

Web Site: www.parallax.com
Forums: forums.parallax.com
Sales: sales@parallax.com
Technical: support@parallax.com

Office: (916) 624-8333
Fax: (916) 624-8003
Sales: (888) 512-1024
Tech Support: (888) 997-8267

Copyright © Parallax Inc. Propeller Servo Controller USB (#28830) v1.1 11/30/2012 Page 1 of 12

Propeller Servo Controller USB (#28830)
The Propeller Servo Controller USB allows you to control up to 16 servos by sending serial commands
from a microcontroller or PC via serial or USB connection. 32 servos can be controlled when using two
Propeller Servo Controllers with a microcontroller. Since the Propeller Servo Controller USB is powered by
a Propeller chip and the firmware is open-source, the Propeller Servo Controller USB is also a
development platform which can be customized for specific applications. This could include systems that
require servos, DC motors, stepper motors and lighting control.

Features

 Propeller P8X32A based hardware
 Compatible with previous Parallax servo

controllers
 Separate screw-terminal power supply and

power switch for servos
 Open-source firmware
 Program via USB interface with PC or serial

interface to microcontroller
 Servo Ramping
 Network Ready – two units may be linked to

control 32 servos (via microcontroller only)

Application Ideas

 Fun-house prop control
 Animated art control
 Robotics

Key Specifications

 Power requirements: 5 VDC @ ~60 mA for logic, 4.8 – 7.5 VDC for servos (do not exceed your
servos’ input voltage rating)

 Communication: Asynchronous Serial @ 2400 bps or 38.4 kbps (TTL or USB)
 Operating temperature: 32 to 158 °F (0 to 70 °C)
 Dimensions: 2.26 x 1.80 x 0.65 in (57.3 x 45.7 x 16.5 mm)

Before Connecting Your Propeller Servo Controller USB

 Programming the Propeller Servo Controller USB (PSCU) requires regulated 5 VDC. This can
come from the USB port when used; (USB A to Mini B cable (#805-00006) required, sold
separately). Or, supply 5 VDC to the center terminal on the Serial In header.

 Servos require a separate power supply connected to the screw terminal. Typically this needs to
be from 4.8 – 7.5 VDC, and capable of supplying adequate current for the servos you are
connecting. Consult your servos’ documentation for voltage limits and current
requirements. Do not exceed 7.5 VDC input.

Copyright © Parallax Inc. Propeller Servo Controller USB (#28830) v1.1 11/30/2012 Page 2 of 12

Connecting and Testing
To get started using your new PSCU follow the directions on the following pages. Choose the type of
connection you will be using: USB or TTL Serial via the “Serial In” connection, and then refer to those
instructions below.

USB Connection
If you wish to control your PSCU from a PC using the USB port, then you will first need to install the FTDI
VCP drivers. You may obtain the latest drivers for Windows by pointing your web browser to
http://www.parallax.com/usbdrivers. You may also obtain drivers for Windows and other operating
systems from from the FTDI website at http://www.ftdichip.com/Drivers/VCP.htm. Note: you may
already have the USB Windows drivers installed if you have installed the BASIC Stamp Editor or Propeller
Tool software or use any Parallax USB development boards.

Once the USB driver has been installed, you may connect your USB cable between the PC and the PSCU.
You may also connect your servo power supply and servos as shown in the diagram below. The PSCU is
now ready to receive serial commands from the host PC. Moving the power switch to the ON position will
provide power to the servos. Note that it is not necessary to power on the servos for the PSCU to be
ready for serial communication. As long as the USB port is providing power, the PSCU is powered on.

You can test your PSCU using the beta PSCI software listed on the PSCU product page on our website.
This software will allow you to control servos by moving graphical sliders up and down, and serves as a
quick way to verify operation. This software can also store positions for all sixteen channels and play
back various position settings in real time as a sequence.

The PSCU is shown here
connected to a USB cable, two
servos, one connected to
channel 0 and the other
connected to channel 14 and a
7.2V R/C battery back.

The 7.2V R/C battery pack
provides power for the servos.

Copyright © Parallax Inc. Propeller Servo Controller USB (#28830) v1.1 11/30/2012 Page 3 of 12

TTL Serial Connection
If you wish to control your PSCU from a microcontroller then you will need to obtain a regulated 5 V from
the host microcontroller, development board, or you may use a separate regulated 5 V power supply with
a common ground. You also need to provide a TTL compatible serial signal to the PSCU. Ground, power
and serial signal connections are made to the “Serial In” header as shown below. This 6-pin (2 x 3)
header is actually two serial ports, one for incoming data and the other for outgoing data to another
PSCU for networking. Notice that the connected cable is attached to the upper three pins with the black
(ground) lead toward the outside. This upper port is the incoming serial connection. The lower three
pins are used to connect to an additional PSCU for more channels.

