

2.3" Monochrome 128x32 OLED Display

Module

Created by lady ada

https://learn.adafruit.com/2-3-monochrome-128x32-oled-display-module

Last updated on 2022-12-01 02:35:43 PM EST

©Adafruit Industries Page 1 of 41

5

8

9

11

18

19

20

21

30

31

Table of Contents

Overview

Pinouts

• Power Pins

• Signal Pins

• Remaining Pins

Assembly

• Changing "modes"

• SPI Mode

• 8-Bit "6800" mode

• I2C mode

Arduino Wiring & Test

• SPI Wiring

• Level Shifter Wiring

• 3.3V Capacitor

• Download Libraries

• Running the Demo

• Adjust display size

• Changing Pins

• Using Hardware SPI

• I2C Wiring

• 3.3V Capacitor

• I2C code changes

Using Adafruit GFX

CircuitPython Wiring

• Adafruit OLED Display I2C Wiring

• Adafruit OLED Display SPI Wiring

CircuitPython Setup

• CircuitPython Installation of DisplayIO SSD1305 Library

• Code Example Additional Libraries

CircuitPython Usage

• I2C Initialization

• Changing the I2C address

• SPI Initialization

• Example Code

• Where to go from here

Python Wiring

• Adafruit OLED Display I2C Wiring

• Adafruit OLED Display SPI Wiring

Python Setup

• Python Installation of SSD1305 Library

• Pillow Library

• Speeding up an I2C Display on Raspberry Pi

©Adafruit Industries Page 2 of 41

33

40

41

Python Usage

• I2C Initialization

• Changing the I2C address

• Adding hardware reset pin

• SPI Initialization

• Example Code

F.A.Q.

Downloads

• Datasheets

©Adafruit Industries Page 3 of 41

©Adafruit Industries Page 4 of 41

Overview

If you've been diggin' our monochome OLEDs but need something bigger, this display

will delight you. These displays are 2.3" diagonal, and very readable due to the high

contrast of an OLED display. This display is made of 128x32 individual blue OLED

pixels, each one is turned on or off by the controller chip. Because the display makes

its own light, no backlight is required. This reduces the power required to run the

OLED and is why the display has such high contrast; we really like this graphic display

for its crispness!

©Adafruit Industries Page 5 of 41

The driver chip, SSD1305 can communicate in three ways: 8-bit, I2C or SPI. Personally

we think SPI is the way to go, only 4 or 5 wires are required and its very fast. The

OLED itself requires a 3.3V power supply and 3.3V logic levels for communication. We

include a breadboard-friendly level shifter that can convert 3V or 5V down to 3V, so it

can be used with 5V-logic devices like Arduino.

The power requirements depend a little on how much of the display is lit but on

average the display uses about 50mA from the 3.3V supply. Built into the OLED driver

is a simple switch-cap charge pump that turns 3.3V into a high voltage drive for the

OLEDs.

©Adafruit Industries Page 6 of 41

Each order comes with one assembled OLED module with a nice bezel and 4

mounting holes. The display is 3V logic & power so we include a HC4050 level shifter.

We also toss in a 220uF capacitor, as we noticed an Arduino may need a little more

capacitance on the 3.3V power supply for this big display! This display does not come

with header attached but we do toss in a stick of header you can solder on. Also, the

display may come in 8-bit mode. You can change modes from 8-bit to SPI with a little

soldering, check out the tutorial for how to do so. ()

Getting started is easy! We have a detailed tutorial and example code in the form of

an Arduino library for text and graphics. () You'll need a microcontroller with more than

512 bytes of RAM since the display must be buffered. The library can print text,

bitmaps, pixels, rectangles, circles and lines. It uses 512 bytes of RAM since it needs

to buffer the entire display but its very fast! The code is simple to adapt to any other

microcontroller.

©Adafruit Industries Page 7 of 41

file:///home/2-7-monochrome-128x64-oled-display-module/assembly
file:///home/2-7-monochrome-128x64-oled-display-module/assembly
file:///home/2-3-monochrome-128x32-oled-display-module
file:///home/2-3-monochrome-128x32-oled-display-module

Pinouts

The pins on these modules are not well marked, but the one on left is #1 and the pins

increment in order until the one on the very right, #20

Power Pins

Pin #1 is power and signal Ground

Pin #2 is 3V Power In - provide 3V with 50-75mA current capability

Pin #3 is not used, do not connect to anything

•

•

•

©Adafruit Industries Page 8 of 41

Signal Pins

Pin #4 is DC - the data/command pin. This is a 3V logic level input pin and is

used for both SPI and 8-bit connections

Pin #5 is WR - the 8-bit write pin. This is a 3V logic level input pin and is used for

8-bit connections. Do not connect if using SPI/I2C

Pin #6 is RD - the 8-bit read pin. This is a 3V logic level input pin and is used for

8-bit connections. Do not connect if using SPI/I2C

Pin #7 is Data0 - this pin is the SPI Clock pin, I2C Clock pin and the 8-bit data bit

0 pin. This is a 3V logic level input pin when used with I2C/SPI, and an input/

output when used in 8-bit.

Pin #8 is Data1 - this pin is the SPI Data In pin, I2C Data pin and the 8-bit data bit

1 pin. This is a 3V logic level input pin when used with I2C/SPI, and an input/

output when used in 8-bit.

Pins #9-14 are Data2-7 - Used for 8-bit mode. These is a 3V input/output when

used in 8-bit. Do not connect if using SPI or I2C

Pin #15 is CS - the chip select pin. This is a 3V logic level input pin and is used

for both SPI and 8-bit connections

Pin #16 is RESET - the reset pin. This is a 3V logic level input pin and is used for

I2C, SPI and 8-bit connections

Remaining Pins

Pins #17-19 are not connected, do not use

Pin #20 is the 'frame ground' pin and is connected to the metal case around the

OLED, you can connect to ground or leave floating.

Assembly

Changing "modes"

These modules can be used in SPI or 8-Bit mode. Somewhat annoyingly, the only way

to switch modes is to desolder/solder jumpers on the back of the modules.

•

•

•

•

•

•

•

•

•

•

©Adafruit Industries Page 9 of 41

SPI Mode

This is the mode you likely want to be in. Your module probably came with this setting

by default.

