HCPL-1930, HCPL-1931, HCPL-193K, 5962-89572¹

Dual-Channel Line Receiver Hermetically Sealed Optocoupler

Data Sheet

Description

The HCPL-193x devices are dual-channel, hermetically sealed, high CMR, line receiver optocouplers. The products are capable of operation and storage over the full military temperature range and can be purchased as either a commercial product or with full MIL-PRF-38534 Class Level H or K testing, or from the DLA Standard Microcircuit Drawing (SMD) 5962-89572. This 16-pin DIP may be purchased with a variety of lead bend and plating options. See Selection Guide — Lead Configuration Options for details. Standard Microcircuit Drawing (SMD) parts are available for each lead style.

CAUTION It is advised that normal static precautions be taken in handling and assembly of this component to prevent damage and/or degradation which may be induced by ESD.

Features

- Dual marked with device part number and DLA Standard Microcircuit Drawing (SMD)
- Manufactured and tested on a MIL-PRF-38534 certified line
- QML-38534, Class H and Class K
- Hermetically sealed 16-pin dual in-line package
- Performance guaranteed over full military temperature range: -55° C to +125° C
- High speed: 10 Mb/s
- Accepts a broad range of drive conditions
- Adaptive line termination included
- Internal shield provides excellent common mode rejection
- External base lead allows LED Peaking and LED current adjustment
- 1500 Vdc withstand test voltage
- High radiation immunity
- HCPL-2602 function compatibility
- Reliability data available

Applications

- Military and space
- High reliability systems
- Isolated line receiver
- Simplex/multiplex data transmission
- Computer-peripheral interface
- Microprocessor system interface
- Harsh environmental environments
- Digital isolation for A/D, D/A conversion
- Current sensing
- Instrument input/output isolation
- Ground loop elimination
- Pulse transformer replacement

1. See Selection Guide — Lead Configuration Options for available extensions.

Functional Diagram

Truth Table (Positive Logic)

Input	Enable	Output
On	Н	L
Off	Н	Н
On	L	Н
Off	L	Н

NOTE The connection of a 0.1-μF bypass capacitor between pins 15 and 10 is recommended.

All devices are manufactured and tested on a MIL-PRF-38534 certified line and Class H and K devices are included in the DLA Qualified Manufacturers List QML-38534 for Hybrid Microcircuits.

Each unit contains two independent channels, consisting of a GaAsP light emitting diode, an input current regulator, and an integrated high gain photon detector. The input regulator serves as a line termination for line receiver applications. It clamps the line voltage and regulates the LED current so line reflections do not interfere with circuit performance. The regulator allows a typical LED current of 12.5 mA before it starts to shunt excess current. The output of the detector IC is an open collector Schottky clamped transistor. An enable input gates the detector. The internal detector shield provides a guaranteed common mode transient immunity specification of +1000 V/ μ s.

DC specifications are compatible with TTL logic and are guaranteed from -55° C to $+125^{\circ}$ C allowing trouble-free interfacing with digital logic circuits. An input current of 10 mA will sink a six gate fan-out (TTL) at the output with a typical propagation delay from input to output of only 45 ns.

Selection Guide — Lead Configuration Options

Part Number and Options	
Commercial	HCPL-1930
MIL-PRF-38534 Class H	HCPL-1931
MIL-PRF-38534 Class K	HCPL-193K
Standard Lead Finish ^a	Gold
Solder Dipped ^b	Option #200
Butt Joint/Gold Plate ^a	Option #100
Gull Wing/Soldered ^b	Option #300
Crew Cut/Gold Plate ^a	Option #600
Class H SMD Part Number	
Prescript for all below	5962-
Gold Plate ^a	8957201EC
Solder Dipped ^b	8957201EA
Butt Joint/Gold Plate ^a	8957201YC
Butt Joint/Soldered ^b	8957201YA
Gull Wing/Soldered ^b	8957201XA
Crew Cut/Gold Plate ^a	Available
Crew Cut/Soldered ^b	Available
Class K SMD Part Number	
Prescript for all below	5962-
Gold Plate ^a	8957202KEC
Solder Dipped ^b	8957202KEA
Butt Joint/Gold Plate ^a	8957202KYC
Butt Joint/Soldered ^b	8957202KYA
Gull Wing/Soldered ^b	8957202KXA

a. Gold Plate lead finish: Maximum gold thickness of leads is <100 micro inches. Typical is 60 to 90 micro inches.

b. Solder lead finish: Sn63/Pb37.

Outline Drawings

16-Pin DIP Through Hole, 2 Channels

Note: Dimensions in millimeters (inches).

Device Marking

Hermetic Optocoupler Options

Note: Dimensions in millimeters (inches).

Absolute Maximum Ratings

Parameter	Symbol	Min	Мах	Unit	Note
Storage Temperature	T _S	-65	+150	°C	
Operating Temperature	T _A	-55	+125	°C	
Lead Solder Temperature		—	260 for 10 sec	°C	
Forward Input Current (each channel)	lı lı		60	mA	а
Reverse Input Current	I _R	_	60	mA	
Supply Voltage (1 minute max)	V _{CC}	_	7.0	V	
Enable Input Voltage (each channel)	V _E	_	5.5 ^b	V	
Output Collector Current (each channel)	Ι _Ο	_	25	mA	
Output Collector Power Dissipation (each channel)	Po	_	40	mW	
Output Collector Voltage (each channel)	Vo	—	7	V	
Total Package Power Dissipation		_	564	mW	
Input Power Dissipation (each channel)		—	168	mW	

a. Derate linearly at 1.2 mA/°C above $T_A = 100$ °C.

b. Not to exceed V_{CC} by more than 500 mV.

Schematic

Notes: The connection of a 0.1-µF bypass capacitor between pins 15 and 10 is recommended. Bypassing of the power supply line is required, with a 0.1-µF ceramic disc capacitor adjacent to each isolator. The power supply bus for the isolators should be separate from the bus for any active loads, otherwise additional bypass capacitance may be needed to suppress regenerative feedback via the power supply.

ESD Classification

(MIL-STD-883, Method 3015)	▲, Class 1

Recommended Operating Conditions

Parameter	Symbol	Min	Мах	Unit
Input Current, Low Level	Ι _L	0	250	μΑ
Input Current, High Level ^a	I _{IH}	12.5	60	mA
Supply Voltage, Output	V _{CC}	4.5	5.5	V
High Level Enable Voltage	V _{EH}	2.0	V _{CC}	V
Low Level Enable Voltage	V _{EL}	0	0.8	V
Fan Out (at $R_L = 4 k\Omega$)	N	_	5	TTL Loads
Operating Temperature	T _A	-55	125	°C

a. 12.5-mA condition permits at least 20% guardband for optical coupling variation. Initial switching threshold is 10 mA or less.

Electrical Specifications

 $T_A = -55^{\circ}C$ to 125°C unless otherwise stated.

Parameter		Group		Limits					
	Symbol	Test Conditions	Subgroups ^a	Min	Тур ^b	Мах	Unit	Fig	Note
High Level Output Current	I _{OH}	$V_{CC} = 5.5V, V_{O} = 5.5V$ $I_{I} = 250 \ \mu$ A, $V_{E} = 2.0V$	1, 2, 3		20	250	μΑ	3	с
Low Level Output Voltage	V _{OL}	$V_{CC} = 5.5V; I_1 = 10 mA$ $V_E = 2.0V,$ I_{OL} (Sinking) = 10 mA	1, 2, 3	_	0.3	0.6	V	1	с
Input Voltage	VI	I _I = 10 mA	1, 2, 3		2.2	2.6	V	2	с
		I _I = 60 mA	_	_	2.35	2.75	-		
Input Reverse Voltage	V _R	I _R = 10 mA 1, 2, 3 — 0.8 1.10		V		с			
Low Level Enable Current	I _{EL}	$V_{CC} = 5.5 V, V_{E} = 0.5 V$	1, 2, 3	_	-1.45	-2.0	mA		с
High Level Enable Current	I _{EH}	V _{CC} = 5.5V, V _E = 1.7V 1, 2, 3 — — -1.5 mA		mA		с			
High Level Enable Voltage	V _{EH}	—	1, 2, 3	2.0	_	_	V		c, d
Low Level Enable Voltage	V _{EL}	_	1, 2, 3	_	_	0.8	V		с
High Level Supply Current	I _{ссн}	$V_{CC} = 5.5V; I_I = 0,$ $V_E = 0.5V$ both channels	1, 2, 3		21	28	mA		
Low Level Supply Current	I _{CCL}	$V_{CC} = 5.5V$; $I_I = 60$ mA, 1, 2, 3 — 27 36 mA $V_E = 0.5V$ both channels		mA					
Input-Output Insulation Leakage Current	I _{I-O}	Relative Humidity \leq 65, t = 5s, V _{I-O} = 1500 Vdc	1		—	1	μΑ		e
Propagation Delay Time to High	t _{PLH}	$R_L = 510\Omega; C_L = 50 \text{ pF},$	9	_	55	100	ns	4, 5	c, f
Output Level		l _l = 13 mA,V _{CC} = 5.0 V	10, 11		_	140			