You can test your PSCU using a BASIC Stamp 2, Board of Education and the code examples provided in
the Command Set section of this documentation. Example programs for the BASIC Stamp demonstrate
the use of each the commands and display responses for those commands which generate a reply.

The PSCU is shown here connected to a Board of Education, two servos, one
connected to channel 0 and the other connected to channel 14 and a 7.2 V R/C
battery back. The 7.2 V R/C battery pack provides power for the servos.

Copyright © Parallax Inc. Propeller Servo Controller USB (#28830) v1.1 11/30/2012 Page 4 of 12

Communication Protocol
The PSCU supports several commands that are sent to it via serial protocol. These commands can come
from the TTL serial interface or the USB port. Both serial inputs run at 2400 bps by default at startup
and can be switched to 38.4 kbps by sending a command to the PSCU. The PSCU does not support auto-
baud with the default firmware installed. The data must be sent non-inverted (true) using 8 data bits, no
parity and 1 or 2 stop bits.

Command Set
Each command is preceded with an exclamation point (!) and the letters, “SC”, so every command will
appear as, “!SCxxxx” $0D, where, “!SC” is the preamble, “xxxx” are the command/parameter bytes and
$0D is a trailing carriage return. Every command message contains exactly eight (8) bytes including the
carriage return. All pulse width values are specified in 2 µs increments, so to send a 1 ms pulse to a
channel you would use a pulse width value of 500 (500 x 2 µs = 1000 µs = 1 ms).

Position Command – Set Position of a Servo Channel

Syntax: “!SC” <channel> <ramp speed> <lowbyte> <highbyte> <CR>
Reply: None

To move a servo to a location you must write a position command to the PSCU. Each position command
is comprised of the preamble, the channel, the ramp speed, lowbyte/highbyte of the pulse width in 2 µs
increments and a carriage return ($0D). The preamble is “!SC”. The channel is a byte value from 0 – 15
(16 – 31 if this is the second unit in a network). The ramp speed is a byte value from 0 – 63 that
controls the speed the servo moves to its new position.

' {$STAMP BS2}
' {$PBASIC 2.5}

ch VAR Byte
pw VAR Word
ra VAR Byte

Sdat CON 15
baud CON 396

ra = 7
ch = 11

DO
 pw = 1100
 SEROUT Sdat, Baud+$8000,["!SC", ch, ra, pw.LOWBYTE, pw.HIGHBYTE, CR]
 PAUSE 1000
 pw = 300
 SEROUT Sdat, Baud+$8000,["!SC", ch, ra, pw.LOWBYTE, pw.HIGHBYTE, CR]
 PAUSE 1000
LOOP

Note: Not all servos have the same range limits. If your servos appear to strain when the
pulse width is set to 250 you should increase this value up to 260 or higher as needed to
prevent the servo from straining. Similarly, if your servo strains when the pulse width is set
to 1250 you should reduce this value as needed to prevent the servo from straining.

Copyright © Parallax Inc. Propeller Servo Controller USB (#28830) v1.1 11/30/2012 Page 5 of 12

VER? – Identify Firmware Version Number

Syntax: “!SCVER?” <CR>
Reply: “x.x”

The VER? Command causes the PSC to reply with its firmware version number. A carriage return ($0D)
must follow the command. The version number returned is the version number of the firmware installed
on the PSCU. The following code can be used to find and identify your PSCU using a BASIC Stamp 2.

' {$STAMP BS2}
' {$PBASIC 2.5}

Sdat PIN 15 ' Serial Data I/O pin
Baud CON 396 ' Constant for 2400 baud
buff VAR Byte(3) ' temporary variable

FindPSC: ' Find and get the version
 DEBUG "Finding PSC", CR ' number of the PSC.
 SEROUT Sdat, Baud+$8000, ["!SCVER?",CR]
 SERIN Sdat, Baud, 500, FindPSC, [STR buff\3]
 DEBUG "PSC ver: ", buff(0), buff(1), buff(2), CR

Within the Debug Terminal you will see the message, “Finding PSC”, followed by, “PSC ver:” and the
firmware version (for example 1.0). If the message “Finding PSC” appears more than 3 or 4 times
without a reply you should check to make sure all connections are correct and verify your power source.
If the PSCU still fails to respond you may press the reset button momentarily. If the PSCU still fails to
respond you may contact our Technical Support Department. Contact information is listed toward the
end of this documentation.

