

Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at www.onsemi.com

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA Class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, emplo

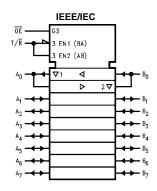
November 1992 Revised April 2005

74VHC245 Octal Bidirectional Transceiver with 3-STATE Outputs

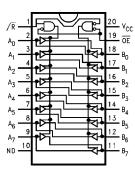
General Description

The VHC245 is an advanced high speed CMOS octal bus transceiver fabricated with silicon gate CMOS technology. It achieves high speed operation similar to equivalent Bipolar Schottky TTL while maintaining the CMOS low power dissipation. The VHC245 is intended for bidirectional asynchronous communication between data busses. The direction of data transmission is determined by the level of the $\overline{T/R}$ input. The enable input can be used to disable the device so that the busses are effectively isolated. All inputs are equipped with protection circuits against static discharge.

Features


- High Speed: t_{PD} = 4.0 ns (typ) at V_{CC} = 5V
- High Noise Immunity: V_{NIH} = V_{NIL} = 28% V_{CC} (Min)
- Power Down Protection is provided on all inputs
- Low Noise: V_{OLP} = 0.9V (typ)
- Low Power Dissipation: $I_{CC} = 4 \mu A \text{ (Max) } @ T_A = 25 ^{\circ}\text{C}$
- Pin and Function Compatible with 74HC245

Ordering Code:


Order Number	Package Number	Package Description				
74VHC245M	M20B	20-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300" Wide				
74VHC245SJ	M20D	Pb-Free 20-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide				
74VHC245MTC	MTC20	20-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide				
74VHC245N	N20A	20-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide				

Surface mount packages are also available on Tape and Reel. Specify by appending the suffix letter "X" to the ordering code. Pb-Free package per JEDEC J-STD-020B.

Logic Symbol

Connection Diagram

Pin Description

Pin	Description					
Names						
ŌĒ	Output Enable Input					
T/R	Transmit/Receive Input					
A ₀ -A ₇	Side A Inputs or 3-STATE Outputs					
B ₀ -B ₇	Side B Inputs or 3-STATE Outputs					

Truth Table

Inputs		Outputs
OE T/R		
L	L	Bus B Data to Bus A
L	Н	Bus A Data to Bus B
Н	Х	HIGH-Z State

H = HIGH Voltage Level L = LOW Voltage Level X = Immaterial
Any unused bus terminals during HIGH-Z State must be held HIGH or

Absolute Maximum Ratings(Note 1)

-0.5V to +7.0V Supply Voltage (V_{CC}) DC Input Voltage (V_{IN}) $(T/\overline{R}, \overline{OE})$ -0.5V to 7.0V

DC Output Voltage (V_{OUT}) -0.5V to $V_{CC} + 0.5V$ Input Diode Current (I_{IK}) $(T/\overline{R}, \overline{OE})$ -20 mAOutput Diode Current (I_{OK}) ±20 mA DC Output Current (I_{OUT}) ±25 mA

DC V_{CC}/GND Current (I_{CC}) ±75 mA Storage Temperature (T_{STG}) $-65^{\circ}C$ to $+150^{\circ}C$

Lead Temperature (T_L)

(Soldering, 10 seconds) 260°C

Recommended Operating Conditions (Note 2)

Supply Voltage (V_{CC}) 2.0V to 5.5V Input Voltage $(V_{IN})(T/\overline{R}, \overline{OE})$ 0V to 5.5V Output Voltage (V_{OUT}) 0V to V_{CC} -40°C to +85°C Operating Temperature (T_{OPR})

Input Rise and Fall Time (t_r, t_f)

 $V_{CC}=3.3V\pm0.3V$ 0 ~ 100 ns/V 0 ~ 20 ns/V

 $V_{CC}=5.0V\pm0.5V$

Note 1: Absolute Maximum Ratings are values beyond which the device may be damaged or have its useful life impaired. The databook specifications should be met, without exception, to ensure that the system design is reliable over its power supply, temperature, and output/input loading variables. Fairchild does not recommend operation outside databook specifica-