Parameter	Cumhal	Symbol Test Conditions	Group A	Limits			11	F ¹	Nete
	Symbol Test Conditions	Subgroups ^a	Min	Тур ^ь	Мах	Unit	Fig	Note	
Propagation Delay Time to Low	t _{PHL}	$R_L = 510\Omega; C_L = 50 \text{ pF},$	9		60	100	ns	4, 5	c, g
Output Level		$I_{I} = 13 \text{ mA}, V_{CC} = 5.0 \text{ V}$	10, 11		—	120			
Common Mode Transient Immunity at High Output Level	CM _H	$\begin{split} & V_{CM} = 50V \ (peak), \\ & V_{O} \ (min.) = 2V, \ R_{L} = 510\Omega; \\ & I_{I} = 0 \ mA, \ V_{CC} = 5.0V \end{split}$	9, 10, 11	1000	10,000	_	V/µs	8, 9	c, h, i
Common Mode Transient Immunity at Low Output Level	CM _L	$V_{CM} = 50V (peak), \\ V_O (max.) = 0.8V, \\ R_L = 510\Omega; I_I = 10 mA, \\ V_{CC} = 5.0V$	9, 10, 11	1000	10,000	_	V/µs	8,9	c, j, i

a. Commercial parts receive 100% testing at 25°C (Subgroups 1 and 9). Class H and K parts receive 100% testing at 25, 125, and -55° C (Subgroups 1 and 9, 2 and 10, 3 and 11, respectively).

b. All typical values are at $V_{CC} = 5V$, $T_A = 25^{\circ}C$.

c. Each channel.

d. No external pull-up is required for a high logic state on the enable input.

e. Device considered a two terminal device: pins 1 through 8 are shorted together, and pins 9 through 16 are shorted together.

f. The t_{PLH} propagation delay is measured from the 6.5-mA point on the trailing edge of the input pulse to the 1.5V point on the trailing edge of the output pulse.

g. The t_{PHL} propagation delay is measured from the 6.5-mA point on the leading edge of the input pulse to the 1.5V point on the leading edge of the output pulse.

h. CM_H is the maximum tolerable rate of rise of the common mode voltage to assure that the output remains in a high logic state, i.e., V_{OUT} > 2.0V.

i. Parameters shall be tested as part of device initial characterization and after process changes. Parameters shall be guaranteed to the limits specified for all lots not specifically tested.

j. CM_L is the maximum tolerable rate of fall of the common mode voltage to assure that the output remains in a low logic state, i.e., V_{OUT} < 0.8V.

Typical Specifications

 $T_A = 25^{\circ}C, V_{CC} = 5V.$

Parameter	Symbol	Тур	Unit	Test Conditions	Fig.	Note
Resistance (Input-Output)	R _{I-O}	10 ¹²	Ω	V _{I-O} = 500 Vdc		a b
Capacitance (Input-Output)	C _{I-O}	1.7	pF	f = 1 MHz		a, b
Input-Input Insulation Leakage Current	I _{I-I}	0.5	nA	≤65% Relative Humidity, V _{I-I} = 500 Vdc, t = 5s		с
Resistance (Input-Input)	R _{I-I}	1012	Ω	V _{I-1} = 500 Vdc		с
Capacitance (Input-Input)	C _{I-I}	0.55	pF	f = 1 MHz		с
Propagation Delay Time of Enable from V_{EH} to V_{EL}	t _{ELH}	35	ns	$R_L = 510\Omega, C_L = 15 \text{ pF},$	6, 7	a, d
Propagation Delay Time of Enable from $\rm V_{EL}$ to $\rm V_{EH}$	t _{EHL}	35	ns	$I_{I} = 13 \text{ mA}, V_{EH} = 3V, V_{EL} = 0V$	6, 7	a, e
Output Rise Time (10% to 90%)	t _r	30	ns	$R_L = 510\Omega, C_L = 15 \text{ pF}, I_I = 13 \text{ mA}$		а
Output Fall Time (90% to 10%)	t _f	24	ns			а
Input Capacitance	CI	60	pF	$f = 1 \text{ MHz}, V_1 = 0, \text{ PINS 1 to 2 or 5 to 6}$		а

a. Each channel.

b. Measured between pins 1 and 2 or 5 and 6 shorted together, and pins 10 through 15 shorted together.

c. Measured between adjacent input leads shorted together, i.e., between 1, 2, and 4 shorted together and pins 5, 6, and 8 shorted together.

d. The t_{ELH} enable propagation delay is measured from the 1.5V point on the trailing edge of the enable input pulse to the 1.5V point on the trailing edge of the output pulse.

e. The t_{EHL} enable propagation delay is measured from the 1.5V point on the leading edge of the enable input pulse to the 1.5V point on the leading edge of the output pulse.

Figure 1 Input-Output Characteristics

Figure 2 Input Characteristics

Figure 3 High Level Output Current vs. Temperature

Figure 5 Enable Propagation Delay vs. Temperature

Figure 4 Propagation Delay vs. Temperature

Figure 6 Test Circuit for t_{PHL} and t_{PLH}

Figure 7 Test Circuit for t_{EHL} and t_{ELH}

Figure 8 Typical Common Mode Transient Immunity

Figure 9 Test Circuit for Common Mode Transient Immunity and Typical Waveforms

Figure 10 Burn In Circuit

Application Circuits

Figure 11 Polarity Non-Reversing

PROPAGATION DELAY TIMES SHOWN EXCLUDE DRIVER AND LINE DELAYS.

Figure 12 Polarity Reversing, Split Phase

l

t_{PHL}

t_{PLH}

PROPAGATION DELAY TIMES SHOWN EXCLUDE DRIVER AND LINE DELAYS USING 1/3 74LS04 INVERTERS AND 74LS00 QUAD NAND

Figure 13 Flop-Flop Configurations

NAND flip flop tolerates simultaneously HIGH inputs; NOR flip flop tolerates simultaneously LOW inputs; EXCLUSIVE-OR flip flop tolerates simultaneously HIGH OR LOW inputs without causing either of the outputs to change.

*FOR A DESCRIPTION OF THESE CIRCUITS SEE HCPL-2602 DATA SHEET.

For product information and a complete list of distributors, please go to our web site: www.broadcom.com.

Broadcom, the pulse logo, Connecting everything, Avago Technologies, Avago, and the A logo are among the trademarks of Broadcom in the United States, certain other countries and/or the EU.

Copyright © 2005-2017 Broadcom. All Rights Reserved.

The term "Broadcom" refers to Broadcom Limited and/or its subsidiaries. For more information, please visit www.broadcom.com.

Broadcom reserves the right to make changes without further notice to any products or data herein to improve reliability, function, or design.

Information furnished by Broadcom is believed to be accurate and reliable. However, Broadcom does not assume any liability arising out of the application or use of this information, nor the application or use of any product or circuit described herein, neither does it convey any license under its patent rights nor the rights of others.

AV02-3843EN – February 8, 2017

