TrenchMOS[™] logic level FET

Rev. 03 — 6 May 2002

Product data

1. Description

N-channel enhancement mode field-effect power transistor in a plastic package using TrenchMOS[™] technology, featuring very low on-state resistance.

Product availability:

BUK9508-55A in SOT78 (TO-220AB) BUK9608-55A in SOT404 (D²-PAK).

2. Features

- TrenchMOS[™] technology
- Q101 compliant
- 175 °C rated
- Logic level compatible.

3. Applications

- Automotive and general purpose power switching:
 - 12 V and 24 V loads
 - Motors, lamps and solenoids.

4. Pinning information

Table [•]	I: Pinning - SOT78 and	SOT404, simplified outline ar	nd symbol	
Pin	Description	Simplified outline	S	ymbol
1	gate (g)	mb		
2	drain (d)	1) F C C	mb	
3	source (s)			g (I ⊣ ↓)
mb	mounting base; connected to drain (d)	1 2 3 MBK106	1 3 MBK116	MBB076 S
		SOT78 (TO-220AB)	SOT404 (D ² -PAK)	

[1] It is not possible to make connection to pin 2 of the SOT404 package.

5. Quick reference data

V_{DS} drain-source voltage (DC)-55V I_D drain current (DC) $T_{mb} = 25 ^{\circ}C; V_{GS} = 5 ^{\circ}V$ -125A P_{tot} total power dissipation $T_{mb} = 25 ^{\circ}C; V_{GS} = 5 ^{\circ}V$ -253W T_j junction temperature-175^{\circ}C R_{DSon} drain-source on-state resistance $T_j = 25 ^{\circ}C; V_{GS} = 5 ^{\circ}V; I_D = 25 ^{\circ}A$ 6.88model	Table 2:	Quick reference data				
IDdrain current (DC) $T_{mb} = 25 \text{ °C}; V_{GS} = 5 \text{ V}$ -125AP_{tot}total power dissipation $T_{mb} = 25 \text{ °C}$ -253WT_jjunction temperature-175°CR_DSondrain-source on-state resistance $T_j = 25 \text{ °C}; V_{GS} = 5 \text{ V}; I_D = 25 \text{ A}$ 6.88matrix	Symbol	Parameter	Conditions	Тур	Max	Unit
P_{tot} total power dissipation $T_{mb} = 25 \ ^{\circ}C$ -253W T_j junction temperature-175^{\circ}C R_{DSon} drain-source on-state resistance $T_j = 25 \ ^{\circ}C; \ V_{GS} = 5 \ V; \ I_D = 25 \ A$ 6.88ms	V _{DS}	drain-source voltage (DC)		-	55	V
T_j junction temperature-175°C R_{DSon} drain-source on-state resistance $T_j = 25$ °C; $V_{GS} = 5$ V; $I_D = 25$ A6.88ms	I _D	drain current (DC)	$T_{mb} = 25 \ ^{\circ}C; \ V_{GS} = 5 \ V$	-	125	А
R_{DSon} drain-source on-state resistance $T_j = 25 \text{ °C}; V_{GS} = 5 \text{ V}; I_D = 25 \text{ A}$ 6.8 8 mG	P _{tot}	total power dissipation	T _{mb} = 25 °C	-	253	W
	Тj	junction temperature		-	175	°C
$T_j = 25 \text{ °C}; V_{GS} = 4.5 \text{ V}; I_D = 25 \text{ A}$ - 8.5 mG	R_{DSon}	drain-source on-state resistance	$T_j = 25 \ ^{\circ}C; \ V_{GS} = 5 \ V; \ I_D = 25 \ A$	6.8	8	mΩ
			T_j = 25 °C; V_{GS} = 4.5 V; I_D = 25 A	-	8.5	mΩ
$T_j = 25 \text{ °C}; V_{GS} = 10 \text{ V}; I_D = 25 \text{ A}$ 6.4 7.5 ms			T_j = 25 °C; V_{GS} = 10 V; I_D = 25 A	6.4	7.5	mΩ

6. Limiting values

Table 3: Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134).

