

Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at <u>www.onsemi.com</u>

Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore (_), the underscore (_) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild_questions@onsemi.com.

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or unavteries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out or i, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor and is officers, employees, uniotificated use, even if such claim any manner.

August 2005

FDFM2P110 Integrated P-Channel PowerTrench[®] MOSFET and Schottky Diode

FAIRCHILD

FDFM2P110

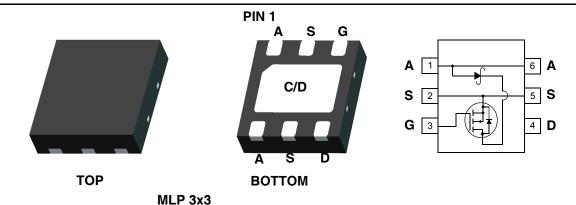
Integrated P-Channel PowerTrench[®] MOSFET and Schottky Diode

General Description

FDFM2P110 combines the exceptional performance of Fairchild's PowerTrench MOSFET technology with a very low forward voltage drop Schottky barrier rectifier in a MicroFET package.

This device is designed specifically as a single package solution for Buck Boost. It features a fast switching, low gate charge MOSFET with very low on-state resistance.

Applications


Buck Boost

Features

■ -3.5 A, -20 V R_{DS(ON)} = 140mΩ @ V_{GS} = -4.5 V

 $R_{DS(ON)} = 200 m\Omega @ V_{GS} = -2.5 V$

Low Profile - 0.8 mm maximun - in the new package MicroFET 3x3 mm

Absolute Maximum Ratings T_A = 25°C unless otherwise noted

Symbol	Parameter		Ratings	Units
V _{DSS}	Drain-Source Voltage		-20	V
V _{GSS}	Gate-Source Voltage		±12	V
	Drain Current -Continuous	(Note 1a)	-3.5	•
D	-Pulsed		-10	— A
V _{RRM}	Schottky Repetitive Peak Reverse voltage		20	V
I _o	Schottky Average Forward Current (Note 1a)		2	Α
Р	Power dissipation (Steady State)	(Note 1a)	2	w
		(Note 1b)	0.8	vv
T _J , T _{STG}	Operating and Storage Junction Temperature Range		-55 to +150	°C

Thermal Characteristics

R_{\thetaJA}	Thermal Resistance, Junction-to-Ambient	(Note 1a)	60	°C/W
R_{\thetaJA}	Thermal Resistance, Junction-to-Ambient	(Note 1b)	145	°C/W

Package Marking and Ordering Information

Device Marking	Device	Reel Size	Tape Width	Quantity
2P110	FDFM2P110	7inch	12mm	3000 units