Make sure the R5 and R3 resistors are soldered in and the R2 and R4 spots are blank

8-Bit "6800" mode

Make sure the R3 and R4 resistors are in place and the R2 and R5 are missing. You'll

need to remove the R5 resistor to move it, by heating up the resistor with a soldering

iron and maybe even melting a little solder on.

I2C mode

Make sure the R2 and R5 resistors are in place and the R3 and R4 are missing. You'll

need to remove the R3 resistor to move it, by heating up the resistor with a soldering

iron and maybe even melting a little solder on.

©Adafruit Industries Page 10 of 41

(If you solder and re-solder the resistors 10 times like I did while figuring out all the

setting and wiring, you'll get a kinda messy/fluxy look like the above! In that case you

can clean up with some IPA wipes. Or just revel in your punk soldering job)

Arduino Wiring & Test

We will demonstrate using this display with an Arduino UNO compatible. If you are

using a 3V logic device you can skip the level shifter and connect direct from the

microcontroller to display. You can also use another kind of level shifter if you like.

Any microcontroller with I2C + 1 pin or 4 or 5 pins can be used, but we recommend

testing it out with an UNO before you try a different processor.

SPI Wiring

NOTE: This example shows usage with a 5V board which requires level shifting.

©Adafruit Industries Page 11 of 41

Since this is a SPI-capable display, we can use hardware or 'software' SPI. To make

wiring identical on all Arduinos, we'll begin with 'software' SPI. The following pins

should be used:

Connect Pin #1 to common power/data ground line (black wires)

Connect Pin #2 to the 3V power supply on your Arduino. (red wires)

Skip pin #3

Connect Pin #4 (DC) to digital #8 via the level shifter (white wires) any pin can

be used later

Connect Pin #7 (SCLK) to digital #13 via the level shifter (blue wires) any pin can

be used later

Connect Pin #8 (DIN) to digital #11 via the level shifter (green wires) any pin can

be used later

Skip pins #9-14

Connect Pin #15 (CS) to digital #10 via the level shifter (yellow wires) any pin can

be used later

Don't forget you have to set the display to SPI mode, see the Assembly step on

how to do that!

•

•

•

•

•

•

•

•

©Adafruit Industries Page 12 of 41

Connect Pin #16 (RST) to digital #9 via the level shifter (orange wires) any pin

can be used later

Later on, once we get it working, we can adjust the library to use hardware SPI if you

desire, or change the pins to any others.

Level Shifter Wiring

You will also want to power the HC4050 level shifter by connecting pin #1 to 3V (the

red wire) and pin #8 to ground (the black wire)

3.3V Capacitor

We also include a 220uF capacitor with your order because we noticed that the 3V

line can fluctuate a lot when powered via an Arduino's 3.3V regulator. We really

recommend installing it. Clip the leads on this capacitor and connect the negatve pin

to GND and the positive pin to 3V

Download Libraries

To begin reading sensor data, you will need to download Adafruit_SSD1305 () and Ad

afruit_GFX (). You can install these libraries via the Arduino library manager.

Open up the Arduino library manager:

Search for the Adafruit GFX library and install it:

•

©Adafruit Industries Page 13 of 41

https://github.com/adafruit/Adafruit_SSD1305_Library
https://github.com/adafruit/Adafruit-GFX-Library
https://github.com/adafruit/Adafruit-GFX-Library

If using an older (pre-1.8.10) Arduino IDE, locate and install Adafruit_BusIO (newer

versions do this one automatically).

Then, search for the Adafruit SSD1305 library and install it

We also have a great tutorial on Arduino library installation at: http://

learn.adafruit.com/adafruit-all-about-arduino-libraries-install-use ()

Running the Demo

After restarting the Arduino software, you should see a new example folder called Ad

afruit_SSD1305 and inside, an example called ssd1305test

Now upload the sketch to your Arduino. That's pretty much it! You should see

immediate update of the display.

If nothing shows up at all, make sure you have your wiring correct, we have a diagram

above you can use. Also, check that you converted the module to "SPI" mode (see the

Assembly) step on how to do that

©Adafruit Industries Page 14 of 41

http://learn.adafruit.com/adafruit-all-about-arduino-libraries-install-use
http://learn.adafruit.com/adafruit-all-about-arduino-libraries-install-use

Adjust display size

The display size, in terms of width and height, is specified as the first two parameters

passed in when creating the display instance. For example, for a display with width=12

8 and height=64:

Adafruit_SSD1305 display(128, 64, ...

Change these as needed for the display size being used.

Changing Pins

Now that you have it working, there's a few things you can do to change around the

pins.

If you're using Hardware SPI, the CLOCK and MOSI pins are 'fixed' and cant be

changed. But you can change to software SPI, which is a bit slower, and that lets you

pick any pins you like. Find these lines:

 // If using software SPI, define CLK and MOSI

#define OLED_CLK 13

#define OLED_MOSI 11

// These are neede for both hardware & softare SPI

#define OLED_CS 10

#define OLED_RESET 9

#define OLED_DC 8

Change those to whatever you like!

Using Hardware SPI

If you want a little more speed, you can 'upgrade' to Hardware SPI. Its a bit faster,

maybe 2x faster to draw but requires you to use the hardware SPI pins.

SPI CLK connects to SPI clock. On Arduino Uno/Duemilanove/328-based, thats

Digital 13. On Mega's, its Digital 52 and on Leonardo/Due its ICSP-3 (See SPI

Connections for more details ())

•

©Adafruit Industries Page 15 of 41

http://arduino.cc/en/Reference/SPI
http://arduino.cc/en/Reference/SPI

SPI DATA IN connects to SPI MOSI. On Arduino Uno/Duemilanove/328-based,

thats Digital 11. On Mega's, its Digital 51 and on Leonardo/Due its ICSP-4 (See SPI

Connections for more details ())

To enable hardware SPI, look for these lines:

// software SPI

//Adafruit_SSD1305 display(128, 64, OLED_MOSI, OLED_CLK, OLED_DC, OLED_RESET,

OLED_CS);

// hardware SPI - use 7Mhz (7000000UL) or lower because the screen is rated for

4MHz, or it will remain blank!