SBR – Set the Baud Rate (to either 2400 or 38.4k Baud)

Syntax: “!SCSBR” <mode> <CR>
Reply: “BR” <mode>

After establishing communication with the PSCU you may wish to increase the baud rate to 38.4 kbps.
The command for achieving this is shown above. You must first send “!SCSBR” followed by a byte value
for the mode where 0 is for 2400 bps and 1 is for 38.4 kbps. Finally a carriage return ($0D) completes
the command. The following code can be used to set the baud rate to 38.4 kbps using a BASIC Stamp 2.

' {$STAMP BS2}
' {$PBASIC 2.5}

Sdat PIN 15 ' Serial Data I/O pin
Baud CON 396 ' Constant for 2400 baud
buff VAR Byte(3) ' temporary variable

SetBaud:
 DEBUG "Setting Baudrate", CR
 SEROUT Sdat, Baud+$8000, ["!SCSBR",1,CR]
 SERIN Sdat, 6,500, SetBaud, [STR buff\3]
 DEBUG "Baud reply: ", buff(0), buff(1), DEC1 buff(2), CR
 STOP

Note that the SERIN command has a value of 6 for 38.4 kbps on the BASIC Stamp 2. This is because the
PSCU will reply at the new baud rate to confirm that the command has been executed. If you would like
to set the baud rate back to 2400 bps you must send a new SBR command at 38.4 kbps. This time the
reply will be at 2400 bps so the SERIN will need to change as well. You can also reset the baud rate
back to 2400 bps by pressing the reset button on the PSCU.

Copyright © Parallax Inc. Propeller Servo Controller USB (#28830) v1.1 11/30/2012 Page 6 of 12

If either the BASIC Stamp or the PSC was reset without the other resetting they could be left in the state
of different baud rates. When checking the firmware version using the VER? command, the BASIC Stamp
2 should employ its timeout feature. At the timeout label you can then attempt to VER? the PSCU at the
other baud rate. Once identified the baud rate could then be set properly and the program can resume.

RSP – Report Servo Position

Syntax: “!SCRSP” <channel> <CR>
Reply: <channel> <highbyte> <lowbyte>

The RSP command returns the pulse width value last set for the specified channel. When the RSP
command is sent to the PSCU it replies with three bytes. The first byte is the channel, the second and
third bytes are the highbyte and lowbyte of the pulse width, respectively.

' {$STAMP BS2}
' {$PBASIC 2.5}

ch VAR Byte
pw VAR Word
ra VAR Byte
x VAR Byte

Buff VAR Byte(3)
Sdat CON 15
baud CON 396

Init:
 ra = 15: ch = 0

DO
 pw = 1100: GOSUB WRservo
 pw = 300: GOSUB WRservo
LOOP

WRservo:
 SEROUT Sdat, Baud+$8000,["!SC", ch, ra, pw.LOWBYTE, pw.HIGHBYTE, CR]
 FOR x = 0 TO 4
 PAUSE 1000
 SEROUT Sdat, Baud+$8000, ["!SCRSP", ch, CR]
 SERIN Sdat, Baud, 1000, Init,[STR Buff\3]
 DEBUG "Servo ", DEC buff(0), " ", HEX2 buff(1), " :", HEX2 buff(2), CR
 NEXT
 RETURN

Within the DO…LOOP, this program sets the pulse width (pw) to one extreme or the other and writes this
value to the PSCU. The ramp value (ra) was set to give the program time to poll the servo position
several times. Within the WRservo subroutine the new pw is sent and the position is polled five times,
once per second. A DEBUG command is used to format the reply and print it to a window for you to
view.

Copyright © Parallax Inc. Propeller Servo Controller USB (#28830) v1.1 11/30/2012 Page 7 of 12

PSS – Set Software Port (to range 0 – 15 or 16 – 31)

Syntax: “!SCPSS” <mode> <CR>
Reply: “PM” <mode>

The PSS command assigns the PSCU to act on commands sent to channels 0 – 15 or channels 16 – 31
depending on the mode selected. This is useful when networking two PSCU modules together for 32
channels using a microcontroller. The command format is “!SCPSS” followed by a byte value of 0 for Port
0 (channels 0 – 15) or 1 for Port 1 (channels 16 – 31) and a carriage return ($0D).

' {$STAMP BS2}
' {$PBASIC 2.5}

Sdat PIN 15 ' Serial Data I/O Pin
Baud CON 396 ' Constant For 2400 Baud
buff VAR Byte(3) ' Temporary Variable (Array)

SetPort:
 DEBUG "Setting Port Mode...", CR
 SEROUT Sdat, Baud+$8000, ["!SCPSS", 1, CR] ' Set To 16-31
 SERIN Sdat, Baud,500, SetPort, [STR buff\3]
 DEBUG "Baud Reply: ", buff(0), buff(1), DEC1 buff(2), CR
 DEBUG "Please reset PSCU or cycle power now."
 STOP

Note: you should be sure only the PSCU that you want to change port modes on is connected.
Networking the PSCU modules while using this command will cause all connected units to be set. The
PSCU must be reset after this command is sent or power must be cycled to activate the change.

PSD – Servo Disable

Syntax: “!SCPSD” <channel> <CR>
Reply: None

This command allows you to disable a servo channel. The command format is, “!SCPDS” followed by a
byte value of 0 – 31 for the channel and a carriage return ($0D). Disabling a channel will cause the
PSCU to stop sending pulses to that channel. This will cause any connected servo to become lax and not
try to hold its position. A disabled servo channel can be enabled again using the Servo Enable command
listed below. The following code for the BASIC Stamp 2 disables the servo on channel 0.

' {$STAMP BS2}
' {$PBASIC 2.5}

' {$STAMP BS2}
' {$PBASIC 2.5}

Sdat PIN 15 ' Serial Data I/O Pin
Baud CON 396 ' Constant For 2400 Baud

Disable:
 DEBUG "Disabling Channel 0", CR
 SEROUT Sdat, Baud+$8000, ["!SCPSD", 0, CR]
 STOP

Note: This command causes this to be the default state of this channel. Until the channel is enabled
using the Servo Enable command (below) this channel will no longer refresh even if the PSCU is reset or
power is cycled.

Copyright © Parallax Inc. Propeller Servo Controller USB (#28830) v1.1 11/30/2012 Page 8 of 12

PSE – Servo Enable

Syntax: “!SCPSE” <channel> <CR>
Reply: None

This command allows you to enable a servo channel that has been previously disabled. The command
format is, “!SCPSE” followed by a byte value of 0 – 31 for the channel and a carriage return ($0D).
Enabling a channel will cause it to move to the last position it was commanded to, or the startup default
if no other position commands have been sent since power up/reset. The following code (re)enables
channel 0.

' {$STAMP BS2}
' {$PBASIC 2.5}

Sdat PIN 15 ' Serial Data I/O Pin
Baud CON 396 ' Constant For 2400 Baud

Enable:
 DEBUG "Enabling Channel 0", CR
 SEROUT Sdat, Baud+$8000, ["!SCPSE", 0, CR]
 STOP

EDD – Startup Servo Mode

Syntax: “!SCEDD” <mode> <CR>
Reply: “DL” <mode>

This command sets whether the PSCU centers all servo channels on startup (mode 0) or uses custom
startup positions stored in EEPROM (mode 1). In mode 1 you can set a custom startup position for each
servo channel using the default position command below. To set the Startup Servo Mode, the following
must be sent to the PSCU: “!SCEDD” followed by a byte value of 0 for default (center) or 1 for custom
and finally a carriage return ($0D). The following code can be used to set the startup servo mode to 1
using a BASIC Stamp 2.

' {$STAMP BS2}
' {$PBASIC 2.5}

Sdat PIN 15 ' Serial Data I/O Pin
Baud CON 396 ' Constant For 2400 Baud
buff VAR Byte(3) ' Temporary Variable (Array)

SetPort:
 DEBUG "Setting Startup Servo Mode...", CR
 SEROUT Sdat, Baud+$8000, ["!SCPSS", 1, CR]
 SERIN Sdat, Baud,500, SetPort, [STR buff\3]
 DEBUG "Startup Mode: ", buff(0), buff(1), DEC1 buff(2), CR
 DEBUG "Please reset PSCU or cycle power now."
 STOP

Note: The PSCU must be reset after this command is sent or power must be cycled to activate the
change.

Copyright © Parallax Inc. Propeller Servo Controller USB (#28830) v1.1 11/30/2012 Page 9 of 12

Default Position Command – Set Default Position of a Servo Channel

Syntax: “!SCD” <channel> <lowbyte> <highbyte> <CR>
Reply: None

By default all servos move to the center position at startup (they receive a 1.5 ms pulse). The default
position of all servo channels can be customized and stored in the EEPROM to be used on startup in place
of the center positions. To set a new startup position for a servo channel the following must be sent to
the PSCU: “!SCD” followed by a byte value of 0 – 31 for channel, two bytes for the pulse width in 2 µs
units in lowbyte/highbyte format, and finally a carriage return ($0D). Each servo channel can be set
independently but for the PSCU to use these on startup you must have first sent the EDD command
(listed above) to 1. The following code can be used to set the default position for channels 0 through 31
to 500 (1 ms) using a BASIC Stamp 2. If you only have one PSCU connected only channels 0 – 15 will be
affected by this program.