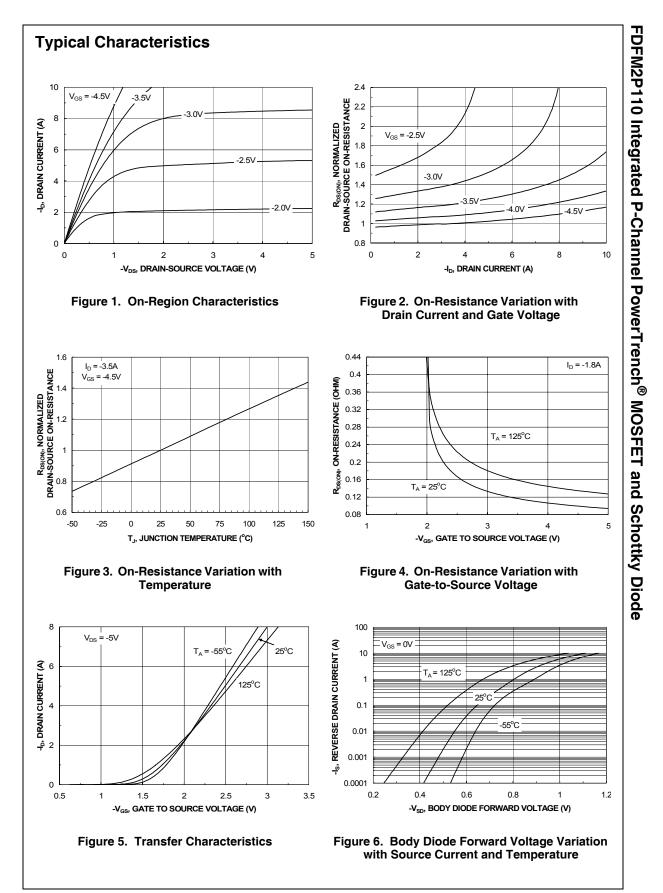
Symbol	Parameter	Test Conditions	Min	Тур	Max	Units
Off Chara	cteristics					
B _{VDSS}	Drain-Source Breakdown Voltage	I _D = -250μA, V _{GS} = 0V	-20	-	-	V
ΔBV_{DSS} $\Delta T_{,l}$	Breakdown Voltage Temperature Coefficient	I _D = -250μA, Referenced to 25°C	-	-11	-	mV/°C
IDSS	Zero Gate Voltage Drain Current	V _{GS} = 0V, V _{DS} = -16V		-	-1	μA
I _{GSS}	Gate-Body Leakage,	$V_{GS} = \pm 12V, V_{DS} = 0V$	-	-	±100	nA
On Chara	cteristics (Note 2)					
V _{GS(TH)}	Gate Threshold Voltage	$V_{DS} = V_{GS}, I_{D} = -250 \mu A$	-0.6	-1.0	-1.5	V
$\frac{\Delta V_{GS(TH)}}{\Delta T_J}$	Gate Threshold Voltage Temperature Coefficient	I _D = -250μA, Referenced to 25°C	-	3	-	mV/°C
		I _D = -3.5A, V _{GS} = -4.5V	-	101	140	
R _{DS(ON)}	Static Drain-Source On-Resistance	I _D = -3.0A, V _{GS} = -2.5V	-	145	200	mΩ
		$I_D = -3.5A, V_{GS} = -4.5V, T_J = 125^{\circ}C$	-	136	202	
I _{D(ON)}	On-State Drain Current	$V_{GS} = -2.5V, V_{DS} = -5V$	-10	-	-	Α
9 _{FS}	Forward Transconductance	$I_{D} = -3.5A, V_{DS} = -5V$	-	6	-	S
Dynamic	Characteristics					
				280	1	pF
CISS	Input Capacitance		-	200	-	μı
C _{ISS} C _{OSS}	Input Capacitance Output Capacitance	$V_{DS} = -10V, V_{GS} = 0V,$	-	65	-	pF
C _{ISS} C _{OSS} C _{RSS}		V _{DS} = -10V, V _{GS} = 0V, _ f = 1MHz	-		-	· ·
C _{OSS}	Output Capacitance		-	65	-	pF
C _{OSS} C _{RSS} R _G Switching	Output Capacitance Reverse Transfer Capacitance Gate Resistance Characteristics (Note 2)	f = 1MHz	-	65 35 7		pF pF Ω
C _{OSS} C _{RSS} R _G Switching	Output Capacitance Reverse Transfer Capacitance Gate Resistance Characteristics (Note 2) Turn-On Delay Time	f = 1MHz f = 1MHz		65 35 7 8	- - - 16 22	pF pF Ω ns
C _{OSS} C _{RSS} R _G Switching t _{d(ON)} t _r	Output Capacitance Reverse Transfer Capacitance Gate Resistance Characteristics (Note 2) Turn-On Delay Time Turn-On Rise Time	f = 1MHz		65 35 7	- - - - 16 22 20	pF pF Ω
C _{OSS} C _{RSS} R _G Switching t _{d(ON)} t _r t _d (OFF)	Output Capacitance Reverse Transfer Capacitance Gate Resistance Characteristics (Note 2) Turn-On Delay Time	$f = 1MHz$ $f = 1MHz$ $V_{DD} = -10V, I_{D} = -1A$	-	65 35 7 8 12	22	pF pF Ω ns ns
C_{OSS} C_{RSS} R_G Switching $t_{d(ON)}$ t_r $t_{d(OFF)}$ t_f	Output Capacitance Reverse Transfer Capacitance Gate Resistance Characteristics (Note 2) Turn-On Delay Time Turn-On Rise Time Turn-Off Delay Time	$f = 1MHz$ $f = 1MHz$ $V_{DD} = -10V, I_D = -1A$ $V_{GS} = -4.5V, R_{GEN} = 16\Omega$	-	65 35 7 8 12 11	22 20	pF pF Ω ns ns ns