Adafruit_SSD1305 display(128, 64, &SPI, OLED_DC, OLED_RESET, OLED_CS,

7000000UL);

Make sure the software SPI line is commented out and the hardware SPI line is

uncommented.

I2C Wiring

It is also possible to use the display in I2C mode. Its a little slower but uses way fewer

pins.

•

Don't forget you have to set the display to I2C mode, see the Assembly step on

how to do that!

©Adafruit Industries Page 16 of 41

http://arduino.cc/en/Reference/SPI
http://arduino.cc/en/Reference/SPI

For I2C you will need to use the hardware I2C pins on your Arduino or

microcontroller. The following pins should be used:

Connect Pin #1 to common power/data ground line (black wires)

Connect Pin #2 to the 3V power supply on your Arduino. (red wires)

Skip pin #3

Connect Pin #4 (DC & I2C Addr0) to ground (black wire) to set the I2C address

to 0x3C. If this is tied to 3.3V, it will set the I2C address to 0x3D

Connect Pin #7 (SCL) to Arduino SCL (green wire)

Connect 10K resistor from SCL to 3.3V

Connect Pin #8 (SDA) to Arduino SDA (blue wire)

Connect 10K resistor from SDA to 3.3V

Connect Pin #9 (SDA2) to Pin #8 (small blue wire)

Skip pins #9-15

Connect Pin #16 (RST) to digital #9 by using a resistive divider as shown, two

resistors from 1K to 10K both the same value can be used. Any pin can be used

later

While its ideal to use level shifters on the I2C pins, you can sorta get away with this

on an arduino, because the I2C pins are open collector and there are very weak

pullups on those two lines. If using with other I2C devices, we suggest using a 3V-

logic arduino or an I2C-safe shifter. (http://adafru.it/757)

Later on, once we get it working, we can adjust the library to use hardware SPI if you

desire, or change the pins to any others.

3.3V Capacitor

We also include a 220uF capacitor with your order because we noticed that the 3V

line can fluctuate a lot when powered via an Arduino's 3.3V regulator. We really

recommend installing it. Clip the leads on this capacitor and connect the negatve pin

to GND and the positive pin to 3V

Unless you are using a Metro 328 you will need to add I2C pullups on SDA and

SCL! Use two 10K (or so) resistors, each one connected from SDA & SCL to 3.3V

•

•

•

•

•

•

•

•

•

•

•

©Adafruit Industries Page 17 of 41

https://www.adafruit.com/products/757
https://www.adafruit.com/products/757

I2C code changes

In the test code, change the top area where you define the protocol used by

commenting out the software and hardware SPI and uncommenting the I2C version

// software SPI

//Adafruit_SSD1305 display(128, 64, OLED_MOSI, OLED_CLK, OLED_DC, OLED_RESET,

OLED_CS);

// hardware SPI - use 7Mhz (7000000UL) or lower because the screen is rated for

4MHz, or it will remain blank!

//Adafruit_SSD1305 display(128, 64, &SPI, OLED_DC, OLED_RESET, OLED_CS, 7000000UL);

// I2C

Adafruit_SSD1305 display(128, 64, &Wire, OLED_RESET);

Everything else about the display is identical to SPI mode.

By default we use I2C address 0x3C which is what we get by connecting DC/A0 to

ground. If you tie that pin to 3.3V instead, the address will be 0x3D and all you have

to do is call display.begin(0x3D) to initialize with that address.

Using Adafruit GFX

The Adafruit_GFX library for Arduino provides a common syntax and set of graphics

functions for all of our TFT, LCD and OLED displays. This allows Arduino sketches to

easily be adapted between display types with minimal fuss…and any new features,

performance improvements and bug fixes will immediately apply across our complete

©Adafruit Industries Page 18 of 41

offering of displays.

The GFX library is what lets you draw points, lines, rectangles, round-rects, triangles,

text, etc.

Check out our detailed tutorial here http://learn.adafruit.com/adafruit-gfx-graphics-

library () It covers the latest and greatest of the GFX library!

CircuitPython Wiring

You can use this sensor with any CircuitPython microcontroller board or with a

computer that has GPIO and Python thanks to Adafruit_Blinka, our CircuitPython-for-

Python compatibility library ().

We'll cover how to wire the OLED to your CircuitPython microcontroller board. First

assemble your OLED.

Connect the OLED to your microcontroller board as shown below.

Since this is a 'buffered' display, dont forget to call the "display()" object function

whenever you want to update the OLED. The entire display is drawn in one data

burst, so this way you can put down a bunch of graphics and display it all at once.

There's no SSD1305 or SSD1325 Large OLED Fritzing objects, so we sub'd a

Graphic LCD in

©Adafruit Industries Page 19 of 41

http://learn.adafruit.com/adafruit-gfx-graphics-library
http://learn.adafruit.com/adafruit-gfx-graphics-library
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux

Adafruit OLED Display I2C Wiring

OLED Pin #1 to Microcontroller GND

OLED Pin #2 to Microcontroller 3.3V

OLED Pin #4 to Microcontroller GND

OLED Pin #7 to Microcontroller SCL

10K resistor from SCL to 3.3V

OLED Pin #8 to Microcontroller SDA

OLED Pin #9 to Microcontroller SDA

10K resistor from SDA to 3.3V

OLED Pin #16 to Microcontroller D9

Adafruit OLED Display SPI Wiring

OLED Pin #1 to Microcontroller GND

OLED Pin #2 to Microcontroller 3.3V

OLED Pin #4 to Microcontroller D6

OLED Pin #7 to Microcontroller SCK

OLED Pin #8 to Microcontroller MOSI

OLED Pin #15 to Microcontroller D5

OLED Pin #16 to Microcontroller D9

Download the Fritzing Object

CircuitPython Setup

CircuitPython Installation of DisplayIO

SSD1305 Library

To use the SSD1305 OLED with your Adafruit CircuitPython board you'll need to install

the Adafruit CircuitPython DisplayIO SSD1305 () module on your board.