' {$STAMP BS2}
' {$PBASIC 2.5}

ch VAR Byte ' Channel
pw VAR Word ' Pulse Width Value
Sdat PIN 15 ' Serial Data I/O Pin
Baud CON 396 ' Constant For 2400 Baud
pw = 500

Set_Default:
 DEBUG "Setting Default Position...", CR
 FOR ch = 0 TO 31
 SEROUT Sdat, Baud+$8000, ["!SCD", ch, pw.LOWBYTE, pw.HIGHBYTE, CR]
 DEBUG "Channel ", DEC ch, " set to ", DEC pw, CR
 NEXT
 DEBUG "Please reset PSCU or cycle power now.", CR
 DEBUG "Be sure the Start Servo Mode is set to 1"
 STOP

The PSCU must be reset after this command is sent or power must be cycled to activate the change.

CLEAR – Clear Upper EEPROM

Syntax: “!SCLEAR” <channel> <lowbyte> <highbyte> <CR>
Reply: “CLR”

All of the custom settings such as Port Mode, Servo Disabled, Startup Mode and Default Positions are all
stored in the upper 32K of the EEPROM. The code below can be used to clear the upper EEPROM and
reset these values to their defaults.

' {$STAMP BS2}
' {$PBASIC 2.5}

Sdat PIN 15 ' Serial Data I/O Pin
Baud CON 396 ' Constant For 2400 Baud
buff VAR Byte(3) ' Temporary Variable (Array)

Clear_EEPROM:
 DEBUG "Clearing Upper EEPROM...", CR
 SEROUT Sdat, Baud+$8000, ["!SCLEAR", CR]
 SERIN Sdat, Baud, 600, Clear_EEPROM, [STR buff\3]
 DEBUG "Reply: ", buff(0), buff(1), buff(2), CR
 STOP

Copyright © Parallax Inc. Propeller Servo Controller USB (#28830) v1.1 11/30/2012 Page 10 of 12

Hardware Reset Button
Some of the program examples above require the PSCU to be reset or power cycled before the settings
will take effect. Pressing the reset button will restart the firmware, effectively resetting the PSCU.

Networking Two PSCU Modules for 32 Channels (Microcontroller)
The PSCU is capable of networking to a second PSCU to allow control of 32 servos from a single serial
line when using a microcontroller. The second PSCU would have its Port Mode set to 1 and would
respond to commands sent to servo channels 16 – 31. A typical connection for doing this using the
Board of Education and two PSCU modules is shown below. Note the positions of the cables in the serial
connectors on each PSCU. Both PSCU modules will get power from the Board of Education in this
manner and both will share the serial I/O line as well. Both PSCU modules will still require a separate
power supply for the servos.

Note: Networking/Daisy-chaining of PSCU modules is not supported when using a USB connection. For
USB control you will need a separate USB port for each unit and all units will be set to Port Mode 0.

Copyright © Parallax Inc. Propeller Servo Controller USB (#28830) v1.1 11/30/2012 Page 11 of 12

Programming Jumper
The firmware on the PSCU can be customized by the end user. This makes it easy to tailor the use of
this Servo Controller to your application’s needs. You may also write you own firmware from scratch and
take advantage of additional features of the hardware that may be implemented. If you wish to develop
your own firmware you may simply download the Propeller Tool software from our website at
http://www.parallax.com/propeller. The programming jumper is installed by default, but can be removed
to prevent accidentally overwriting the code. Removing the jumper disconnects the DTR line from the
/RES line on the Propeller, thereby disabling the Propeller chip from being programmed or identified. You
can still communicate serially whether the jumper is installed or not.

Module Dimensions

Jumper Installed Jumper Not Installed

Copyright © Parallax Inc. Propeller Servo Controller USB (#28830) v1.1 11/30/2012 Page 12 of 12

Revision History
Version 1.1: Updated photo to show Rev B of the product. Manufacturing requirements for the QFN
Propeller IC necessitated moving a via (pad) on the PCB. Three traces were also moved slightly. This is a
manufacturing change only and the schematic has not changed.

