer index

Example

local index=GetLayerIndex(myPallet)

If the return value is 1, it indicates that the current operated pallet layer index is 2.

Copyright © ShenZhen Yuejiang Technology Co., Ltd 2021 all right reserved，powered by GitbookRevision:
2021-08-06 18:43:57

116

Reset pallet
Function:

Restet (Pallet)

Description: reset pallet

Parameter:

Pallet: pallet object
Return: null

Example

local myPallet = MatrixPallet(0, “IsUnstack=true Userframe=8”)
Reset(myPallet)

Copyright © ShenZhen Yuejiang Technology Co., Ltd 2021 all right reserved，powered by GitbookRevision:
2021-08-17 12:41:48

117

Check whether the stack assembly or dismantling is
completed

Function:

IsDone (Pallet)

Description: check whether the stack assembly or dismantling is completed

Parameter:

Pallet: pallet object
Return:

true: finished
false: un-finished

Example

Result = IsDone(myPallet)
If (result == true)
…

Copyright © ShenZhen Yuejiang Technology Co., Ltd 2021 all right reserved，powered by GitbookRevision:
2021-08-06 18:43:57

118

Release palletizing instance
Function:

Release (Pallet)

Description: release pallet object

Parameter:

Pallet: pallet object
Return: null

Example

Release(myPallet)

Copyright © ShenZhen Yuejiang Technology Co., Ltd 2021 all right reserved，powered by GitbookRevision:
2021-08-06 18:43:57

119

The robot moves from the current position to the
first stack position as the configured stack
assembly path

Function:

MoveIn (Pallet, “velAB=20 velBC=30 accAB=20 accBC=10 CP=20 SYNC=1”)

Description: The robot moves from the current position to the first stack position as the configured stack
assembly path

Required parameter:

Pallet：pallet object
Optional parameter:

velAB: velocity rate when the robot moves from the safe point to the prepare point, range: 1-100
velBC: velocity rate when the robot moves from the prepare point to the first stack point, range: 1-100
accAB: acceleration rate when the robot moves from the safe point to the prepare point, range: 1-100
accBC: acceleration rate when the robot moves from the prepare point to the first stack point, range: 1-
100
CP: whether to set continuous path function, range: 0- 100
SYNC: synchronization flag, range: 0 or 1. If SYNC is 0, it indicates asynchronous execution. This
command has a return immediately after being called, regardless of the execution process. If SYNC is 1,
it indicates synchronous execution. it will not return after being called until it is executed completely

Return: null

Example

MoveIn(myPallet, “velAB=90 velBC=50”)

Copyright © ShenZhen Yuejiang Technology Co., Ltd 2021 all right reserved，powered by GitbookRevision:
2021-08-11 16:37:48

120

The robot moves from the current position to the
safe point as the configured stack dismantling path

Function:

MoveOut (Pallet, “velAB=20 velBC=30 accAB=20 accBC=10 CP=20 SYNC=1”)

Description: the robot moves from the current position to the safe point as the configured stack dismantling
path

Required parameter:

Pallet: pallet object
Optional parameter:

velAB: velocity rate when the robot moves from the safe point to the prepare point, range: 1-100
velBC: velocity rate when the robot moves from the prepare point to the first stack point, range: 1-100
accAB: acceleration rate when the robot moves from the safe point to the prepare point, range: 1-100
accBC: acceleration rate when the robot moves from the prepare point to the first stack point, range: 1-
100
CP: whether to set continuous path function, range: 0- 100
SYNC: synchronization flag, range: 0 or 1. If SYNC is 0, it indicates asynchronous execution. This
command has a return immediately after being called, regardless of the execution process. If SYNC is 1,
it indicates synchronous execution. it will not return after being called until it is executed completely

Return: null

Example

MoveOut(myPallet, “velAB=90 velBC=50”)

Copyright © ShenZhen Yuejiang Technology Co., Ltd 2021 all right reserved，powered by GitbookRevision:
2021-08-11 16:37:48

121

Conveyer Tracking Commands
Copyright © ShenZhen Yuejiang Technology Co., Ltd 2021 all right reserved，powered by GitbookRevision:
2021-08-06 18:44:00

122

Set conveyor number to create a tracing queue
Function:

CnvVison(CnvID)

Description: set conveyor number to create a tracing queue

Parameter:

CnvID: conveyor number
Return:

0: no error
1: error

Example

CnvVison(1)

Send the information (resolution ratio, starting position, direction and bound) of Conveyor 1 to the robot
system.

Copyright © ShenZhen Yuejiang Technology Co., Ltd 2021 all right reserved，powered by GitbookRevision:
2021-08-06 18:43:57

123

Obtain status of the object
Function:

GetCnvObject(CnvID, ObjID)

Description: obtain the information of the part on the conveyor to check whether the part is in the pickup area

Parameter:

CnvID: conveyor index
ObjID: part index

Return:
Part status: whether there is a part, range: true or false
Part type
Part coordinate (x,y,r)

Example

P111 = {0,0,0}
while true do
flag,typeObject,P111 = GetCnvObject(0,0)
if flag == true then
break
end
Sleep(20)
end

Copyright © ShenZhen Yuejiang Technology Co., Ltd 2021 all right reserved，powered by GitbookRevision:
2021-08-06 18:43:57

124

Set X-axis, Y-axis offset under the set User
coordinate system

Function:

SetCnvPointOffset(xOffset,yOffset)

Description: set X-axis, Y-axis offset under the user coordinate system

Parameter:

xOffset: X axis offset
yOffset: Y axis offset unit: mm

Return:
0: no error
1: error

Copyright © ShenZhen Yuejiang Technology Co., Ltd 2021 all right reserved，powered by GitbookRevision:
2021-08-06 18:43:57

125

Set time compensation
Function:

SetCnvTimeCompensation (time)

Description: set time compensation This command is used for compensating the pick-up position offset in the
moving direction of the conveyor which is caused by taking photos with a time delay

Parameter：

time: time-offset, unit: ms
Return：

0: no error
1: error

Copyright © ShenZhen Yuejiang Technology Co., Ltd 2021 all right reserved，powered by GitbookRevision:
2021-08-06 18:44:00

126

Synchronize the specified conveyor
Function:

SyncCnv (CnvID)

Description: synchronize the specified conveyor Only Move command among motion commands between
SyncCnv(CnvID) and StopSyncCnv(CnvID) is supported

Parameter:

CnvID: conveyor index
Return:

0: no error
1: error

Copyright © ShenZhen Yuejiang Technology Co., Ltd 2021 all right reserved，powered by GitbookRevision:
2021-08-06 18:43:57

127

Stop synchronous conveyor
Function:

StopSyncCnv (CnvID)

Description: stop synchronizing the conveyor The other commands following this command will not be
executed until this command running is completed

Parameter:

CnvID: conveyor index
Return:

0: no error
1: error

Copyright © ShenZhen Yuejiang Technology Co., Ltd 2021 all right reserved，powered by GitbookRevision:
2021-08-06 18:43:57

128

Other Commands
Copyright © ShenZhen Yuejiang Technology Co., Ltd 2021 all right reserved，powered by GitbookRevision:
2021-08-06 18:43:57

129

Set the on-off state of safeskin
Function:

SetSafeSkin (status)

Description: set the on-off state of safeskin

Parameter:

Status: on-off state of safeskin, 0: switch off the safeskin; 1: switch on the safeskin
Return: null

Example

SetSafeSkin (1)

Switch on the safeskin.

Copyright © ShenZhen Yuejiang Technology Co., Ltd 2021 all right reserved，powered by GitbookRevision:
2021-08-06 18:43:57

130

Set the state of obstacle avoidance of safeskin
Function:

SetObstacleAvoid(status)

Description: set the on/off state of obstacle avoidance of safeskin

If the safeskin of Dobot+ is off, this command does not work.

This command only works within the script. The safeskin will return to default "almost-pause" mode once you
exit the script.

Parameter:

Status: on-off state of obstacle avoidance of safeskin
0: switch off the obstacle avoidance of safeskin
1: switch on the obstacle avoidance of safeskin

Return: null

Example

SetObstacleAvoid(status)

Switch on the obstacle avoidance of safeskin.

Copyright © ShenZhen Yuejiang Technology Co., Ltd 2021 all right reserved，powered by GitbookRevision:
2021-08-12 14:09:21

131

Set collision level
Function:

SetCollisionLevel(level)

Description: set the collision level

Parameter:

level: collision level
0: switch off collision detection
1~5: more sensitive with higher level

Return: null

Example

SetCollisionLevel(2)

Set the collision level as Level 2.