©Adafruit Industries Page 20 of 41

https://learn.adafruit.com//assets/84642
https://learn.adafruit.com//assets/84642
https://learn.adafruit.com//assets/83826
https://learn.adafruit.com//assets/83826
https://cdn-learn.adafruit.com/assets/assets/000/083/878/original/circuitpython_spi_wiring.fzz?1573231575
https://github.com/adafruit/Adafruit_CircuitPython_DisplayIO_SSD1305

First make sure you are running the latest version 5.0 or later of Adafruit

CircuitPython () for your board.

Next you'll need to install the necessary libraries to use the hardware--carefully follow

the steps to find and install these libraries from Adafruit's CircuitPython library bundle

(). Our CircuitPython starter guide has a great page on how to install the library

bundle ().

If you choose, you can manually install the libraries individually on your board:

adafruit_displayio_ssd1305

Before continuing make sure your board's lib folder or root filesystem has the

adafruit_displayio_ssd1305.mpy file copied over.

Next connect to the board's serial REPL () so you are at the CircuitPython >>> prompt.

Code Example Additional Libraries

For the Code Example, you will need an additional library. We decided to make use of

a library so the code didn't get overly complicated.

Adafruit_CircuitPython_Display_Text

Go ahead and install this in the same manner as the driver library by copying the adaf

ruit_display_text folder over to the lib folder on your CircuitPython device.

CircuitPython Usage

It's easy to use OLEDs with Python and the Adafruit CircuitPython DisplayIO SSD1305

() module. This module allows you to easily write Python code to control the display.

To demonstrate the usage, we'll initialize the library and use Python code to control

the OLED from the board's Python REPL.

•

Displayio is only available on express board due to the smaller memory size on

non-express boards.

©Adafruit Industries Page 21 of 41

https://learn.adafruit.com/welcome-to-circuitpython/installing-circuitpython
https://learn.adafruit.com/welcome-to-circuitpython/installing-circuitpython
https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases
https://learn.adafruit.com/welcome-to-circuitpython/circuitpython-libraries
https://learn.adafruit.com/welcome-to-circuitpython/circuitpython-libraries
https://learn.adafruit.com/welcome-to-circuitpython/the-repl
https://github.com/adafruit/Adafruit_CircuitPython_Display_Text/releases
https://github.com/adafruit/Adafruit_CircuitPython_DisplayIO_SSD1305

I2C Initialization

If your display is connected to the board using I2C you'll first need to initialize the I2C

bus. First import the necessary modules:

import board

Now for run this command to create the I2C instance using the default SCL and SDA

pins (which will be marked on the board's pins if using a Feather or similar Adafruit

board):

i2c = board.I2C()

After initializing the I2C interface for your firmware as described above, you can

create an instance of the I2CDisplay bus:

import displayio

import adafruit_displayio_ssd1305

display_bus = displayio.I2CDisplay(i2c, device_address=0x3c, reset=board.D9)

Finally, you can pass the display_bus in and create an instance of the SSD1305 I2C

driver by running:

display = adafruit_displayio_ssd1305.SSD1305(display_bus, width=128, height=64)

Now you should be seeing an image of the REPL. Note that the last two parameters to

the SSD1305 class initializer are the width and height of the display in pixels. Be sure

to use the right values for the display you're using!

Changing the I2C address

If you connect Pin #4 of the OLED to +3V instead of Ground the I2C address will be

different different (0x3d):

display_bus = displayio.I2CDisplay(i2c, device_address=0x3d, reset=board.D9)

display = adafruit_displayio_ssd1305.SSD1305(display_bus, width=128, height=64)

At this point the I2C bus and display are initialized. Skip down to the example code

section.

©Adafruit Industries Page 22 of 41

SPI Initialization

If your display is connected to the board using SPI you'll first need to initialize the SPI

bus.

If you're using a microcontroller board, run the following commands:

import board

import displayio

import adafruit_displayio_ssd1305

displayio.release_displays()

spi = board.SPI()

tft_cs = board.D5

tft_dc = board.D6

tft_reset = board.D9

display_bus = displayio.FourWire(spi, command=tft_dc, chip_select=tft_cs,

 reset=tft_reset, baudrate=1000000)

display = adafruit_displayio_ssd1305.SSD1305(display_bus, width=128, height=64)

The parameters to the FourWire initializer are the pins connected to the

display's DC, CS, and reset. Because we are using keyword arguments, they can be in

any position. Again make sure to use the right pin names as you have wired up to

your board!

Note that the last two parameters to the SSD1305 class initializer are the width and h

eight of the display in pixels. Be sure to use the right values for the display you're

using!

Example Code

SPDX-FileCopyrightText: 2021 ladyada for Adafruit Industries

SPDX-License-Identifier: MIT

"""

This test will initialize the display using displayio and draw a solid white

background, a smaller black rectangle, and some white text.

"""

import board

import displayio

import terminalio

from adafruit_display_text import label

import adafruit_displayio_ssd1305

displayio.release_displays()

Reset is usedfor both SPI and I2C

oled_reset = board.D9

©Adafruit Industries Page 23 of 41

Use for SPI

spi = board.SPI()

oled_cs = board.D5

oled_dc = board.D6

display_bus = displayio.FourWire(

 spi, command=oled_dc, chip_select=oled_cs, baudrate=1000000, reset=oled_reset

)

Use for I2C

i2c = board.I2C() # uses board.SCL and board.SDA

i2c = board.STEMMA_I2C() # For using the built-in STEMMA QT connector on a

microcontroller

display_bus = displayio.I2CDisplay(i2c, device_address=0x3c, reset=oled_reset)

WIDTH = 128

HEIGHT = 64 # Change to 32 if needed

BORDER = 8

FONTSCALE = 1

display = adafruit_displayio_ssd1305.SSD1305(display_bus, width=WIDTH,

height=HEIGHT)

Make the display context

splash = displayio.Group()

display.show(splash)

color_bitmap = displayio.Bitmap(display.width, display.height, 1)

color_palette = displayio.Palette(1)

color_palette[0] = 0xFFFFFF # White

bg_sprite = displayio.TileGrid(color_bitmap, pixel_shader=color_palette, x=0, y=0)

splash.append(bg_sprite)