Symbol	Parameter	Conditions		Min	Max	Unit
V _{DS}	drain-source voltage (DC)			-	55	V
V _{DGR}	drain-gate voltage (DC)	$R_{GS} = 20 \text{ k}\Omega$		-	55	V
V _{GS}	gate-source voltage (DC)			-	±15	V
I _D	drain current (DC)	$T_{mb} = 25 \ ^{\circ}C; \ V_{GS} = 5 \ V;$	[1]	-	125	А
		Figure 2 and 3	[2]	-	75	А
		T_{mb} = 100 °C; V_{GS} = 5 V; Figure 2	[2]	-	75	А
I _{DM}	peak drain current	T_{mb} = 25 °C; pulsed; $t_p \leq$ 10 $\mu s;$ Figure 3		-	503	A
P _{tot}	total power dissipation	T _{mb} = 25 °C; Figure 1		-	253	W
T _{stg}	storage temperature			-55	+175	°C
Tj	junction temperature			-55	+175	°C
Source-o	Irain diode					
I _{DR}	reverse drain current (DC)	T _{mb} = 25 °C	[1]	-	125	А
			[2]	-	75	А
I _{DRM}	peak reverse drain current	T_{mb} = 25 °C; pulsed; $t_p \leq$ 10 μs		-	503	А
Avalance	ne ruggedness					
E _{DS(AL)S}	non-repetitive drain-source avalanche energy	unclamped inductive load; I _D = 75 A; V _{DS} \leq 55 V; V _{GS} = 5 V; R _{GS} = 50 Ω ; starting T _{mb} = 25 °C		-	670	mJ

[1] Current is limited by power dissipation chip rating

[2] Continuous current is limited by package.

TrenchMOS[™] logic level FET

7. Thermal characteristics

Table 4:	Thermal characteristics							
Symbol	Parameter	Conditions	Min	Тур	Max	Unit		
R _{th(j-mb)}	thermal resistance from junction to mounting base	Figure 4	-	-	0.59	K/W		
R _{th(j-a)}	thermal resistance from junction to ambient							
	SOT78	vertical in still air	-	60	-	K/W		
	SOT404	mounted on a printed circuit board; minimum footprint	-	50	-	K/W		

7.1 Transient thermal impedance

8. Characteristics

Table 5: Characteristics

 $T_i = 25 \circ C$ unless otherwise specified.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Static cha	racteristics					
V _{(BR)DSS}	drain-source breakdown	$I_D = 0.25 \text{ mA}; V_{GS} = 0 \text{ V}$				
	voltage	T _j = 25 °C	55	-	-	V
		T _j = −55 °C	50	-	-	V
V _{GS(th)}	gate-source threshold voltage	$I_D = 1 \text{ mA}; V_{DS} = V_{GS};$ Figure 9				
		T _i = 25 °C	1	1.5	2	V
		T _i = 175 °C	0.5	-	-	V
		T _i = −55 °C	-	-	2.3	V
DSS	drain-source leakage current	V _{DS} = 55 V; V _{GS} = 0 V				
		T _i = 25 °C	-	0.05	10	μA
		T _i = 175 °C	-	-	500	μA
I _{GSS}	gate-source leakage current	V _{GS} = ±10 V; V _{DS} = 0 V	-	2	100	nA
R _{DSon}	drain-source on-state resistance	V_{GS} = 5 V; I _D = 25 A; Figure 7 and 8				
		T _i = 25 °C	-	6.8	8	mΩ
		T _i = 175 °C	-	-	16	mΩ
		V _{GS} = 4.5 V; I _D = 25 A	-	-	8.5	mΩ
		V _{GS} = 10 V; I _D = 25 A	-	6.4	7.5	mΩ
Dynamic of	characteristics					
Q _{g(tot)}	total gate charge	V _{GS} = 5 V; V _{DD} = 44 V;	-	92	-	nC
Q _{gs}	gate-to-source charge	I _D = 25 A; Figure 14	-	11	-	nC
Q _{gd}	gate-to-drain (Miller) charge		-	43	-	nC
C _{iss}	input capacitance	V _{GS} = 0 V; V _{DS} = 25 V; f = 1 MHz; <mark>Figure 12</mark>	-	4551	6021	pF
C _{oss}	output capacitance		-	760	900	pF
C _{rss}	reverse transfer capacitance		-	500	687	pF
t _{d(on)}	turn-on delay time	V_{DD} = 30 V; R_{L} = 1.2 Ω ;	-	40	-	ns
t _r	rise time	V_{GS} = 5 V; R_{G} = 10 Ω	-	175	-	ns
t _{d(off)}	turn-off delay time		-	280	-	ns
t _f	fall time		-	167	-	ns
L _d	internal drain inductance	from drain lead 6 mm from package to centre of die	-	4.5	-	nH
		from contact screw on mounting base to centre of die SOT78	-	3.5	-	nH
		from upper edge of drain mounting base to centre of die SOT404	-	2.5	-	nH
L _s	internal source inductance	from source lead to source bond pad	-	7.5	-	nH