Copyright © ShenZhen Yuejiang Technology Co., Ltd 2021 all right reserved，powered by GitbookRevision:
2021-08-06 18:43:57

132

	Introduction
	1 Motion Commands
	1.1 Point to point, the target point is Cartesian point
	1.2 Point to point, the target point is joint point
	1.3 Linear movement
	1.4 Arc movement
	1.5 Jump movement
	1.6 Circle movement
	1.7 Cartesian point offset
	1.8 Joint point offset
	1.9 Move to the Cartesian offset position in a straight line
	1.10 Move to the Cartesian offset position in a point-to-point mode
	1.11 Move to the joint offset position in a point-to-point mode
	1.12 Block the program from executing queue instructions
	1.13 Go movement in parallel with output
	1.14 Move movement in parallel with output
	1.15 MoveJ movement in parallel with output
	1.16 Check the status of trajectory after Move command is executed
	1.17 Check whether the robot moves to the target point

	2 Motion Parameter Commands
	2.1 Set the acceleration rate of Go, Jump, or MoveJ
	2.2 Set the acceleration rate of Move, Jump, Arc3, Circle3 and MoveR
	2.3 Set the velocity rate of Go, MoveJ, GoR and MoveJR
	2.4 Set the velocity rate of Move, Jump, Arc3, Circle3 and MoveR
	2.5 Set the index of arc parameters in the Jump mode
	2.6 CP
	2.7 Set the maximum lifting height in Jump mode
	2.8 Set global speed ratio
	2.9 Set the posture speed rate of Move, Jump, Arc3, Circle3 and MoveR
	2.10 Set the posture acceleration rate of Move, Jump, Arc3, Circle3 and MoveR

	3 Six-axis Force Sensor Commands
	3.1 Homing six-axis force sensor
	3.2 Spiral motion to find the hole position
	3.3 Rotation motion to find the hole position
	3.4 Linear jack movement

	4 Input&Output Commands
	4.1 DI
	4.2 DO
	4.3 DOExecute
	4.4 ToolDI
	4.5 ToolDO
	4.6 ToolDOExecute
	4.7 ToolAnalogMode
	4.8 ToolAI
	4.9 AI
	4.10 AO
	4.11 AOExecute
	4.12 WaitDI

	5 Program Managing Commands
	5.1 Motion command waiting
	5.2 Set delay time
	5.3 Pause program operation
	5.4 Start timing
	5.5 Stop timing
	5.6 Get current time
	5.7 Print

	6 Pose Getting Commands
	6.1 Get Cartesian coordinates
	6.2 Get joint coordinates

	7 TCP Commands
	7.1 Create TCP
	7.2 Establish TCP connection
	7.3 Receive TCP data
	7.4 Send TCP data
	7.5 Close TCP
	7.6 Get data of a single point
	7.7 Get data of multiple points

	8 UDP Commands
	8.1 Create UDP
	8.2 Receive UDP data
	8.3 Send UDP data

	9 Modbus Commands
	9.1 Create Modbus master station
	9.2 Disconnect with Modbus slave
	9.3 Read the value from the Modbus slave coil register address
	9.4 Set the coil register in the Modbus slave
	9.5 Read the value from the Modbus slave discrete register address
	9.6 Read the value from the Modbus slave input register address
	9.7 Read the value from the Modbus slave holding register address
	9.8 Set the holding register in the Modbus slave

	10 Tool Commands
	10.1 Set power state of the tool
	10.2 Set tool baud rate

	11 Coordinate System Commands
	11.1 Modify user coordinate system
	11.2 Calculate user coordinate system
	11.3 Modify tool coordinate system
	11.4 Calculate tool coordinate system

	12 Encoder Commands
	12.1 Set the current value of the encoder
	12.2 Get the current position of the encoder

	13 Trajectory Playback Commands
	13.1 Trajectory fitting
	13.2 Get the first point in trajectory fitting
	13.3 Trajectory playback
	13.4 Get the first point in trajectory playback

	14 Load Commands
	14.1 Set the current load
	14.2 Switch the parameter-setting status of the load

	15 Pallet Commands
	15.1 Instantiate matrix pallet
	15.2 Set the next stack index to be operated
	15.3 Get the current operated stack index
	15.4 Set the next pallet layer index to be operated
	15.5 Get the current pallet layer index
	15.6 Reset pallet
	15.7 Check whether the stack assembly or dismantling is completed
	15.8 Release palletizing instance
	15.9 The robot moves from the current position to the first stack position as the configured stack assembly path
	15.10 The robot moves from the current position to the safe point as the configured stack dismantling path

	16 Conveyer Tracking Commands
	16.1 Set conveyor number to create a tracing queue
	16.2 Obtain status of the object
	16.3 Set X-axis, Y-axis offset under the set User coordinate system
	16.4 Set time compensation
	16.5 Synchronize the specified conveyor
	16.6 Stop synchronous conveyor

	17 Other Commands
	17.1 Set the on-off state of safeskin
	17.2 Set the state of obstacle avoidance of safeskin
	17.3 Set collision level