C _{OSS} C _{RSS} R _G Switching t _{d(ON)} t _r t _d (OFF)	Output Capacitance Reverse Transfer Capacitance Gate Resistance Characteristics (Note 2) Turn-On Delay Time Turn-On Rise Time Turn-Off Delay Time Turn-Off Fall Time	$f = 1MHz$ $f = 1MHz$ $V_{DD} = -10V, I_{D} = -1A$ $V_{GS} = -4.5V, R_{GEN} = 16\Omega$ $V_{DS} = -10V, I_{D} = -3.5A,$	-	65 35 7 8 12 11 3.2	22 20 6.4	pF pF Ω ns ns ns
$\begin{array}{c} C_{OSS} \\ C_{RSS} \\ R_G \\ \hline \textbf{Switching} \\ \hline \textbf{t}_{d(ON)} \\ t_r \\ t_d(OFF) \\ \hline t_f \\ \hline \textbf{Q}_g \end{array}$	Output Capacitance Reverse Transfer Capacitance Gate Resistance Characteristics (Note 2) Turn-On Delay Time Turn-On Rise Time Turn-Off Delay Time Turn-Off Fall Time Total Gate Charge	$f = 1MHz$ $f = 1MHz$ $V_{DD} = -10V, I_D = -1A$ $V_{GS} = -4.5V, R_{GEN} = 16\Omega$	-	65 35 7 8 12 11 3.2 3	22 20 6.4 4	pF pF Ω ns ns ns ns nc
$\begin{array}{c} C_{OSS} \\ C_{RSS} \\ R_G \\ \hline \\ \textbf{Switching} \\ \hline \\ \textbf{t}_{d(ON)} \\ t_r \\ \hline \\ t_d(OFF) \\ \hline \\ t_f \\ \hline \\ \textbf{Q}_g \\ \hline \\ \textbf{Q}_{gs} \\ \hline \\ \textbf{Q}_{gd} \\ \hline \end{array}$	Output Capacitance Reverse Transfer Capacitance Gate Resistance Characteristics (Note 2) Turn-On Delay Time Turn-On Rise Time Turn-Off Delay Time Turn-Off Fall Time Total Gate Charge Gate-Source Charge	$f = 1MHz$ $f = 1MHz$ $V_{DD} = -10V, I_D = -1A$ $V_{GS} = -4.5V, R_{GEN} = 16\Omega$ $V_{DS} = -10V, I_D = -3.5A,$ $V_{GS} = -4.5V$	-	65 35 7 8 12 11 3.2 3 0.7	22 20 6.4 4 -	pF pF Ω ns ns ns nc nC
$\begin{array}{c} C_{OSS} \\ C_{RSS} \\ R_G \\ \hline \\ \textbf{Switching} \\ \hline \\ \textbf{Switching} \\ \hline \\ \textbf{t}_{d(ON)} \\ t_r \\ t_d(OFF) \\ t_f \\ Q_g \\ Q_{gs} \\ Q_{gg} \\ \hline \\ \textbf{Drain-Sou} \\ \hline \end{array}$	Output Capacitance Reverse Transfer Capacitance Gate Resistance Characteristics (Note 2) Turn-On Delay Time Turn-On Rise Time Turn-Off Delay Time Turn-Off Fall Time Total Gate Charge Gate-Source Charge Gate-Drain Charge	$f = 1MHz$ $f = 1MHz$ $V_{DD} = -10V, I_{D} = -1A$ $V_{GS} = -4.5V, R_{GEN} = 16\Omega$ $V_{DS} = -10V, I_{D} = -3.5A,$ $V_{GS} = -4.5V$ Maximum Ratings	-	65 35 7 8 12 11 3.2 3 0.7	22 20 6.4 4 -	pF pF Ω ns ns ns nc nC