Table 5: Characteristicscontinued

Symbol	Parameter	Conditions	Min	Тур	Max	Unit		
Source-di	Source-drain diode							
V_{SD}	source-drain (diode forward) voltage	I _S = 25 A; V _{GS} = 0 V; Figure 15	-	0.85	1.2	V		
t _{rr}	reverse recovery time	$I_{S} = 75 \text{ A}; dI_{S}/dt = -100 \text{ A}/\mu \text{s}$	-	70	-	ns		
Qr	recovered charge	$V_{GS} = -10 \text{ V}; V_{DS} = 25 \text{ V}$	-	170	-	nC		

TrenchMOS[™] logic level FET

TrenchMOS[™] logic level FET

TrenchMOS[™] logic level FET

9. Package outline

Fig 16. SOT78 (TO-220AB).

BUK95/9608-55A TrenchMOS[™] logic level FET

Plastic single-ended surface mounted package (Philips version of D²-PAK); 3 leads

Fig 17. SOT404 (D²⁻PAK).

TrenchMOS[™] logic level FET

10. Soldering

11. Revision history

Table	6: Revis	sion history	
Rev	Date	CPCN	Description
03	20020506	-	Product data (9397 750 09573); supersedes Product data of BUK9508_9608-55A_2 of 4 of September 2000.
			Modifications:
			 The format of this specification has been redesigned to comply with Philips Semiconductors' new presentation and information standard.
			 Thermal resistance figure lowered (j-mb) Section 7. This has a knock on effect on the devices current and power handling capabilities (See Section 5 and Section 6).
			 Maximum gate-source voltage increased from ± 10 to ± 15 V (Section 6).
			 Switching speeds re-measured in dynamic characteristics Section 8.

12. Data sheet status

Data sheet status ^[1]	Product status ^[2]	Definition
Objective data	Development	This data sheet contains data from the objective specification for product development. Philips Semiconductors reserves the right to change the specification in any manner without notice.
Preliminary data	Qualification	This data sheet contains data from the preliminary specification. Supplementary data will be published at a later date. Philips Semiconductors reserves the right to change the specification without notice, in order to improve the design and supply the best possible product.
Product data	Production	This data sheet contains data from the product specification. Philips Semiconductors reserves the right to make changes at any time in order to improve the design, manufacturing and supply. Changes will be communicated according to the Customer Product/Process Change Notification (CPCN) procedure SNW-SQ-650A.

[1] Please consult the most recently issued data sheet before initiating or completing a design.

[2] The product status of the device(s) described in this data sheet may have changed since this data sheet was published. The latest information is available on the Internet at URL http://www.semiconductors.philips.com.

13. Definitions

Short-form specification — The data in a short-form specification is extracted from a full data sheet with the same type number and title. For detailed information see the relevant data sheet or data handbook.

Limiting values definition — Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 60134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information — Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors make no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

14. Disclaimers

Life support — These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips Semiconductors customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application.

Right to make changes — Philips Semiconductors reserves the right to make changes, without notice, in the products, including circuits, standard cells, and/or software, described or contained herein in order to improve design and/or performance. Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no licence or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified.

15. Trademarks

TrenchMOS — is a trademark of Koninklijke Philips Electronics N.V.

Contact information

For additional information, please visit http://www.semiconductors.philips.com. For sales office addresses, send e-mail to: sales.addresses@www.semiconductors.philips.com.

Fax: +31 40 27 24825

© Koninklijke Philips Electronics N.V. 2002. All rights reserved.

9397 750 09573

Contents

1	Description 1
2	Features 1
3	Applications
4	Pinning information 1
5	Quick reference data 2
6	Limiting values 2
7	Thermal characteristics 4
7.1	Transient thermal impedance 4
8	Characteristics 5
9	Package outline 9
10	Soldering 11
11	Revision history 12
12	Data sheet status 13
13	Definitions 13
14	Disclaimers 13
15	Trademarks 13

© Koninklijke Philips Electronics N.V. 2002. Printed in The Netherlands

All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.

The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent- or other industrial or intellectual property rights.

Let's make things better.