Draw a smaller inner rectangle

inner_bitmap = displayio.Bitmap(

 display.width - BORDER * 2, display.height - BORDER * 2, 1

)

inner_palette = displayio.Palette(1)

inner_palette[0] = 0x000000 # Black

inner_sprite = displayio.TileGrid(

 inner_bitmap, pixel_shader=inner_palette, x=BORDER, y=BORDER

)

splash.append(inner_sprite)

Draw a label

text = "Hello World!"

text_area = label.Label(terminalio.FONT, text=text, color=0xFFFFFF)

text_width = text_area.bounding_box[2] * FONTSCALE

text_group = displayio.Group(

 scale=FONTSCALE,

 x=display.width // 2 - text_width // 2,

 y=display.height // 2,

)

text_group.append(text_area) # Subgroup for text scaling

splash.append(text_group)

while True:

 pass

Let's take a look at the sections of code one by one. We start by importing the board

so that we can initialize SPI, displayio , terminalio for the font, a label , and

the adafruit_displayio_ssd1305 driver.

import board

import displayio

©Adafruit Industries Page 24 of 41

import terminalio

from adafruit_display_text import label

import adafruit_displayio_ssd1305

Next we release any previously used displays. This is important because if the

microprocessor is reset, the display pins are not automatically released and this

makes them available for use again.

displayio.release_displays()

Here we set oled_reset to board.D9 which will be used with either SPI or I2C. If

your board is wired differently, be sure to change it to match your wiring.

oled_reset = board.D9

If you're using SPI, you would use this section of code. We set the SPI object to the

board's SPI with the easy shortcut function board.SPI() . By using this function, it

finds the SPI module and initializes using the default SPI parameters. We set the

OLED's CS (Chip Select), and DC (Data/Command) pins. We also set the display bus to

FourWire which makes use of the SPI bus. The SSD1305 needs to be slowed down to

1MHz, so we pass in the additional baudrate parameter. We also pass oled_reset

as the reset pin. If this differs for you, you could change it here.

spi = board.SPI()

oled_cs = board.D5

oled_dc = board.D6

display_bus = displayio.FourWire(spi, command=oled_dc, chip_select=oled_cs,

 baudrate=1000000, reset=oled_reset)

If you're using I2C, you would use this section of code. We set the I2C object to the

board's I2C with the easy shortcut function board.I2C() . By using this function, it

finds the SPI module and initializes using the default SPI parameters. We also set the

display bus to I2CDisplay which makes use of the I2C bus.

Use for I2C

i2c = board.I2C()

display_bus = displayio.I2CDisplay(i2c, device_address=0x3c, reset=oled_reset)

In order to make it easy to change display sizes, we'll define a few variables in one

spot here. We have WIDTH , which is the display width, HEIGHT , which is the display

height and BORDER , which we will explain a little further below. FONTSCALE will be

the multiplier for the font size. If your display is something different than these

numbers, change them to the correct setting. For instance, you may want try changing

the border size to 5 if you have a 128x32 display.

©Adafruit Industries Page 25 of 41

WIDTH = 128

HEIGHT = 64 # Change to 32 if needed

BORDER = 8

FONTSCALE = 1

Finally, we initialize the driver with a width of the WIDTH variable and a height of the

HEIGHT variable. If we stopped at this point and ran the code, we would have a

terminal that we could type at and have the screen update.

display = adafruit_displayio_ssd1305.SSD1305(display_bus, width=WIDTH,

height=HEIGHT)

Next we create a background splash image. We do this by creating a group that we

can add elements to and adding that group to the display. In this example, we are

limiting the maximum number of elements to 10, but this can be increased if you

would like. The display will automatically handle updating the group.

splash = displayio.Group(max_size=10)

display.show(splash)

Next we create a Bitmap that is the full width and height of the display. The Bitmap is

like a canvas that we can draw on. In this case we are creating the Bitmap to be the

same size as the screen, but only have one color. Although the Bitmaps can handle

up to 256 different colors, the display is monochrome so we only need one. We

create a Palette with one color and set that color to 0xFFFFFF which happens to be

white. If were to place a different color here, displayio handles color conversion

automatically, so it may end up black or white depending on the calculation.

©Adafruit Industries Page 26 of 41

color_bitmap = displayio.Bitmap(WIDTH, HEIGHT, 1)

color_palette = displayio.Palette(1)

color_palette[0] = 0xFFFFFF # White

With all those pieces in place, we create a TileGrid by passing the bitmap and palette

and draw it at (0, 0) which represents the display's upper left.

bg_sprite = displayio.TileGrid(color_bitmap,

 pixel_shader=color_palette,

 x=0, y=0)

splash.append(bg_sprite)

Next we will create a smaller black rectangle. The easiest way to do this is to create a

new bitmap that is a little smaller than the full screen with a single color of 0x000000 ,

which is black, and place it in a specific location. In this case, we will create a bitmap

that is 5 pixels smaller on each side. This is where the BORDER variable comes into

use. It makes calculating the size of the second rectangle much easier. The screen

we're using here is 128x64 and we have the BORDER set to 8 , so we'll want to

subtract 16 from each of those numbers.

We'll also want to place it at the position (8, 8) so that it ends up centered.

Draw a smaller inner rectangle

inner_bitmap = displayio.Bitmap(display.width - BORDER * 2, display.height - BORDER

* 2, 1)

inner_palette = displayio.Palette(1)

inner_palette[0] = 0x000000 # Black

inner_sprite = displayio.TileGrid(inner_bitmap,

 pixel_shader=inner_palette,

 x=BORDER, y=BORDER)

splash.append(inner_sprite)

©Adafruit Industries Page 27 of 41

Since we are adding this after the first square, it's automatically drawn on top. Here's

what it looks like now.

Next let's add a label that says "Hello World!" on top of that. We're going to use the

built-in Terminal Font and scale it up by a factor of two, which is what we

have FONTSCALE set to. To scale the label only, we will make use of a subgroup,

which we will then add to the main group.

We create the label first so that we can get the width of the bounding box and

multiply it by the FONTSCALE . This gives us the actual with of the text.

Labels are automatically centered vertically, so we'll place it at half the display height

for the Y coordinate, and we calculate the X coordinate to horizontally center the

label. We use the // operator to divide because we want a whole number returned

and it's an easy way to round it. Let's go with some white text, so we'll pass it a value

of 0xFFFFFF .

Draw a label

text = "Hello World!"

text_area = label.Label(terminalio.FONT, text=text, color=0xFFFFFF)

text_width = text_area.bounding_box[2] * FONTSCALE

text_group = displayio.Group(max_size=10, scale=FONTSCALE, x=display.width // 2 -

text_width // 2,

 y=display.height // 2)

text_group.append(text_area) # Subgroup for text scaling

splash.append(text_group)

Finally, we place an infinite loop at the end so that the graphics screen remains in

place and isn't replaced by a terminal.

©Adafruit Industries Page 28 of 41

while True:

 pass

If you have the 2.3" 128x32 OLED Display, here's what the final output looks like with

the height set to 32 and the border size set to 5:

Where to go from here

Be sure to check out this excellent guide to CircuitPython Display Support Using

displayio ()

©Adafruit Industries Page 29 of 41

https://learn.adafruit.com/circuitpython-display-support-using-displayio
https://learn.adafruit.com/circuitpython-display-support-using-displayio

Python Wiring

It's easy to use OLEDs with Python and the Adafruit CircuitPython SSD1305 () module.

This module allows you to easily write Python code to control the display.

We'll cover how to wire the OLED to your Raspberry Pi. First assemble your OLED.

Since there's dozens of Linux computers/boards you can use we will show wiring for

Raspberry Pi. For other platforms, please visit the guide for CircuitPython on Linux to

see whether your platform is supported ().

Connect the OLED as shown below to your Raspberry Pi.

Adafruit OLED Display I2C Wiring

OLED Pin #1 to Raspberry Pi GND

OLED Pin #2 to Raspberry Pi 3.3V

OLED Pin #4 to Raspberry Pi GND

OLED Pin #7 to Raspberry Pi SCL

10K resistor from SCL to 3.3V

OLED Pin #8 to Raspberry Pi SDA

OLED Pin #9 to Raspberry Pi SDA

10K resistor from SDA to 3.3V

OLED Pin #16 to Raspberry Pi GPIO 4

Download the Fritzing Object

There's no SSD1305 Large OLED Fritzing object, so we sub'd a Graphic LCD in

©Adafruit Industries Page 30 of 41

https://github.com/adafruit/Adafruit_CircuitPython_SSD1305
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux
https://learn.adafruit.com//assets/83889
https://learn.adafruit.com//assets/83889
https://cdn-learn.adafruit.com/assets/assets/000/083/891/original/python_i2c_wiring.fzz?1573241031

Adafruit OLED Display SPI Wiring

OLED Pin #1 to Raspberry Pi GND

OLED Pin #2 to Raspberry Pi 3.3V

OLED Pin #4 to Raspberry Pi GPIO 6

OLED Pin #7 to Raspberry Pi SCK

OLED Pin #8 to Raspberry Pi MOSI

OLED Pin #15 to Raspberry Pi GPIO 5

OLED Pin #16 to Raspberry Pi GPIO 4

Download the Fritzing Object

Python Setup

You'll need to install the Adafruit_Blinka library that provides the CircuitPython

support in Python. This may also require enabling I2C on your platform and verifying

you are running Python 3. Since each platform is a little different, and Linux changes

often, please visit the CircuitPython on Linux guide to get your computer ready ()!

Python Installation of SSD1305 Library

Once that's done, from your command line run the following command:

pip3 install adafruit-circuitpython-ssd1305

If your default Python is version 3 you may need to run 'pip' instead. Just make sure

you aren't trying to use CircuitPython on Python 2.x, it isn't supported!

If that complains about pip3 not being installed, then run this first to install it:

sudo apt-get install python3-pip

•

•

©Adafruit Industries Page 31 of 41

https://learn.adafruit.com//assets/83880
https://learn.adafruit.com//assets/83880
https://cdn-learn.adafruit.com/assets/assets/000/083/882/original/python_spi_wiring.fzz?1573232893
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux

Pillow Library

We also need PIL, the Python Imaging Library, to allow using text with custom fonts.

There are several system libraries that PIL relies on, so installing via a package

manager is the easiest way to bring in everything:

sudo apt-get install python3-pil

That's it. You should be ready to go.

Speeding up an I2C Display on Raspberry Pi

For the best performance, especially if you are doing fast animations, you'll want to

tweak the I2C core to run at 1MHz. By default it may be 100KHz or 400KHz

To do this edit the config with sudo nano /boot/config.txt

and add to the end of the file

dtparam=i2c_baudrate=1000000

reboot to 'set' the change.

•

©Adafruit Industries Page 32 of 41

Python Usage

It's easy to use OLEDs with Python and the Adafruit CircuitPython SSD1305 () module.

This module allows you to easily write Python code to control the display.

You can use this sensor with any computer that has GPIO and Python thanks to

Adafruit_Blinka, our CircuitPython-for-Python compatibility library ().

To demonstrate the usage, we'll initialize the library and use Python code to control

the OLED from the board's Python REPL.

Since we are running full CPython on our Linux/computer, we can take advantage of

the powerful Pillow image drawing library to handle text, shapes, graphics, etc. Pillow

is a gold standard in image and graphics handling, you can read about all it can do

here ().

I2C Initialization

If your display is connected to the board using I2C you'll first need to initialize the I2C

bus. First import the necessary modules:

import board

import busio

Now for either board run this command to create the I2C instance using the default

SCL and SDA pins of your I2C host:

i2c = busio.I2C(board.SCL, board.SDA)

After initializing the I2C interface for your firmware as described above you can

create an instance of the SSD1305 I2C driver by running:

import adafruit_ssd1305

oled = adafruit_ssd1305.SSD1305_I2C(128, 64, i2c)

Note that the first two parameters to the SSD1305_I2C class initializer are the width

and height of the display in pixels. Be sure to use the right values for the display

you're using!

©Adafruit Industries Page 33 of 41

https://github.com/adafruit/Adafruit_CircuitPython_SSD1305
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux
https://pillow.readthedocs.io/en/stable/
https://pillow.readthedocs.io/en/stable/
https://pillow.readthedocs.io/en/stable/

Changing the I2C address

If you connect Pin #4 of the OLED to +3V instead of Ground the I2C address will be

different different (0x3d):

oled = adafruit_ssd1305.SSD1305_I2C(128, 64, i2c, addr=0x3d)

Adding hardware reset pin

If you have a reset pin, which may be required if your OLED does not have an auto-

reset chip, also pass in a reset pin like so:

import digitalio

reset_pin = digitalio.DigitalInOut(board.D4) # any pin!

oled = adafruit_ssd1305.SSD1305_I2C(128, 32, i2c, reset=reset_pin)

At this point the I2C bus and display are initialized. Skip down to the example code

section.

SPI Initialization

If your display is connected to the board using SPI you'll first need to initialize the SPI

bus:

import adafruit_ssd1305

import board

import busio

import digitalio

spi = busio.SPI(board.SCK, MOSI=board.MOSI)

reset_pin = digitalio.DigitalInOut(board.D4) # any pin!

cs_pin = digitalio.DigitalInOut(board.D5) # any pin!

dc_pin = digitalio.DigitalInOut(board.D6) # any pin!

oled = adafruit_ssd1305.SSD1305_SPI(128, 32, spi, dc_pin, reset_pin, cs_pin)

Note the first two parameters to the SSD1305_SPI class initializer are the width and h

eight of the display in pixels. Be sure to use the right values for the display you're

using!

The next parameters to the initializer are the pins connected to the

display's DC, reset, and CS lines in that order. Again make sure to use the right pin

names as you have wired up to your board!

©Adafruit Industries Page 34 of 41

Example Code

SPDX-FileCopyrightText: 2021 ladyada for Adafruit Industries

SPDX-License-Identifier: MIT

"""

This demo will fill the screen with white, draw a black box on top

and then print Hello World! in the center of the display

This example is for use on (Linux) computers that are using CPython with

Adafruit Blinka to support CircuitPython libraries. CircuitPython does

not support PIL/pillow (python imaging library)!

"""

import board

import digitalio

from PIL import Image, ImageDraw, ImageFont

import adafruit_ssd1305

Define the Reset Pin

oled_reset = digitalio.DigitalInOut(board.D4)

Change these

to the right size for your display!

WIDTH = 128

HEIGHT = 64 # Change to 32 if needed

BORDER = 8

Use for SPI

spi = board.SPI()

oled_cs = digitalio.DigitalInOut(board.D5)

oled_dc = digitalio.DigitalInOut(board.D6)

oled = adafruit_ssd1305.SSD1305_SPI(WIDTH, HEIGHT, spi, oled_dc, oled_reset,

oled_cs)

Use for I2C.

i2c = board.I2C() # uses board.SCL and board.SDA

i2c = board.STEMMA_I2C() # For using the built-in STEMMA QT connector on a

microcontroller

oled = adafruit_ssd1305.SSD1305_I2C(WIDTH, HEIGHT, i2c, addr=0x3c,

reset=oled_reset)

Clear display.

oled.fill(0)

oled.show()

Create blank image for drawing.

Make sure to create image with mode '1' for 1-bit color.

image = Image.new("1", (oled.width, oled.height))

Get drawing object to draw on image.

draw = ImageDraw.Draw(image)

Draw a white background

draw.rectangle((0, 0, oled.width, oled.height), outline=255, fill=255)

Draw a smaller inner rectangle

draw.rectangle(

 (BORDER, BORDER, oled.width - BORDER - 1, oled.height - BORDER - 1),

 outline=0,

 fill=0,

)

Load default font.

font = ImageFont.load_default()

©Adafruit Industries Page 35 of 41

Draw Some Text

text = "Hello World!"

(font_width, font_height) = font.getsize(text)

draw.text(

 (oled.width // 2 - font_width // 2, oled.height // 2 - font_height // 2),

 text,

 font=font,

 fill=255,

)

Display image

oled.image(image)

oled.show()

Let's take a look at the sections of code one by one. We start by importing the board

so that we can initialize SPI, digitalio , several PIL modules for Image Drawing,

and the adafruit_ssd1305 driver.

import board

import digitalio

from PIL import Image, ImageDraw, ImageFont

import adafruit_ssd1305

Next we define the reset line, which will be used for either SPI or I2C. If your OLED

has auto-reset circuitry, you can set the oled_reset line to None

oled_reset = digitalio.DigitalInOut(board.D4)

In order to make it easy to change display sizes, we'll define a few variables in one

spot here. We have the display width, the display height and the border size, which

we will explain a little further below. If your display is something different than these

numbers, change them to the correct setting. For instance, you may want try changing

the border size to 5 if you have a 128x32 display.

WIDTH = 128

HEIGHT = 64 # Change to 32 if needed

BORDER = 8

If you're using I2C, you would use this section of code. We set the I2C object to the

board's I2C with the easy shortcut function board.I2C() . By using this function, it

finds the SPI module and initializes using the default SPI parameters. We also set up

the oled with SSD1305_I2C which makes use of the I2C bus.

Use for I2C.

i2c = board.I2C()

oled = adafruit_ssd1305.SSD1305_I2C(WIDTH, HEIGHT, i2c, addr=0x3c, reset=oled_reset)

©Adafruit Industries Page 36 of 41

If you're using SPI, you would use this section of code. We set the SPI object to the

board's SPI with the easy shortcut function board.SPI() . By using this function, it

finds the SPI module and initializes using the default SPI parameters. We set the

OLED's CS (Chip Select), and DC (Data/Command) pins. We also set up the OLED with

SSD1305_SPI which makes use of the SPI bus.

Use for SPI

spi = board.SPI()

oled_cs = digitalio.DigitalInOut(board.D5)

oled_dc = digitalio.DigitalInOut(board.D6)

oled = adafruit_ssd1305.SSD1305_SPI(WIDTH, HEIGHT, spi, oled_dc, oled_reset,

oled_cs)

Next we clear the display in case it was initialized with any random artifact data.

Clear display.

oled.fill(0)

oled.show()

Next, we need to initialize PIL to create a blank image to draw on. Think of it as a

virtual canvas. Since this is a monochrome display, we set it up for 1-bit color, meaning

a pixel is either white or black. We can make use of the OLED's width and height

properties as well. Optionally, we could have used our WIDTH and HEIGHT variables.

Create blank image for drawing.

Make sure to create image with mode '1' for 1-bit color.

image = Image.new('1', (oled.width, oled.height))

Get drawing object to draw on image.

draw = ImageDraw.Draw(image)

Now we start the actual drawing. Here we are telling it we want to draw a rectangle

from (0,0) , which is the upper left, to the full width and height of the display. We

want it both filled in and having an outline of white, so we pass 255 for both numbers.

Draw a white background

draw.rectangle((0, 0, oled.width, oled.height), outline=255, fill=255)

If we ran the code now, it would still show a blank display because we haven't told

python to use our virtual canvas yet. You can skip to the end if you would like to see

how to do that. This is what our canvas currently looks like in memory.

©Adafruit Industries Page 37 of 41

Next we will create a smaller black rectangle. The easiest way to do this is to draw

another rectangle a little smaller than the full screen with no fill or outline and place it

in a specific location. In this case, we will create a rectangle that is 5 pixels smaller on

each side. This is where the BORDER variable comes into use. It makes calculating

the size of the second rectangle much easier. We want the starting coordinate, which

consists of the first two parameters, to be our BORDER value. Then for the next two

parameters, which are our ending coordinates, we want to subtract our border value

from the width and height. Also, because this is a zero-based coordinate system, we

also need to subtract 1 from each number.

Draw a smaller inner rectangle

draw.rectangle((BORDER, BORDER, oled.width - BORDER - 1, oled.height - BORDER - 1),

 outline=0, fill=0)

Here's what our virtual canvas looks like in memory.

©Adafruit Industries Page 38 of 41

Now drawing text with PIL is pretty straightforward. First we start by setting the font to

the default system text. After that we define our text and get the size of the text.

We're grabbing the size that it would render at so that we can calculate the center

position. Finally, we take the font size and screen size to calculate the position we

want to draw the text at and it appears in the center of the screen.

Load default font.

font = ImageFont.load_default()

Draw Some Text

text = "Hello World!"

(font_width, font_height) = font.getsize(text)

draw.text((oled.width//2 - font_width//2, oled.height//2 - font_height//2),

 text, font=font, fill=255)

Finally, we need to display our virtual canvas to the OLED and we do that with 2

commands. First we set the image to the screen, then we tell it to show the image.

Display image

oled.image(image)

oled.show()

Here's what the final output should look like.

Don't forget you MUST call oled.image(image) and oled.show() to actually display

the graphics. The OLED takes a while to draw so cluster all your drawing

functions into the buffer (fast) and then display them once to the oled (slow)

©Adafruit Industries Page 39 of 41

If you have the 2.3" 128x32 OLED Display, here's what the final output looks like with

the height set to 32 and the border size set to 5:

F.A.Q.

How come sometimes I see banding or dim areas on the

OLED?

These OLEDs are passively drawn, which means that each line is lit at once. These

displays are fairly inexpensive and simple, but as a tradeoff the built in boost

©Adafruit Industries Page 40 of 41

converter has to drive all the OLED pixels at once. If you have a line with almost all

the pixels lit it wont be as bright as a line with only 50% or less lit up.

The display works, because I can see the splash screen,

but when I draw to the display nothing appears!

Don't forget you must call .display() to actually write the display data to the display.

Unlike many of our TFTs, the entire display must be written at once so you should

print all your text and draw all your squares, then call display()

How do I get rid of the splash screen?

Open up Adafruit_SSD1305.cpp in the libraries/Adafruit_SSD1305 folder and find

these lines

static uint8_t buffer[SSD1305_LCDHEIGHT * SSD1305_LCDWIDTH / 8] = {

0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

0x00, 0x00,

....

0x00, 0x01, 0x00, 0x01, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x01, 0x01, 0x01,

0x01, 0x01

};

and delete everything after static uint8_t buffer[SSD1305_LCDHEIGHT *

SSD1305_LCDWIDTH / 8] = {

and before };

Downloads

Datasheets

Datasheet for the SSD1305, the passive OLED driver chip in the module () this is

the chip in the module that converts SPI/8-bit commands to OLED control

signals

Mechanical specifications for the OLED display itself ()

•

•

©Adafruit Industries Page 41 of 41

http://www.adafruit.com/datasheets/SSD1305.pdf
http://www.adafruit.com/datasheets/UG-2832ALBCG01.pdf

	2.3" Monochrome 128x32 OLED Display Module
	Table of Contents
	Overview
	Pinouts
	Assembly
	Arduino Wiring & Test
	Using Adafruit GFX
	CircuitPython Wiring
	CircuitPython Setup
	CircuitPython Usage
	Python Wiring
	Python Setup
	Python Usage
	F.A.Q.
	Downloads

	Overview
	Pinouts
	Power Pins
	Signal Pins
	Remaining Pins
	Assembly
	Changing "modes"
	SPI Mode
	8-Bit "6800" mode
	I2C mode
	Arduino Wiring & Test
	SPI Wiring
	Level Shifter Wiring
	3.3V Capacitor

	Download Libraries
	Running the Demo
	Adjust display size
	Changing Pins
	Using Hardware SPI
	I2C Wiring
	3.3V Capacitor

	I2C code changes
	Using Adafruit GFX
	CircuitPython Wiring
	Adafruit OLED Display I2C Wiring
	Adafruit OLED Display SPI Wiring

	CircuitPython Setup
	CircuitPython Installation of DisplayIO SSD1305 Library
	Code Example Additional Libraries

	CircuitPython Usage
	I2C Initialization
	Changing the I2C address

	SPI Initialization
	Example Code
	Where to go from here

	Python Wiring
	Adafruit OLED Display I2C Wiring
	Adafruit OLED Display SPI Wiring

	Python Setup
	Python Installation of SSD1305 Library
	Pillow Library
	Speeding up an I2C Display on Raspberry Pi

	Python Usage
	I2C Initialization
	Changing the I2C address
	Adding hardware reset pin

	SPI Initialization
	Example Code
	F.A.Q.
	How come sometimes I see banding or dim areas on the OLED?
	The display works, because I can see the splash screen, but when I draw to the display nothing appears!
	How do I get rid of the splash screen?

	Downloads
	Datasheets