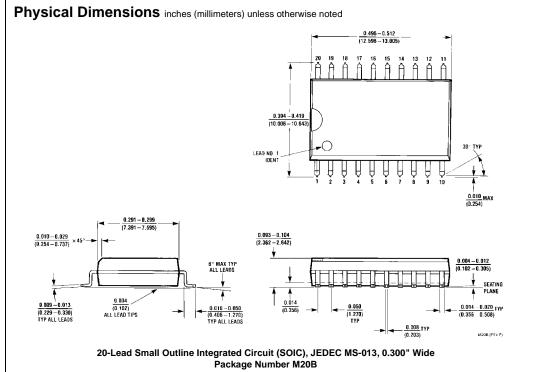
Note 2: Unused inputs or I/O pins must be held HIGH or LOW. They may

DC Electrical Characteristics

Symbol	Parameter	V _{CC}	T _A = 25°C		$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$		Units	Conditions			
Symbol	Farameter	(V)	Min	Тур	Max	Min	Max	Onits	Conditions		
V _{IH}	HIGH Level	2.0	1.50			1.50		V			
	Input Voltage	3.0 – 5.5	0.7 V _{CC}			0.7 V _{CC}		V			
V _{IL}	LOW Level	2.0			0.50		0.50	V			
	Input Voltage	3.0 – 5.5			$0.3\mathrm{V}_{\mathrm{CC}}$		$0.3 V_{\rm CC}$	V			
V _{OH}	HIGH Level	2.0	1.9	2.0		1.9			$V_{IN} = V_{IH}$ $I_{OH} = -50 \mu A$		
	Output Voltage	3.0	2.9	3.0		2.9		V	or V _{IL}		
		4.5	4.4	4.5		4.4					
		3.0	2.58			2.48		V	I _{OH} = -4 mA		
		4.5	3.94			3.80		V	I _{OH} = -8 mA		
V _{OL}	LOW Level	2.0		0.0	0.1		0.1		$V_{IN} = V_{IH}$ $I_{OL} = 50 \mu A$		
	Output Voltage	3.0		0.0	0.1		0.1	V	or V _{IL}		
		4.5		0.0	0.1		0.1				
		3.0			0.36		0.44	V	I _{OL} = 4 mA		
		4.5			0.36		0.44	V	$I_{OL} = 8 \text{ mA}$		
I _{OZ}	3-STATE Output								V _{IN} = V _{CC} or GND		
	Off-State Current	5.5			± 0.25		± 2.5	μΑ	$V_{OUT} = V_{CC}$ or GND		
									$V_{IN} \overline{OE} = V_{IH} \text{ or } V_{IL}$		
I _{IN}	Input Leakage	0 – 5.5			±0.1		±1.0	μΑ	V _{IN} = 5.5V or GND		
(T/R, OE)	Current										
Icc	Quiescent Supply Current	5.5			4.0		40.0	μА	V _{IN} = V _{CC} or GND		

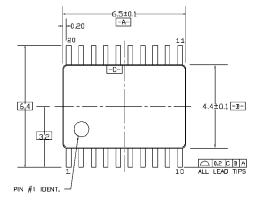
Noise Characteristics

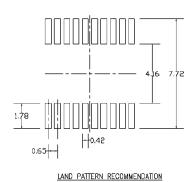
Symbol	Parameter	V _{CC}	T _A = 25°C		Units	Conditions		
Cymbol	1 drameter	(V)	Тур	Limits	011110	Jenainene		
V _{OLP}	Quiet Output Maximum	5.0	0.9	1.2	V	C _L = 50 pF		
(Note 3)	Dynamic V _{OL}							
V _{OLV}	Quiet Output Minimum	5.0	-0.9	-1.2	V	C _L = 50 pF		
(Note 3)	Dynamic V _{OL}							
V_{IHD}	Minimum HIGH Level	5.0		3.5	V	C _L = 50 pF		
(Note 3)	Dynamic Input Voltage							
V _{ILD}	Maximum LOW Level	5.0		1.5	V	C _L = 50 pF		
(Note 3)	Dynamic Input Voltage							


Note 3: Parameter guaranteed by design.