$\begin{array}{c} C_{OSS} \\ C_{RSS} \\ R_G \\ \hline \\ \textbf{Switching} \\ \hline \\ \textbf{t}_{d(ON)} \\ t_r \\ \hline \\ t_d(OFF) \\ \hline \\ t_f \\ \hline \\ \textbf{Q}_g \\ \hline \\ \textbf{Q}_{gs} \\ \hline \\ \textbf{Q}_{gd} \\ \hline \end{array}$	Output Capacitance Reverse Transfer Capacitance Gate Resistance Characteristics (Note 2) Turn-On Delay Time Turn-On Rise Time Turn-Off Delay Time Turn-Off Fall Time Total Gate Charge Gate-Source Charge Gate-Drain Charge Urce Diode Characteristics and	$f = 1MHz$ $f = 1MHz$ $V_{DD} = -10V, I_{D} = -1A$ $V_{GS} = -4.5V, R_{GEN} = 16\Omega$ $V_{DS} = -10V, I_{D} = -3.5A,$ $V_{GS} = -4.5V$ Maximum Ratings		65 35 7 8 12 11 3.2 3 0.7 1	22 20 6.4 4 -	pF pF Ω ns ns ns nC nC
C _{OSS} C _{RSS} R _G Switching t _{d(ON)} t _r t _{d(OFF)} t _f Q _g Q _{gs} Q _{gd} Drain-Sou I _S V _{SD}	Output Capacitance Reverse Transfer Capacitance Gate Resistance Characteristics (Note 2) Turn-On Delay Time Turn-On Rise Time Turn-Off Delay Time Turn-Off Fall Time Total Gate Charge Gate-Source Charge Gate-Drain Charge urce Diode Characteristics and Maximum Continuous Drain-Source Dio	$f = 1 MHz$ $f = 1 MHz$ $V_{DD} = -10V, I_D = -1A$ $V_{GS} = -4.5V, R_{GEN} = 16\Omega$ $V_{DS} = -10V, I_D = -3.5A,$ $V_{GS} = -4.5V$ Maximum Ratings de Forward Current $V_{GS} = 0V, I_S = -2 A \text{ (Note}$		65 35 7 8 12 11 3.2 3 0.7 1	22 20 6.4 4 - - -	pF pF Ω ns ns ns nC nC nC
$\begin{array}{c} C_{OSS} \\ C_{RSS} \\ R_G \\ \hline \textbf{Switching} \\ \hline \textbf{Switching} \\ \hline \textbf{t}_{d(ON)} \\ t_r \\ \hline t_{d(OFF)} \\ t_f \\ Q_g \\ Q_{gs} \\ Q_{gd} \\ \hline \textbf{Drain-Sou} \\ \hline \textbf{I}_S \end{array}$	Output Capacitance Reverse Transfer Capacitance Gate Resistance Characteristics (Note 2) Turn-On Delay Time Turn-On Rise Time Turn-Off Delay Time Turn-Off Fall Time Total Gate Charge Gate-Source Charge Gate-Drain Charge urce Diode Characteristics and Maximum Continuous Drain-Source Dio Drain-Source Diode Forward Voltage	$f = 1MHz$ $f = 1MHz$ $V_{DD} = -10V, I_D = -1A$ $V_{GS} = -4.5V, R_{GEN} = 16\Omega$ $V_{DS} = -10V, I_D = -3.5A,$ $V_{GS} = -4.5V$ Maximum Ratings de Forward Current	- - - - - - - - - - - 2) -	65 35 7 8 12 11 3.2 3 0.7 1 -0.9	22 20 6.4 4 - - - - 2 -1.2	pF pF Ω ns ns ns nc nC nC nC
C _{OSS} C _{RSS} R _G Switching t _{d(ON)} t _r t _{d(OFF)} t _f Q _g Q _{gs} Q _{gd} Drain-Sou I _S V _{SD} t _{rr} Q _{rr}	Output Capacitance Reverse Transfer Capacitance Gate Resistance Characteristics (Note 2) Turn-On Delay Time Turn-On Rise Time Turn-Off Delay Time Turn-Off Fall Time Total Gate Charge Gate-Source Charge Gate-Drain Charge Irce Diode Characteristics and Maximum Continuous Drain-Source Dio Drain-Source Diode Forward Voltage Diode Reverse Recovery Time	$f = 1 MHz$ $f = 1 MHz$ $V_{DD} = -10V, I_D = -1A$ $V_{GS} = -4.5V, R_{GEN} = 16\Omega$ $V_{DS} = -10V, I_D = -3.5A,$ $V_{GS} = -4.5V$ Maximum Ratings de Forward Current $V_{GS} = 0V, I_S = -2 A \text{ (Note}$	- - - - - - - - - - - 2) -	65 35 7 8 12 11 3.2 3 0.7 1 -0.9 13	22 20 6.4 - - - - 2 -1.2 -	pF pF Ω ns ns ns nc nC nC nC NC
C _{OSS} C _{RSS} R _G Switching t _{d(ON)} t _r t _{d(OFF)} t _f Q _g Q _{gs} Q _{gd} Drain-Sou I _S V _{SD} t _{rr} Q _{rr}	Output Capacitance Reverse Transfer Capacitance Gate Resistance Characteristics (Note 2) Turn-On Delay Time Turn-Off Delay Time Turn-Off Fall Time Total Gate Charge Gate-Source Charge Gate-Drain Charge Irce Diode Characteristics and Maximum Continuous Drain-Source Dio Drain-Source Diode Forward Voltage Diode Reverse Recovery Time Diode Reverse Recovery Charge	$f = 1 MHz$ $f = 1 MHz$ $V_{DD} = -10V, I_D = -1A$ $V_{GS} = -4.5V, R_{GEN} = 16\Omega$ $V_{DS} = -10V, I_D = -3.5A,$ $V_{GS} = -4.5V$ Maximum Ratings de Forward Current $V_{GS} = 0V, I_S = -2 A \text{ (Note}$	- - - - - - - - - - - 2) -	65 35 7 8 12 11 3.2 3 0.7 1 -0.9 13	22 20 6.4 - - - - 2 -1.2 -	pF pF Ω ns ns ns nc nC nC nC NC
$\begin{array}{c} C_{OSS} \\ C_{RSS} \\ R_G \\ \hline R_G \\ \hline Switching \\ \hline t_{d(ON)} \\ t_r \\ \hline t_{d(OFF)} \\ \hline t_f \\ Q_g \\ Q_{gs} \\ Q_{gd} \\ \hline Drain-Sou \\ I_S \\ V_{SD} \\ \hline t_{rr} \\ Q_{rr} \\ \hline Schottky \\ \end{array}$	Output Capacitance Reverse Transfer Capacitance Gate Resistance Characteristics (Note 2) Turn-On Delay Time Turn-On Rise Time Turn-Off Delay Time Turn-Off Fall Time Total Gate Charge Gate-Source Charge Gate-Drain Charge urce Diode Characteristics and Maximum Continuous Drain-Source Dio Drain-Source Diode Forward Voltage Diode Reverse Recovery Time Diode Reverse Recovery Charge Diode Characteristic	$f = 1MHz$ $f = 1MHz$ $V_{DD} = -10V, I_{D} = -1A$ $V_{GS} = -4.5V, R_{GEN} = 16\Omega$ $V_{DS} = -10V, I_{D} = -3.5A,$ $V_{GS} = -4.5V$ Maximum Ratings de Forward Current $V_{GS} = 0V, I_{S} = -2 A \text{ (Note}$ $-I_{F} = -3.5A, dI_{F}/dt = 100A/\mu s$	- - - - - - - 2) - - - 2) - - - 20	65 35 7 8 12 11 3.2 3 0.7 1 - -0.9 13 3	22 20 6.4 - - - - 2 -1.2 -	pF pF Ω ns ns ns nc nC nC nC NC NC

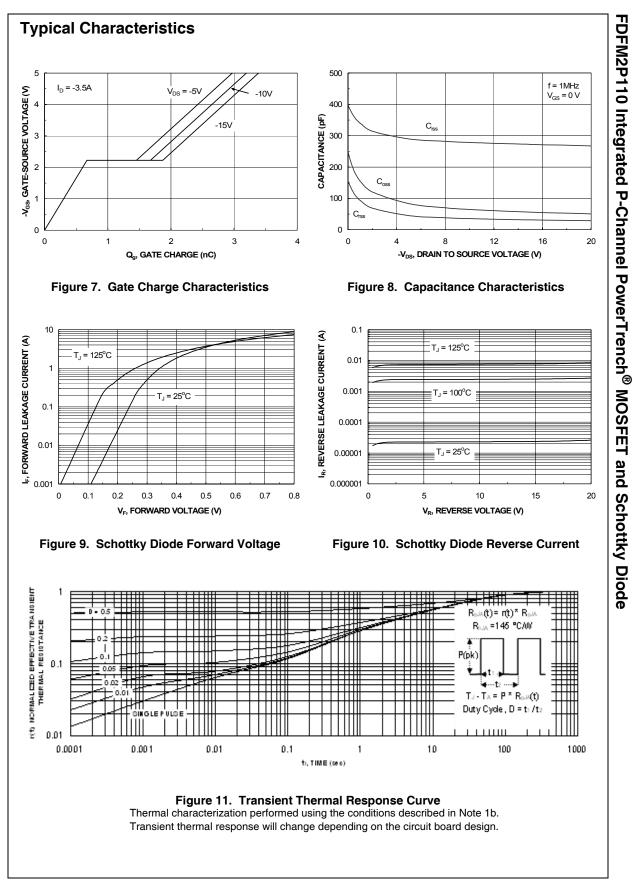
I

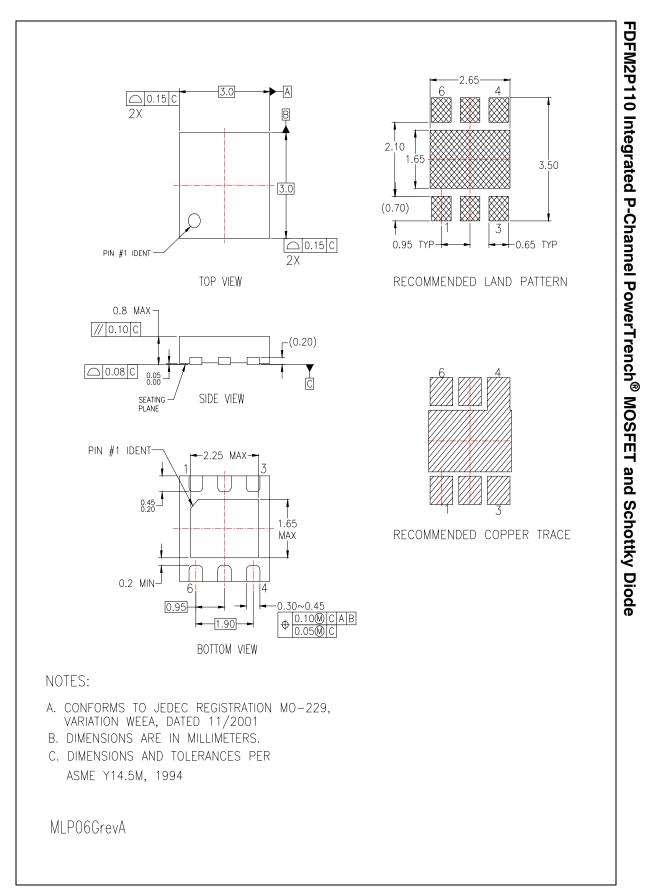
FDFM2P110 Integrated P-Channel PowerTrench[®] MOSFET and Schottky Diode

Electrical Characteristics $T_A = 25^{\circ}C$ unless otherwise noted **Notes**:

1. $R_{\theta JA}$ is the sum of the junction-to-case and case-to-ambient thermal resistance where the case thermal reference is defined as the solder mounting surface of the drain pins. $R_{\theta CA}$ is guaranteed by design while $R_{\theta CA}$ is determined by the user's board design.


a) 60°C/W when mounted on a 1in² pad of 2 oz copper




b) 145°C/W whe mounted on a minimum pad of 2 oz copper

Scale 1: 1 on letter size paper

2. Pulse Test: Pulse Width < 300 μ s, Duty Cycle < 2.0%

TRADEMARKS The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks. i-Lo™ ACEx™ FACT™ PACMAN™ SPM™ FACT Quiet Series™ ImpliedDisconnect[™] POP™ Stealth™ ActiveArray™ Bottomless™ FAST® IntelliMAX[™] Power247™ SuperFET™ Build it Now™ FASTr™ **ISOPLANAR™** PowerEdae™ SuperSOT™-3 CoolFET™ FPS™ LittleFET™ PowerSaver™ SuperSOT[™]-6 MICROCOUPLER™ PowerTrench® SuperSOT[™]-8 *CROSSVOLT*™ FRFET™ **QFET**® SyncFET™ DOME™ GlobalOptoisolator™ MicroFET™ QS™ TinyLogic[®] **EcoSPARK**[™] GTO™ MicroPak™ E²CMOS[™] HiSeC™ MICROWIRE™ QT Optoelectronics[™] **TINYOPTO™** EnSigna™ I²C™ MSX™ Quiet Series[™] TruTranslation[™] MSXPro™ RapidConfigure™ UHC™ UltraFET[®] OCX™ RapidConnect™ Across the board. Around the world.™ The Power Franchise[®] UniFET™ OCXPro™ µSerDes™ OPTOLOGIC[®] SILENT SWITCHER® Programmable Active Droop[™] VCX™ **OPTOPLANAR™** SMART START™ Wire™

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconducto The datasheet is printed for reference information onl

PRODUCT STATUS DEFINITIONS

FDFM2P110 Rev. C4 (W)

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor has against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death ass

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

© Semiconductor Components Industries, LLC