AC Electrical Characteristics

Symbol	Parameter	V _{CC}	$T_A = 25^{\circ}C$			T _A = -40°	C to +85°C	Units	Conditions	
		(V)	Min	Тур	Max	Min	Max	Ullits	John	
t _{PLH}	Propagation Delay	3.3 ± 0.3		5.8	8.4	1.0	10.0			$C_L = 15 pF$
t _{PHL}	Time			8.3	11.9	1.0	13.5	ns		C _L = 50 pF
		5.0 ± 0.5		4.0	5.5	1.0	6.5	ns		C _L = 15 pF
				5.5	7.5	1.0	8.5	115		$C_L = 50 pF$
t _{PZL}	3-STATE Output	3.3 ± 0.3		8.5	13.2	1.0	15.5	ns		C _L = 15 pF
t_{PZH}	Enable Time			11.0	16.7	1.0	19.0	115		C _L = 50 pF
		5.0 ± 0.5		5.8	8.5	1.0	10.0	ns	KL = 1 K22	$C_L = 15 pF$
				7.3	10.6	1.0	12.0	115		$C_L = 50 pF$
t _{PLZ}	3-STATE Output	3.3 ± 0.3		11.5	15.8	1.0	18.0		$R_L = 1 \text{ k}\Omega$	$C_L = 50 pF$
t_{PHZ}	Disable Time	5.0 ± 0.5		7.0	9.7	1.0	11.0	ns		$C_L = 50 pF$
toslh	Output to Output	3.3 ± 0.3			1.5		1.5	ns	(Note 4)	$C_L = 50 pF$
toshl	Skew	5.0 ± 0.5			1.0		1.0	115		$C_L = 50 pF$
C _{IN}	Input Capacitance			4	10		10	pF	$V_{CC} = Ope$	n
$(T/R, \overline{OE})$										
C _{I/O}	Output Capacitance			8				pF	$V_{CC} = 5.0$	/
C _{PD}	Power Dissipation			21				pF	(Note 5)	
	Capacitance									


 $\textbf{Note 4:} \ \text{Parameter guaranteed by design.} \ t_{\text{OSLH}} = |t_{\text{PLH max}} - t_{\text{PLH min}}|; \ t_{\text{OSHL}} = |t_{\text{PHL max}} - t_{\text{PHL min}}|$


Note 5: C_{PD} is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load. Average operating current can be obtained by the equation: I_{CC} (opr.) = C_{PD} * V_{CC} * f_{IN} + I_{CC} /8 (per Bit).



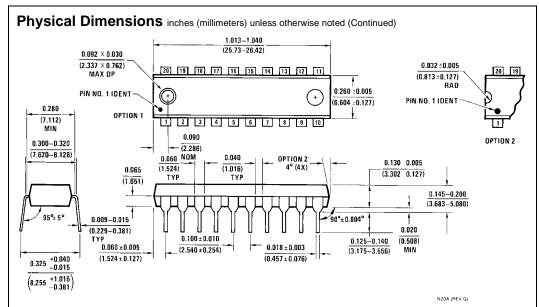
Physical Dimensions inches (millimeters) unless otherwise noted (Continued) 12.6±0.10 0.40 TYP --A-5.3±0.10 9.27 TYP 7.8 -B-3.9 0.2 C B A ALL LEAD TIPS 10 PIN #1 IDENT.-0.6 TYP 1.27 TYP LAND PATTERN RECOMMENDATION ALL LEAD TIPS SEE DETAIL A 0.1 C 1.8±0.1 -C-L _{0.15±0.05} 0.15-0.25 -1.27 TYP 0.35-0.51 ⊕ 0.12 **(** C A DIMENSIONS ARE IN MILLIMETERS GAGE PLANE 0.25 NOTES: A. CONFORMS TO EIAJ EDR-7320 REGISTRATION, ESTABLISHED IN DECEMBER, 1998. B. DIMENSIONS ARE IN MILLIMETERS. C. DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH, AND TIE BAR EXTRUSIONS. 0.60±0.15 SEATING PLANE 1.25 -M20DRevB1 DETAIL A Pb-Free 20-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide Package Number M20D

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

DIMENSIONS ARE IN MILLIMETERS

NOTES:

- A. CONFORMS TO JEDEC REGISTRATION MO-153, VARIATION AC, REF NOTE 6, DATE 7/93.
- B. DIMENSIONS ARE IN MILLIMETERS.
- C. DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLDS FLASH, AND TIE BAR EXTRUSIONS.
- D. DIMENSIONS AND TOLERANCES PER ANSI Y14.5M, 1982.


R0.09min GAGE PLANE - 8.7 | 0.25| - 0.6±0.1- R0.09min

SEE DETAIL A

DETAIL A

MTC20REVD1

20-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide Package Number MTC20

20-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide Package Number N20A

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com

ON Semiconductor and in are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor and see no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and h

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada
Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910
Japan Customer Focus Center
Phone: 81–3–5817–1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative