
1 SLN-VIZN-IOT Developer’s Guide, Rev. 1.0, 02/2020 NXP Semiconductors

NXP Semiconductors Document Number: SLN-VIZN-IOT-DG

Developer’s Guide Rev 1.0, 02/2020

MCU VIZN Solution Developer’s Guide

TABLE OF CONTENTS

1 INTRODUCTION .. 4

1.1 RT106F VISION CROSSOVER PROCESSOR OVERVIEW .. 4

2 GETTING TO KNOW THE SLN-VIZN-IOT ... 6

2.1 HARDWARE OVERVIEW ... 6
2.2 SOFTWARE OVERVIEW .. 7
2.3 DEVICE MEMORY MAP ... 8
2.4 SECURITY ARCHITECTURE ... 9

2.4.1 Application Chain of Trust .. 9
2.4.2 Generate Application Bank B Binary .. 10
2.4.3 Flash Image Configuration Area (FICA) and Image Verification .. 11
2.4.4 Image Certificate Authority (CA) and Application Certificates ... 11

3 GET STARTED WITH MCUXPRESSO TOOL SUITE .. 12

3.1 MCUXPRESSO IDE ... 12
3.2 INSTALLING THE SDK .. 13
3.3 IMPORT A SLN-VIZN-IOT PROJECT ... 14

4 BUILDING AND PROGRAMMING ... 17

4.1 BUILD A SLN-VIZN-IOT PROJECT ... 17
4.2 FLASH AND DEBUG SLN-VIZN-IOT PROJECT .. 19

5 BOOTLOADER ... 22

5.1 APPLICATION FLOW .. 22
5.2 OVER-THE-WIRE (OTW) UPDATES ... 22

5.2.1 Transfers .. 23
5.2.2 JSON Messages .. 23

5.3 MASS STORAGE DEVICE (MSD) UPDATE .. 25
5.3.1 Generate Application Bank B Binary .. 27

6 AUTOMATED MANUFACTURING TOOLS ... 28

6.1 ABOUT IVALDI.. 28

2 SLN-VIZN-IOT Developer’s Guide, Rev. 1.0, 02/2020 NXP Semiconductors

6.2 REQUIREMENTS ... 28
6.3 CREATING A SIGNING ENTITY .. 28

6.3.1 Using Ivaldi to Generate Signing Artifacts ... 29
6.4 OPEN BOOT PROGRAMMING .. 30
6.5 (OPTIONAL) ENABLING ENCRYPTED EXECUTE-IN-PLACE (EXIP) AND HIGH ASSURANCE BOOT (HAB) 31

6.5.1 Preparing the Environment .. 31
6.5.2 Generating the PKI and Signed Flashloader ... 32
6.5.3 Creating the Images ... 33
6.5.4 Generating Secure Binary .. 35
6.5.5 Enabling High Assurance Boot (HAB) ... 36
6.5.6 Preparing for Programming the Device ... 37
6.5.7 Enabling and Programming the Signed and Encrypted Binaries .. 38

7 FILESYSTEM .. 40

8 DOCUMENT DETAILS... 41

8.1 REFERENCES .. 41
8.2 ACRONYMS, ABBREVIATIONS, & DEFINITIONS .. 41
8.3 REVISION HISTORY .. 42

TABLE OF FIGURES
FIGURE 1: SLN-VIZN-IOT BASE BOARD + EXPANSION BOARD PERIPHERALS ... 6
FIGURE 2: SLN-VIZN-IOT HARDWARE BLOCK DIAGRAM .. 6
FIGURE 3: SLN-VIZN-IOT SOFTWARE BLOCK DIAGRAM ... 7
FIGURE 4: DEVICE MEMORY MAP ... 8
FIGURE 5: BOOT SECURITY FLOW CHART .. 9
FIGURE 6: SIGNING ENTITIES ... 9
FIGURE 7: MCUXPRESSO IDE WORKSPACE .. 12
FIGURE 8: EXTRACTING SOFTWARE COLLATERAL ZIP .. 13
FIGURE 9: DRAG AND DROP SDK .. 13
FIGURE 10: IMPORT SDK CONFIRMATION WINDOW ... 14
FIGURE 11: SDK IMPORT SUCCESSFUL ... 14
FIGURE 12: IMPORT SDK EXAMPLES .. 14
FIGURE 13: IMPORT SLN_VIZN_IOT EXAMPLES ... 15
FIGURE 14: IMPORT EXAMPLES ... 15
FIGURE 15: PROJECT EXPLORER - HIGHLIGHT PROJECT .. 17
FIGURE 16: BUILD PROJECT .. 17
FIGURE 17: CONSOLE 'BUILD' OUTPUT ... 18
FIGURE 18: .AXF TO .BIN .. 18
FIGURE 19: J-LINK PLUS AND 9-PIN CORTEX-M ADAPTER .. 19
FIGURE 20: SLN-VIZN-IOT JTAG HEADER .. 19
FIGURE 21: QUICKSTART PANEL - DEBUG .. 20
FIGURE 22: PROBE DISCOVERY WINDOW .. 20
FIGURE 23: FLASH DOWNLOAD IN PROGRESS .. 21
FIGURE 24: DEBUG BEGIN ... 21
FIGURE 25: DEBUG TOOLBAR - RUN BUTTON .. 21
FIGURE 26: BOOTLOADER FLOW ... 22

3 SLN-VIZN-IOT Developer’s Guide, Rev. 1.0, 02/2020 NXP Semiconductors

FIGURE 27: TRANSFER FORMAT .. 23
FIGURE 28: REQUEST/RESPONSE FLOW .. 23
FIGURE 29: MSD ENABLEMENT BUTTON .. 25
FIGURE 30: MSD MODE LIGHTS ... 26
FIGURE 31: MSD USB DRIVE ENUMERATION ... 26
FIGURE 32: DRAGGING-AND-DROPPING NEW BINARY .. 26
FIGURE 33: CREATE FLASH BANK B BINARY ... 27
FIGURE 34: VIRTUAL ENV PROMPT .. 29
FIGURE 35: GENERATE_SIGNING_ARTIFACTS.PY USAGE ... 29
FIGURE 36: GENERATE_SIGNING_ARTIFACTS.PY EXAMPLE .. 29
FIGURE 37: OPEN_PROG_FULL.PY OUTPUT .. 31
FIGURE 38: "VIRTUALENV” PROMPT .. 32
FIGURE 39: SETUP_HAB.PY SCRIPT ... 33
FIGURE 40: CHECKING THE SIGNED FLASHLOADER .. 33
FIGURE 41: IMPORTING THE APPLICATIONS FOR HAB AND EXIP .. 33
FIGURE 42: UNSETTING THE XIP BOOT HEADER ... 34
FIGURE 43: GENERATING THE SREC .. 34
FIGURE 44: CHANGING FILE TYPE TO SREC... 35
FIGURE 45: GENERATE BOOTLOADER AND USERID_OOBE BINARY .. 35
FIGURE 46: "IMAGE_BINARIES" EXPECTED FOLDER CONTENTS ... 35
FIGURE 47: SECURE APP FILE NAMES ... 36
FIGURE 48: SECURE.PY OUTPUT FOR SECURING IMAGES .. 36
FIGURE 49: ENABLING HAB USING ENABLE_HAB.PY .. 37
FIGURE 50: "IMAGE_BINARIES" CONTENT .. 38
FIGURE 51: USING "CUST_PROG_SEC_APP.PY" .. 39
FIGURE 52: FILE_FORMAT.PY USAGE .. 40

TABLE OF TABLES

TABLE 1: SUPPORTED COMPUTER CONFIGURATIONS ... 5
TABLE 2: WI-FI FREQUENCY & POWER ... 5
TABLE 3: REFERENCE DOCUMENTS .. 41
TABLE 4: ABBREVIATIONS AND DEFINITIONS .. 41
TABLE 5: REVISION HISTORY ... 42

https://nxp1.sharepoint.com/teams/25_33/Shared%20Documents/Projects/RT%20Vision/09_Documentation/Guides/Dev%20Guide/SLN-VIZN-IOT-Developer's%20Guide.docx#_Toc33477974
https://nxp1.sharepoint.com/teams/25_33/Shared%20Documents/Projects/RT%20Vision/09_Documentation/Guides/Dev%20Guide/SLN-VIZN-IOT-Developer's%20Guide.docx#_Toc33477976
https://nxp1.sharepoint.com/teams/25_33/Shared%20Documents/Projects/RT%20Vision/09_Documentation/Guides/Dev%20Guide/SLN-VIZN-IOT-Developer's%20Guide.docx#_Toc33477985

4 SLN-VIZN-IOT Developer’s Guide, Rev. 1.0, 02/2020 NXP Semiconductors

1 Introduction
NXP’s MCU-based SLN-VIZN-IOT development kit provides OEMs with a fully integrated,

self-contained, software and hardware solution. This includes the i.MX RT106F run-time

library and pre-integrated machine learning face recognition algorithms, as well as all

required drivers for peripherals, such as camera and memories.

This cost-effective, easy-to-use face recognition implementation facilitates the demand

for a face-based Friction Free Interface that can be embedded in a variety of products

across home, commercial and industrial applications, thus eliminating the need to use

hard to learn and time-consuming mechanisms to identify users.

TARGET APPLICATIONS

• Safety/Security/Alarm devices: E-locks, Alarm panels, remote sensors, and

automated access

• Smart appliances: Washing machines, dryers, ovens, refrigerators, stoves, and

dishwashers

• Home comfort devices: Thermostats, remote temperature sensors, and lighting

• Counter-top appliances: Microwaves, coffee machines, rice cookers, and

blenders

• Smart industrial devices: Power tools, ergonomic stations, machine access and

authorization

1.1 RT106F VISION CROSSOVER PROCESSOR OVERVIEW

The i.MX RT106F is an EdgeReady member of the i.MX RT1060 family of crossover

processors, targeting low cost embedded face recognition applications. It features NXPs

advanced implementation of the Arm® Cortex®-M7 core, which operates at speeds up to

600 MHz to provide high CPU performance and best real-time responses. This i.MX

RT106F based solution enables system designers to easily and inexpensively add face

recognition capabilities to a wide variety of smart appliances, smart homes, FRICTION

FREE INTERFACE VISION HARDWARE and smart industrial devices. The i.MX RT106F

processor is licensed to run NXPs i.MX RT run-time library for face recognition which may

include:

• Camera drivers

• Image capture

• Image pre-processing

• Face alignment

• Face detection

• Face recognition

• Emotion recognition

5 SLN-VIZN-IOT Developer’s Guide, Rev. 1.0, 02/2020 NXP Semiconductors

Once you’re ready to begin development, you will need to download MCUXpresso IDE.

The current SDK is tested with versions 11.1.0 of MCUXpresso IDE and Segger J-Link

v6.6x.

https://www.nxp.com/support/developer-resources/software-development-

tools/mcuxpresso-software-and-tools/mcuxpresso-integrated-development-

environment-ide:MCUXpresso-IDE

Table 1: Supported Computer Configurations

Usage Condition

The following information is provided per Article 10.8 of the Radio Equipment Directive

2014/53/EU:

(a) Frequency bands in which the equipment operates.

(b) The maximum RF power transmitted.

PN RF Technology (a) Freq Range (b) Max Transmitted Power

SLN-VIZN-IOT Wi-Fi 2412MHz-2472MHz 17.9dBm

Table 2: Wi-Fi Frequency & Power

EUROPEAN DECLARATION OF CONFORMITY (Simplified DoC per Article 10.9 of the

Radio Equipment Directive 2014/53/EU)

This apparatus, namely SLN-VIZN-IOT, conforms to the Radio Equipment Directive

2014/53/EU. The full EU Declaration of Conformity for this apparatus can be found at this

location: https://www.nxp.com/

Computer type OS version Terminal

Apple Mac OS PuTTY

PC Windows 7 / 10 PuTTY/Tera Term

PC Linux PuTTY

System Requirements and Prerequisites

https://www.nxp.com/support/developer-resources/software-development-tools/mcuxpresso-software-and-tools/mcuxpresso-integrated-development-environment-ide:MCUXpresso-IDE
https://www.nxp.com/support/developer-resources/software-development-tools/mcuxpresso-software-and-tools/mcuxpresso-integrated-development-environment-ide:MCUXpresso-IDE
https://www.nxp.com/support/developer-resources/software-development-tools/mcuxpresso-software-and-tools/mcuxpresso-integrated-development-environment-ide:MCUXpresso-IDE
https://www.nxp.com/

6 SLN-VIZN-IOT Developer’s Guide, Rev. 1.0, 02/2020 NXP Semiconductors

2 Getting to Know the SLN-VIZN-IOT

2.1 Hardware Overview

The SLN-VIZN-IOT kit is intended to provide a reference for a real product design. The

kit is designed using a small form factor which takes into account many of the design

considerations a hardware engineer would make when creating a product. With that said,

NXP has also fashioned the hardware to have some of the key hallmarks of a traditional

development kit.

Figure 1: SLN-VIZN-IOT Base Board + Expansion Board Peripherals

Figure 2: SLN-VIZN-IOT Hardware Block Diagram

7 SLN-VIZN-IOT Developer’s Guide, Rev. 1.0, 02/2020 NXP Semiconductors

2.2 Software Overview

The SLN-VIZN-IOT kit has been built and designed in such a way that enables best

security practices while keeping a development kit feel. The main security mechanism

that has been implemented is a series of image verification stages that are required for

every image programmed onto the device. The sections below guide you through the

overall software and security architectures and the implications they have during the

development and production phases of your product development.

The below figure shows a high-level software architecture diagram. This figure shows

everything that is included in the SDK for the SLN-VIZN-IOT package, though not all of

these features are implemented in demo applications.

Figure 3: SLN-VIZN-IOT Software Block Diagram

8 SLN-VIZN-IOT Developer’s Guide, Rev. 1.0, 02/2020 NXP Semiconductors

2.3 Device Memory Map

To understand the various pieces of the system, it helps to see the memory map that NXP

has developed for this application. There are many components required in the system

to successfully boot and execute an application. A few of these sectors will be described

in greater detail below.

Figure 4: Device Memory Map

0x60000000

Bootloader

Bootstrap

0x60D00000

BankA
ApplicationA

BankB
ApplicationB

0x60300000

0x60040000

0x61700000File System:

0x60000000

Bootloader

Bootstrap

0x60D00000

BankA
ApplicationA

BankB
ApplicationB

0x60300000

0x60040000

AppB Certificate

AppA Certificate

0x61700000File System:

ROOT_CA_CERT

AppA SIGN CERT

AppB SIGN CERT

Btld SIGN CERT

0x61CC0000

0x61D00000

0x61D40000

0x61D80000

0x61FC0000FICA Table:

DESCRIPTOR
AppType, BootType, ComBits

RECORDS (x3)
ImgType, AppAddr

Signatures

RegisteredUsers DataBase 0x60800000 RegisteredUsers DataBase 0x60800000

DevCfg Data 0x61B00000DevCfg Data 0x61B00000

Bootloader Certificate

DISABLE_IMAGE_VERIFICATION = 1 DISABLE_IMAGE_VERIFICATION = 0

0x61FC0000FICA Table:

DESCRIPTOR
AppType, BootType, ComBits

RECORDS (x3)
ImgType, AppAddr

9 SLN-VIZN-IOT Developer’s Guide, Rev. 1.0, 02/2020 NXP Semiconductors

2.4 Security Architecture

The following figure shows the series of checks that occur at boot time. Configuration

options in the various applications (ROM bootloader, bootstrap, bootloader) will determine

which sequence is followed. The state of the board from factory is with all security

checks disabled.

Figure 5: Boot Security Flow Chart

If at any point a signature check fails (in the case where HAB or image verification is

enabled), the boot process stops.

2.4.1 Application Chain of Trust

The basis of the security architecture implemented in the SLN-VIZN-IOT is signed

application images. Signing requires the use of a Certificate Authority (CA). NXP has

its own CA for signing applications at the factory, but the CA is not something that is

shared with customers.

The CA is used to create signing entities for the bootloader and application. A certificate

from the CA is stored in the SLN-VIZN-IOT’s filesystem and is used to verify the

signatures of the signing entity certificates. In addition, locally stored certificates from the

signing entities are used to verify the signature of firmware images coming in over the

OTW bootloader interface.

Figure 6: Signing Entities

10 SLN-VIZN-IOT Developer’s Guide, Rev. 1.0, 02/2020 NXP Semiconductors

2.4.2 Generate Application Bank B Binary

As previously mentioned, if the board is currently running from Application Bank A, MSD

drag-and-drop flashing will require a binary created for Application Bank B and vice versa.

Currently the active application flash bank information is not exposed to the user and can

only be found through attempting to flash both a Bank A and Bank B application with

MSD.

To generate a binary for Application Bank B in MCUXpresso you must change the flash

address for your kit in MCUXpresso. To do so, right-click on the sln_vizn_iot_userid_oobe

application in in the Project Explorer panel and click on Properties.

Under the Properties dialog window that appears, click the drop-down arrow next to

C/C++ Build, and select MCU settings. Change the Flash address from 0x60300000 to

0x60D00000, then click Apply and Close.

Figure 33: Create Flash Bank B Binary

Rebuild your application using the steps found under Building and Programming,

making sure to generate a binary from the .axf. The generated binary will be able to

reflash the main application when the kit is running from Application Bank A.

Be sure to change the flash address back to 0x60300000 if trying to run debugging

using a J-Link.

Automated Manufacturing Tools can be used alongside your unique CA.

11 SLN-VIZN-IOT Developer’s Guide, Rev. 1.0, 02/2020 NXP Semiconductors

2.4.3 Flash Image Configuration Area (FICA) and Image Verification

The FICA table is a section inside the filesystem that is responsible for describing the

images that will be booted. It contains information about the image and signatures of the

applications that will be used to ensure that only verified firmware is executed. This

ensures malicious images cannot be executed without it being signed with the certificate

authority and certificate that is programmed into the filesystem. Before any image is

jumped to, it is first verified using the signature from its associated FICA entry.

For example, in the standard boot flow shown in Figure 5:

• The bootstrap will use the bootloader FICA entry to validate the bootloader

• The bootloader will use the AppA FICA entry to validate the AppA image

• The bootloader will use the AppB FICA entry to validate the AppB image

For final production, the solution provides programming scripts to enable i.MX RT High

Assurance Boot (HAB) to verify and protect the bootstrap component. It is recommended

that users enable HAB for their end product.

The downside of having this security protection enabled is that programming new images

can be a little more complex as it requires signature generation. Taking in consideration

that this flow may be time consuming and not required for basic development tasks, NXP

introduced some bypasses to make the job easier for developers. These bypasses

should not be deployed in production.

Again, the default configuration of the SLN-VIZN-IOT is to have HAB disabled and

signature verifications bypassed. This is to ensure a smooth development experience.

2.4.4 Image Certificate Authority (CA) and Application Certificates

The SLN-VIZN-IOT kit comes pre-programmed with signed images (though signature

verification is bypassed by default) as indicated in the Flash Image Configuration Area

(FICA) and Image Verification section. The bootloader and userid_oobe application

are signed using NXP’s test CA and can be used to ensure the authenticity of all images

which are intended to be booted.

The application signing certificates are located at the following locations in the filesystem:

• Address 0x61D00000 for Application Bank A

• Address 0x61D80000 for the bootloader

The certificate for the CA (used to verify the application signing certificates) is located at

address 0x61CC0000 in the filesystem.

12 SLN-VIZN-IOT Developer’s Guide, Rev. 1.0, 02/2020 NXP Semiconductors

3 Get Started with MCUXpresso Tool Suite
The following section is going to describe the steps to setup the environment and prepare

it for development.

3.1 MCUXpresso IDE

MCUXpresso IDE brings developers an easy-to-use Eclipse-based development

environment for NXPs microcontrollers based on Arm® Cortex®-M cores. It offers

advanced editing, compiling and debugging features with the addition of MCU-specific

debugging views, code trace and profiling, multicore debugging, and integrated

configuration tools. Its debug connections support every NXP evaluation boards with

industry-leading open-source and commercial debug probes from ARM®, P&E Micro®

and SEGGER®

1. To download NXP MCUXpresso IDE for free go online to: www.nxp.com/MCUXpresso

2. Select MCUXpresso IDE from the PRODUCTS tab.

3. Go to DOWNLOADS tab and select the LATEST VERSION of the tool.

If you do not already have one, you will be asked to sign-in/up with a free NXP user-

account.

4. When MCUXpresso installer download completes, double click on the executable,

follow the install instructions and keep the default options.

5. Launch MCUXpresso IDE and define the Workspace location where you will copy and

store your projects (default C:\MCUXpresso.Workspace) and press OK.

Figure 7: MCUXpresso IDE Workspace

http://www.nxp.com/MCUXpresso

13 SLN-VIZN-IOT Developer’s Guide, Rev. 1.0, 02/2020 NXP Semiconductors

3.2 Installing the SDK

MCUXpresso SDK is a comprehensive software enablement package designed to

simplify and accelerate application development with NXPs microcontrollers based on

Arm® Cortex®-M cores. The MCUXpresso SDK includes production-grade software with

integrated RTOS (optional), integrated stacks and middleware, reference software, and

more. It is available in custom downloads based on user selections of MCU, evaluation

board, and optional software components.

Before building the SLN-VIZN-IOT SDK example projects, the target SDK needs to be

imported into MCUXpresso IDE.

The MCUXpresso SDK for the SLN-VIZN-IOT can be found in the SLN-VIZN-IOT

Software Collateral.zip folder downloaded from the website using an SLN-VIZN-IOT

collateral activation code obtained when purchasing a SLN-VIZN-IOT kit.

Figure 8: Extracting Software Collateral Zip

To import the SDK into MCUXpresso IDE, extract the zip folder and drag the SLN-VIZN-

IOT xPx SDK.zip into the Installed SDKs window in MCUXpresso IDE.

Figure 9: Drag and Drop SDK

14 SLN-VIZN-IOT Developer’s Guide, Rev. 1.0, 02/2020 NXP Semiconductors

For each package, a confirmation window will pop-up. Select OK to validate.

Figure 10: Import SDK Confirmation Window

Once the package has been imported, it will be displayed in the Installed SDKs window

in MCUXpresso.

Figure 11: SDK Import Successful

3.3 Import a SLN-VIZN-IOT Project

The SLN-VIZN-IOT SDK allows you to import existing application examples as a

development starting point. The following steps will show you how to import one of these

example projects into MCUXpresso IDE.

From the Quickstart Panel, select Import SDK example(s).

Figure 12: Import SDK Examples

15 SLN-VIZN-IOT Developer’s Guide, Rev. 1.0, 02/2020 NXP Semiconductors

For each SDK you have installed into MCUXpresso, a corresponding image will be

shown. Select the sln_vizn_iot image and then proceed by selecting the Next button.

Figure 13: Import SLN_VIZN_IOT Examples

The import wizard will then display all the example applications that are available to

import. For this guide we will be focused primarily on the sln_vizn_iot_userid_oobe

application. This is the application that comes flashed by default on your SLN-VIZN-IOT

kit.

If your kit’s flash has been completely erased, you will also need the

sln_vizn_iot_bootloader and sln_vizn_iot_bootstrap projects found under

sln_boot_apps as well in order for the sln_vizn_iot_userid_oobe application to work.

Figure 14: Import Examples

16 SLN-VIZN-IOT Developer’s Guide, Rev. 1.0, 02/2020 NXP Semiconductors

Once the projects have successfully been imported, they will be listed in the project explorer ready

to be built and run.

17 SLN-VIZN-IOT Developer’s Guide, Rev. 1.0, 02/2020 NXP Semiconductors

4 Building and Programming
The bootstrap project is the first application that is booted. The bootstrap is a minimal

FreeRTOS application that is responsible for image verification.

The bootloader project is a second stage bootloader that manages jumping into the

UserID OoBE application. This application can be used for any additional bootloader

functionality needed for the product. The bootloader is also responsible for Mass Storage

Device drag-and-drop firmware updates via USB.

The UserID OoBE is the out-of-box application used to demonstrate the capabilities of

the Oasis Lite machine learning engine for face and emotion recognition. This is the

application (in addition to the bootloader and bootstrap) that is flashed on your SLN-VIZN-

IOT kit by default.

4.1 Build a SLN-VIZN-IOT Project

In the Project Explorer window, select the project you intend to compile.

Figure 15: Project Explorer - Highlight Project

From the Quickstart Panel, select the option Build to start the compilation and linking of

the application currently highlighted in the Project Explorer pane.

Figure 16: Build Project

18 SLN-VIZN-IOT Developer’s Guide, Rev. 1.0, 02/2020 NXP Semiconductors

Wait for MCUXpresso to finish the build process. This should take a relatively short time

due to the small size of the application.

Figure 17: Console 'Build' Output

If you received a message like the one shown above, your SLN-VIZN-IOT has been

successfully built.

Additionally, if you have use for a binary file instead of the .axf generated by default,

simply right-click on the .axf you wish to convert and go to Binary Utilities -> Create

binary. MCUXpresso stores generated .axf and .bin files under your project’s Debug

folder. Shown below is an example of how you can create a binary using a .axf file:

Figure 18: .axf to .bin

.bin files are useful for flashing with OTW, MSD, and the automated manufacturing

tools. Each of these features are described in greater detail later in the guide.

19 SLN-VIZN-IOT Developer’s Guide, Rev. 1.0, 02/2020 NXP Semiconductors

4.2 Flash and Debug SLN-VIZN-IOT Project

With the userid_oobe project compiled, it is now time to program its associated binary

into flash.

Flashing the SLN-VIZN-IOT kit will require a Segger J-Link with a 9-pin Cortex-M

Adapter and V6.62a or newer of the J-Link Software and Documentation Pack found

on the Segger website at:

https://www.segger.com/downloads/jlink/#J-LinkSoftwareAndDocumentationPack.

Figure 19: J-Link Plus and 9-Pin Cortex-M Adapter

Note: MCUXpresso IDE 11.1 currently comes with Segger J-Link V6.5x installed, however this WILL NOT

work with the SLN-VIZN-IOT and must be upgraded to at least V6.62a. If you are unsure about which

version of J-Link software you have, it is recommended to upgrade to the latest version just in case.

Older versions of J-Link Software and Documentation Pack will not have the proper

configuration settings for the SLN-VIZN-IOT and will therefore be unable to flash the

board.

To begin the process of flashing the kit, attach your J-Link debug probe into the header

shown below.

Figure 20: SLN-VIZN-IOT JTAG Header

https://www.segger.com/downloads/jlink/#J-LinkSoftwareAndDocumentationPack

20 SLN-VIZN-IOT Developer’s Guide, Rev. 1.0, 02/2020 NXP Semiconductors

Next, select the Debug option found under the QuickStart panel in MCUXpresso to start

the process of loading the binary into the flash and begin debugging. Like the Build

option, Debug will only flash and debug the project currently highlighted in the Project

Explorer panel.

Figure 21: Quickstart Panel - Debug

Select the J-Link probe that is connected to your kit and press OK.

Figure 22: Probe Discovery Window

21 SLN-VIZN-IOT Developer’s Guide, Rev. 1.0, 02/2020 NXP Semiconductors

This will launch the flashing tool and proceed to flash the binary associated with the

currently selected project.

Figure 23: Flash Download in Progress

Once flashed, the program will automatically halt at main, indicated by the first instruction

in main being highlighted and pointed to.

Figure 24: Debug Begin

Finally, press the Run button found in the toolbar to begin running the application.

Figure 25: Debug Toolbar - Run Button

To learn more about debugging in MCUXpresso, check out the MCUXpresso User

Guide found here:

https://www.nxp.com/docs/en/user-guide/MCUXpresso_IDE_User_Guide.pdf

https://www.nxp.com/docs/en/user-guide/MCUXpresso_IDE_User_Guide.pdf

22 SLN-VIZN-IOT Developer’s Guide, Rev. 1.0, 02/2020 NXP Semiconductors

5 Bootloader
The SDK provided enables two forms of firmware update capability in addition to flashing

via J-Link: An Over-the-Wire (OTW) interface that supports UART flashing and a USB

Mass Storage Device (MSD) interface. Either option can be selected at boot time, but

once one of them is running, the other is turned off.

5.1 Application Flow

The boot flow is described in detail in the Security Architecture section of this document.

Once the boot flow reaches the bootloader, the bootloader must decide what to do. The

below shows the three options available to the bootloader. The subsequent sections

describe the OTW and USB MSD modes.

Figure 26: Bootloader Flow

5.2 Over-the-Wire (OTW) Updates

The OTW update interface currently supports UART but can be extended to support any

serial interface including SPI, TCP sockets or even I2C. The OTW update is driven using

a simple JSON interface, making it easy to implement host side code.

OTW must be triggered by setting a flag in the FICA area. In the SDK as delivered by

NXP, this is accomplished in the demo application via the shell or eRPC host interface.

23 SLN-VIZN-IOT Developer’s Guide, Rev. 1.0, 02/2020 NXP Semiconductors

5.2.1 Transfers

Each transfer contains two pieces: a 4-byte size field and a JSON message. This allows

the OTW data interface to be compatible across a wide range of interfaces.

Figure 27: Transfer Format

Each transfer is followed by a transfer response.

Figure 28: Request/Response Flow

5.2.2 JSON Messages

The OTW interface is driven entirely by JSON messages. This allows developers to easily

create and debug client applications.

There are two types of messages passed: requests and responses. Requests must be

made in the following order to successfully perform a firmware update:

1. Start
2. Block
3. Stop
4. Activate image
5. Start self-check

24 SLN-VIZN-IOT Developer’s Guide, Rev. 1.0, 02/2020 NXP Semiconductors

5.2.2.1 Start Request

This is the first request that must be sent to start a firmware update.

{
 "messageType":1,
 "fwupdate_message": {
 "messageType":0,
 "fwupdate_common_message": {
 "messageType":0,
 "job_id": <Job ID string>,
 "app_bank_type": <Flash Bank: ‘1’ for A ‘2’ for B>,
 "signature": <RSA Signature of image to be loaded>,
 "image_size": <Image Length>,
 }
 }
}

5.2.2.2 Block Request

Block requests are sent for each “chunk” of data to be programmed. Block sizes can be

any size, though it’s suggested that they be as large as possible. The example script in

the SDK sends 4800 bytes per block request.

{
 "messageType":1,
 "fwupdate_message": {
 "messageType":1,
 "fwupdate_server_message": {
 "messageType":0,
 "block": <Base64 encoded block of data>,
 "encoded_size": <Size of encoded block>,
 "block_size": <Size of block in bytes>,
 "offset": <Offset from base of flash>,
 }
 }
}

5.2.2.3 Stop Request

{
 "messageType":1,
 "fwupdate_message": {
 "messageType":1,
 "fwupdate_server_message": {
 "messageType":1
 }
 }
}

5.2.2.4 Activate Image Request

{
 "messageType":1,
 "fwupdate_message": {
 "messageType":1,
 "fwupdate_server_message": {
 "messageType":3
 }
 }
}

25 SLN-VIZN-IOT Developer’s Guide, Rev. 1.0, 02/2020 NXP Semiconductors

5.2.2.5 Start Self-Test Request

{
 "messageType":1,
 "fwupdate_message": {
 "messageType":1,
 "fwupdate_server_message": {
 "messageType":2
 }
 }
}

5.2.2.6 Response Format

{
 "error": <Operation return code>,
}

5.3 Mass Storage Device (MSD) Update

The bootloader application supports firmware update over USB Mass Storage Device

(MSD). This allows the user to re-flash the main application binary (note, not the bootstrap

and bootloader) without a J-Link probe. If the bootstrap and bootloader need to be

updated, you must use the J-Link probe.

The MSD feature by default bypasses the signature verification described in Security

Architecture to allow an easier development flow because signing images can be a

process not suitable for quick debugging and validation.

To enable MSD mode, hold SW1 while the board is powering on.

Figure 29: MSD Enablement Button

Upon success, the normal boot sequence with alternating red, blue and purple LEDs will

take place, followed by the blinking of a purple LED on the front of the board every 2

seconds indicating the board is now in MSD mode. You may now let go of the button.

26 SLN-VIZN-IOT Developer’s Guide, Rev. 1.0, 02/2020 NXP Semiconductors

Figure 30: MSD Mode Lights

In addition to the flashing lights, the board will also enumerate as a USB Storage Device

by your computer’s OS.

Figure 31: MSD USB Drive Enumeration

To flash a new binary, drag and drop the new binary onto the USB Drive associated with

the kit. If your SLN-VIZN-IOT kit is running from Application Bank A (see Device Memory

Map), you must provide a binary for Application Bank B and vice versa. This is to prevent

the overwrite of the application to be run in order to protect against a case where flashing

is interrupted, and a corrupted image gets written and executed.

As there is currently no way to know which application bank is being run from, it is recommended to try

dragging and dropping an application for each bank and seeing which one works.

Figure 32: Dragging-and-Dropping New Binary

27 SLN-VIZN-IOT Developer’s Guide, Rev. 1.0, 02/2020 NXP Semiconductors

The new binary will be copied onto your SLN-VIZN-IOT, and the kit will automatically

restart once flashing is complete.

5.3.1 Generate Application Bank B Binary

As previously mentioned, if the board is currently running from Application Bank A, MSD

drag-and-drop flashing will require a binary created for Application Bank B and vice versa.

Currently the active application flash bank information is not exposed to the user and can

only be found through attempting to flash both a Bank A and Bank B application with

MSD.

To generate a binary for Application Bank B in MCUXpresso you must change the flash

address for your kit in MCUXpresso. To do so, right-click on the sln_vizn_iot_userid_oobe

application in in the Project Explorer panel and click on Properties.

Under the Properties dialog window that appears, click the drop-down arrow next to

C/C++ Build, and select MCU settings. Change the Flash address from 0x60300000 to

0x60D00000, then click Apply and Close.

Figure 33: Create Flash Bank B Binary

Rebuild your application using the steps found under Building and Programming,

making sure to generate a binary from the .axf. The generated binary will be able to

reflash the main application when the kit is running from Application Bank A.

Be sure to change the flash address back to 0x60300000 if trying to run debugging

using a J-Link.

28 SLN-VIZN-IOT Developer’s Guide, Rev. 1.0, 02/2020 NXP Semiconductors

6 Automated Manufacturing Tools
NXP provides a package of scripts that can be used for securely programming devices

on the production line. This collection of scripts is called Ivaldi.

6.1 About Ivaldi

Ivaldi is a package of software scripts and tools that are responsible for manufacturing

and re-programming without needing access to a J-Link.

The Ivaldi scripts make use of the serial downloader mode feature of the RT106F’s boot

ROM to communicate with an application called Flashloader that is programmed into the

RT106F. The Flashloader which is programmed into RAM then communicates with a

program called blhost which controls various parts of the chip and flash.

Ivaldi was created to focus on the build infrastructure of a customer’s development and

manufacturing cycle. Its primary focuses are:

• Factory programming and device set up

• Enabling HAB and eXIP

• Signing images for Application Banks A/B

• Writing and accessing OTP fuses

The rest of this chapter discusses general (i.e. unsecure) flashing of a device.

6.2 Requirements

The following requirements must be satisfied to run Ivaldi. It has been tested in Windows,

Mac, and Linux environments.

• OpenSSL

• Python 3.6.x with virtualenv

• Linux/Ubuntu for Windows

The package contains valuable README files. To set up the environment, follow the

README.md file located in the root folder of the Ivaldi package. Without doing this, the

tool will not work.

The Ivaldi tools are located in the “Tools” folder of the software package. Extract the ZIP

file and open the README.md to start using the tool.

6.3 Creating a Signing Entity

The basis of the security architecture implemented in the SLN-VIZN-IOT is signed

application images. Signing requires the use of a Certificate Authority (CA). NXP has its

29 SLN-VIZN-IOT Developer’s Guide, Rev. 1.0, 02/2020 NXP Semiconductors

own CA for signing applications at the factory, but the root CA is not something that is

shared with customers. The Ivaldi tools provided by NXP require signing, so the end user

must create their own CA and signing artifacts.

6.3.1 Using Ivaldi to Generate Signing Artifacts

Ivaldi includes a script to generate all of the artifacts needed to properly sign application

binaries and generate a FICA table. Prior to running the script, the Ivaldi environment

must be set up completely as described in the README.md in the top-level directory.

After following the README, the environment should look similar to that shown below.

Take notice of the (env) at the beginning of the prompt.

Figure 34: Virtual Env Prompt

In the Python virtual environment, navigate to Tools/Scripts/ota_signing. Run the

generate_signing_arfifacts.py script. When running without any arguments, the usage

will be displayed.

Figure 35: generate_signing_artifacts.py Usage

Now, type in a name for your CA (my_test_ca is used as an example), along with the

required location and organization information. When prompted for passwords for the

PEM files, use the same password for all of them for this exercise. You can always

re-generate a more secure CA when you’re ready to prepare for production. The following

figure shows an excerpt from the terminal output of the generation script.

Figure 36: generate_signing_artifacts.py Example

(env) Ivaldi_sln_vizn_iot/Scripts/sln_vizn_iot_open_boot $

(env) Ivaldi_sln_vizn_iot/Scripts/ota_signing $ python generate_signing_artifacts.py
Usage:
 generate_signing_artifacts.py ca_name country code country_name state organization

 ca_name: Name of CA for image signature chain of trust

 country code: GB/US

 country_name: CA Country Name

 state: CA Country State

 organization: CA Company Organization

(env) Ivaldi_sln_vizn_iot/Scripts/ota_signing $ python generate_signing_artifacts.py my_test_ca US Texas
Austin NXP
Creating directories...
Creating directories...
['mkdir', 'certs', 'crl', 'newcerts', 'private', 'csr']
SUCCESS: Successfully prepared the directories
chmod directories...

30 SLN-VIZN-IOT Developer’s Guide, Rev. 1.0, 02/2020 NXP Semiconductors

You should now have a CA and signing certificates. Reference the README.md in the

Scripts/ota_signing folder for more details about the directory structure and files that

were generated by the script.

6.4 Open Boot Programming

(env) Ivaldi_sln_vizn_iot/Scripts/sln_vizn_iot_open_boot $ python open_prog_full.py -c my_test_ca
Signing Entity: my_test_ca
Establishing connection...
SUCCESS: Communication established with device.
Loading flashloader...
SUCCESS: Flashloader loaded successfully.
Jumping to flashloader entry point...
SUCCESS: Device jumped to execute flashloader.
Waiting for device to be ready for blhost...
get-property
SUCCESS: Device is ready for blhost!
Reading device unique ID...
get-property
SUCCESS: Device serial number is SSn4ZdIJFwc=
Writing memory config option block...
fill-memory
SUCCESS: Config option block loaded into RAM.
Configuring FlexSPI...
configure-memory
SUCCESS: FlexSPI configured.
Erasing flash...
flash-erase-region
SUCCESS: Flash erased.
Programming flash...
write-memory
SUCCESS: File written to flash.
Programming flash...
write-memory
SUCCESS: File written to flash.
Programming flash...
write-memory
SUCCESS: File written to flash.
Programming flash with root cert...
File size 2018
File CRC 0x1b1c634a
write-memory
SUCCESS: Programmed flash with certificates for this "thing".
Programming flash with app cert application A...
File size 1916
File CRC 0x8710f1eb
write-memory
SUCCESS: Programmed flash with certificates for this "thing".
Programming flash with app cert for bootloader...
write-memory
SUCCESS: Programmed flash with certificates for this "thing".
Programming flash with sound binaries...
write-memory
write-memory
write-memory
write-memory
SUCCESS: Programmed flash with sound binaries.
Enter pass phrase for ../ca/private/my_test_ca.app.a.key.pem:
Enter pass phrase for ../ca/private/my_test_ca.app.a.key.pem:
SUCCESS: sign_package succeeded.
Programming FICA table...
write-memory
SUCCESS: Programmed flash with certificates for this "thing".
Programming flash...
write-memory
SUCCESS: File written to flash.
read-memory
SUCCESS: Application entry point at 0x60002599
read-memory
SUCCESS: Application entry point at 0x20208000
Attemping to execute application...
execute
SUCCESS: Application running.

31 SLN-VIZN-IOT Developer’s Guide, Rev. 1.0, 02/2020 NXP Semiconductors

Figure 37: open_prog_full.py Output

6.5 (Optional) Enabling Encrypted Execute-in-Place (eXIP) and
High Assurance Boot (HAB)

The i.MX RT106F has some fundamental security enablement to protect against

unsigned images and protect high-value software running on the device. These security

features can be looked into at great detail by reading the RT1060 Reference manual in

the RT106F Documentation area or the following whitepaper

(https://www.nxp.com/docs/en/white-paper/IMXRTCROSSWP.pdf) however, the

following documentation is to detail the steps to enable the eXIP and HAB features of

the RT by using Python scripts which take the complication out of the process.

The Ivaldi tools, as well as containing automated OTW signing tools, also contain all the

tools and scripts to enable HAB and eXIP. By the end of this section, the bootstrap will

be signed to work with the HAB and the bootloader and the userid_oobe will be

encrypted with individual encrypted context. The bootloader and userid_oobe have

individual encrypted contexts to ensure that if any of the application banks are updated,

the bootloader will not need updating.

The whole package contains the following features:

• Two individual encrypted Context for bootloader and app space.

• Potential support for bootloader update called the “bootloader loader” (coming in

future releases).

• Encrypted context restoration for image failure or OTA failure.

• OTW update with eXIP support.

• Switching between eXIP and XIP for easy development.

For additional documentation, please build the docs in the Ivaldi/doc folder by following

the containing README.md

6.5.1 Preparing the Environment

The following steps assumes that the section Creating a Signing Entity has been

followed and completed, generating a CA and signing entity to create signed images. This

is used to verify the signature of the application using an app certificate and CA certificate.

It also assumed that the reader is running the tools within the Ivaldi package and the

paths are unchanged as delivered.

If not already done so, unzip the Ivaldi zip. In the top-level directory, open the

README.md and follow all the steps to create and build the environment.

https://www.nxp.com/products/processors-and-microcontrollers/arm-based-processors-and-mcus/i.mx-applications-processors/i.mx-rt-series/crossover-processor-with-arm-cortex-m7-core:i.MX-RT106A?tab=Documentation_Tab&lang=ko&lang_cd=ko&
https://www.nxp.com/docs/en/white-paper/IMXRTCROSSWP.pdf

32 SLN-VIZN-IOT Developer’s Guide, Rev. 1.0, 02/2020 NXP Semiconductors

After following the README, the environment should look similar to that shown below.

Take notice of the “(env)” at the beginning of the prompt.

Figure 38: "Virtualenv” Prompt

Additionally, it is recommended to follow the section Open Boot Programming section,

as this section will validate that all the image binaries are working correctly. There are

several failure points that could occur while enabling HAB and eXIP so following the Open

Boot Programming will help reduce potential failure points.

6.5.2 Generating the PKI and Signed Flashloader

The following instructions assume that the section Error! Reference source not found. has

been completed, as it is needed to generate the CA and application certificate that will be

loaded into the flash. It will also be used to generate the FICA table used to validate the

application signature.

The first step is to create a signed flashloader which will be used to set everything up and

communicate with blhost. The blhost tool in its simplest form is used to read and write

registers, but it communicates with a flashloader. The flashloader is a RAM-based

application that supports blhost communication. In normal circumstances, the flashloader

can be executed without having been signed, but with HAB enabled, it needs to be signed

with appropriate keys.

The secure boot scripts have been separated into two folders:

• OEM – These scripts should only be executed by the Product owner, and the

output stored in a secure environment. This is because it contains important key

information, which if lost, could brick boards or be open to copy cats/loss of image

integrity.

• MANF – These scripts will be executed on the manufacturing line. They are used

to execute the signed flashloader and communicate with the chip to encrypt the

binaries. The scripts also contain the process of generating certificates, and the

generation and programming of the FICA.

Within the Ivaldi package, navigate to the Scripts/sln_vizn_iot_secure_boot/oem folder

and open the README within. The README starts by running the setup_hab.py script

which is responsible for creating the PKI infrastructure and creating the signed

flashloader.

PLEASE NOTE, DO NOT RUN THIS MORE THAN ONCE WITHOUT
BACKING UP YOUR KEYS AND CRTS FOLDER IN THE IVALDI ROOT.
THIS WILL RESULT IN BEING UNABLE TO USE FLASHLOADER AND

(env) Ivaldi_sln_vizn_iot/Scripts/sln_vizn_iot_open_boot $

33 SLN-VIZN-IOT Developer’s Guide, Rev. 1.0, 02/2020 NXP Semiconductors

PROGRAM NEW IMAGES VIA SERIAL DOWNLOAD MODE FOR
EXISTING HAB-ENABLED DEVICES

The following shows the output of the “setup_hab.py’ script that generates the PKI

infrastructure and signed flashloader.

Figure 39: setup_hab.py Script

After this has run, you should see in the Image_Binary folder that the signed flashloader

exists as shown below.

Figure 40: Checking the Signed Flashloader

6.5.3 Creating the Images

The following section describes how to generate the images and put them into the correct

folder in preparation for creating the artifacts to load into the devices flash encrypted.

The next step is to ensure all the binaries are ready and located in the DefaultBinaries

folder in the root directory of Ivaldi. To do this, ensure you have the bootstrap, bootloader

and userid_oobe_demo imported into the MCUXpresso workspace as shown in the

following figure.

(env) ivaldi_sln_vizn_iot/Scripts/sln_vizn_iot_secure_boot/oem $ python3 setup_hab.py

This operation will delete all previous keys. Continue? [y,n]
y
Cleaning keys and certificate directories...
SUCCESS: Cleaned keys and certificate directories...
Generating PKI tree...
SUCCESS: Created PKI tree.
Generating Super Root Keys (SRK)s...
SUCCESS: Generated SRKs.
Generating boot directive file to enable HAB...
SUCCESS: Generated boot directive file.
Generating secure boot(.sb) file to enable HAB...
SUCCESS: Created secure boot file to enable HAB.
Cryptographically signing flashloader image ...
SUCCESS: Created signed flashloader image.

(env) ivaldi_sln_vizn_iot/Scripts/sln_vizn_iot_secure_boot/oem $ ls -lrt
../../../Image_Binaries/ivt_flashloader_signed*
-rwxrwxrwx 1 cooper cooper 101376 Dec 18 17:11
../../../Image_Binaries/ivt_flashloader_signed_nopadding.bin
-rwxrwxrwx 1 cooper cooper 102400 Dec 18 17:11 ../../../Image_Binaries/ivt_flashloader_signed.bin

Figure 41: Importing the Applications for HAB and eXIP

34 SLN-VIZN-IOT Developer’s Guide, Rev. 1.0, 02/2020 NXP Semiconductors

Before creating the images, a modification needs to be made to the bootstrap. The IVT

gets created by the Ivaldi scripts which means it needs to be removed from the default

binary. To do this, right click on the bootstrap project and go to Properties -> C/C++

Build -> Settings -> Preprocessors and set the XIP_BOOT_HEADER_ENABLE and

XIP_BOOT_HEADER_DCD_ENABLE to zero as shown here.

Figure 42: Unsetting the XIP Boot Header

After this change, hit the build button to generate an image for the bootstrap. As the Ivaldi

scripts only accepts an srec file, it is necessary to generate one. Srec files can be

generated using MCUXpresso’s “binary utilities.”

Navigate to the Debug folder of the bootstrap application, right click on the .axf file and

navigate to Binary Utilities -> Create S-Record.

Figure 43: Generating the srec

35 SLN-VIZN-IOT Developer’s Guide, Rev. 1.0, 02/2020 NXP Semiconductors

Create S-Record generates a “.s19” file, while our script requires “srec” files. Simply

right-click on the s19 file generated in the previous step and rename it like shown below.

Figure 44: Changing File Type to srec

Continue to build the bootloader and userid_oobe_demo in the usual way. When these

applications are built, it is required to generate binary files. Build these by navigating to

the Debug folder in both the bootloader and userid_oobe_demo application, right click on

the .axf file Binary Utilities -> Create Binary

Figure 45: Generate Bootloader and userid_oobe Binary

Once the collateral has been created, copy the two binaries and srec into the

Ivaldi/Image_Binaries package as shown here.

Figure 46: "Image_Binaries" Expected Folder Contents

6.5.4 Generating Secure Binary

This section will describe the instructions on how to create a secure binary in preparation

to programming it into the flash of the device.

36 SLN-VIZN-IOT Developer’s Guide, Rev. 1.0, 02/2020 NXP Semiconductors

Navigate to the Scripts/sln_vizn_iot_secure_boot/oem folder and open the

secure_app.py python script. Inside this file contains the path and the file names of the

binaries that will be used to create the secure binary. The following figure shows these

path definitions inside the secure_app.py script.

Figure 47: Secure App File Names

It’s important to know that the file names that are in this file are the names the script will

look for. If the files in your Image_Binaries folder differ, please change the names of the

files or modify the script to match. If the files do not match, unpredictable behavior will

occur.

After aligning the files, run the script by executing: “python3 secure_app.py”

or to run without eXIP enabled: “python3 secure_app.py --signed-only”

The output of the script when run with eXIP is shown below:

Figure 48: secure.py output for securing images

The output shows the combining of the images into one consolidated, secure image.

Navigate to the Image_Binaries directory and locate the

“boot_crypt_image_production1v0.sb” or “boot_sign_image_production1v0.sb” in

the case of signed only. This will be used in the later section when programming the

devices flash.

6.5.5 Enabling High Assurance Boot (HAB)

High Assurance Boot (HAB) is a feature of the RT106F that forces the ROM (Read Only

Memory) to only boot into a signed image. This ensures image integrity and prevents

physical and remote attacks from power on.

To execute the following steps, move the jumper J27, which is located on the top

of the board into the “0” position.

(env) ivaldi_sln_vizn_iot/Scripts/sln_vizn_iot_secure_boot/oem $ python3 secure_app.py
Encrypting app image ...
SUCCESS: Created encrypted image.
Creating encrypted app file ...
SUCCESS: Created encrypted app file.

37 SLN-VIZN-IOT Developer’s Guide, Rev. 1.0, 02/2020 NXP Semiconductors

The following instructions will show how to enable the HAB on the RT106F using the PKI

infrastructure created in section Error! Reference source not found. as well as using the

signed flashloader to implement it.

Navigate to the “Scripts/sln_vizn_iot_secure_boot/manf” from the Ivaldi root and

locate the “enable_hab.py” python script.

To enable HAB, run the “enable_hab.py” script as shown here.

Figure 49: Enabling HAB using enable_hab.py

6.5.6 Preparing for Programming the Device

The following section describes the steps that need to be executed to ensure all the

artifacts are available in preparation for programming the device. It is assumed that the

section Creating a Signing Entity seen followed to generate a CA and Application

certificate.

Copy all the file system generated files to the Image_Binaries folder within the Ivaldi root

directory. The files that need to be copied are:

• app_crt.bin – This is the public image signing certificate

PLEASE NOTE, IF YOU LOSE THE SIGNED FLASHLOADER AND
CERT/KEYS, THE BOARD WILL NO LONGER BE FUNCTIONAL AS HAB
ENSURES ONLY SIGNED IMAGES CAN BOOT.

(env) Ivaldi_sln_vizn_iot/Scripts/sln_vizn_iot_secure_boot/manf $ python3 enable_hab.py
Establishing connection...
SUCCESS: Communication established with device.
Loading flashloader...
SUCCESS: Flashloader loaded successfully.
Jumping to flashloader entry point...
SUCCESS: Device jumped to execute flashloader.
Waiting for device to be ready for blhost...
get-property
SUCCESS: Device is ready for blhost!
Reading device unique ID...
get-property
SUCCESS: Device serial number is Rin4ZdJJIhA=
Writing memory config option block...
fill-memory
SUCCESS: Config option block loaded into RAM.
Configuring FlexSPI...
configure-memory
SUCCESS: FlexSPI configured.
Erasing flash...
flash-erase-region
SUCCESS: Flash erased.
Loading secure boot file...
receive-sb-file
SUCCESS: Loaded secure boot file.
Resetting device...
reset
SUCCESS: Device Permanently Locked with HAB!Creating encrypted app file ...
SUCCESS: Created encrypted app file.

38 SLN-VIZN-IOT Developer’s Guide, Rev. 1.0, 02/2020 NXP Semiconductors

• ca_crt.bin – This is the public image CA certificate

• fica_table.bin – This is the Flash Image Configuration Area generated when

creating a signed bootloader and userid_oobe_demo.

At this point, your Image_Binaries folder should look similar to the following:

Figure 50: "Image_Binaries" Content

6.5.7 Enabling and Programming the Signed and Encrypted Binaries

Encrypted Execution in place (eXIP) is a feature of the i.MX RT106F that enables the chip

to execute and decrypt on the fly allowing images to be store into external flash encrypted

uniquely per part. This gives product makers safe comfort that their IP is protected, and

physical attacks aren’t possible. It also means that the device cannot be flashed with

malicious firmware that can be executed, as the device would fail with an encryption error.

If the security of the device is compromised, it would also mean that any firmware bad

actors are able to obtain could not be programmed into another device due to the unique

nature of the encryption.

The “customer_prog_sec_app.py” python script does several things.

• Runs the signed Flashloader for configuration

• Erase the current flash

• Programs the following:

o Signed Bootstrap

o Encrypted/Unencrypted bootloader and userid_oobe_demo

o Application image signing certificate

o CA Image certificate

o Device key and certificate

To execute the following steps, move the jumper J27, which is located on the top

of the board into the “0” position.

To enable this feature, navigate to the Scripts/sln_vizn_iot_secure_boot/manf folder

in the Ivaldi root.

Run the following command “python3 customer_prog_sec_app.py” as shown below.

39 SLN-VIZN-IOT Developer’s Guide, Rev. 1.0, 02/2020 NXP Semiconductors

Figure 51: Using "cust_prog_sec_app.py"

This will start the manufacturing process to bring a factory new device (empty flash) to a

device running a signed bootstrap (HAB enabled) and encrypted bootloader and

userid_oobe_demo stored into flash.

If done correctly, the device will boot and run as described in the UserID OoBE Demo

section.

PLEASE NOTE, THE LOCK_DEVICE.PY SHOULD ONLY BE USED IN
PRODUCTION AS THIS DISABLES DEBUGGER ACCESS

(env) ivaldi_sln_vizn_iot/Scripts/sln_vizn_iot_secure_boot/manf $ python3 prog_sec_app.py -c my_test_ca
Establishing connection...
SUCCESS: Communication established with device.
Loading flashloader...
SUCCESS: Flashloader loaded successfully.
Jumping to flashloader entry point...
SUCCESS: Device jumped to execute flashloader.
Waiting for device to be ready for blhost...
get-property
SUCCESS: Device is ready for blhost!
Reading device unique ID...
get-property
SUCCESS: Device serial number is Rin4ZdJJIhA=
Writing memory config option block...
fill-memory
SUCCESS: Config option block loaded into RAM.
Configuring FlexSPI...
configure-memory
SUCCESS: FlexSPI configured.
Erasing flash...
flash-erase-region
SUCCESS: Flash erased.
Programming flash with root cert...
File size 2018
File CRC 0x2f2114b
write-memory
SUCCESS: Programmed flash with certificates for this "thing".
Programming flash with app cert application A...
File size 1916
File CRC 0xf831a49
write-memory
SUCCESS: Programmed flash with certificates for this "thing".
Programming flash with app cert for bootloader...
write-memory
SUCCESS: Programmed flash with certificates for this "thing".
Enter pass phrase for ../ca/private/my_test_ca.app.a.key.pem:
Enter pass phrase for ../ca/private/my_test_ca.app.a.key.pem:
SUCCESS: sign_package succeeded.
Programming FICA table...
write-memory
SUCCESS: Programmed flash with certificates for this "thing".
Programming flash with secure app file...
receive-sb-file
SUCCESS: Programmed flash with secure app file.

Unpower module, move the boot jumper in BOOT_MODE_1, and restore power

40 SLN-VIZN-IOT Developer’s Guide, Rev. 1.0, 02/2020 NXP Semiconductors

7 Filesystem
The SLN-VIZN-IOT has implemented a custom file system to manage files on-chip. A

custom file system is used because:

The device executes code from flash (XiP) which means it needs to read flash from RAM

functions.

HyperFlash has 256 KB sector sizes which do not allow for the granularity of files.

Update in-place features have been added to allow the updating of a big sector without a

costly (in time) erase.

Within Ivaldi, there is a script that converts any file into a filesystem-compatible binary file.

Any file that gets programmed to the filesystem must first pass through this script. This

script is called file_format.py and is located in Scripts/sln_vizn_iot_utils.

(env) Ivaldi_sln_vizn_iot/Scripts/sln_iot_utils $ python file_format.py my_test_file.txt
my_test_file.bin
File size 3475985
File CRC 0xf83a5ca3

Figure 52: file_format.py Usage

41 SLN-VIZN-IOT Developer’s Guide, Rev. 1.0, 02/2020 NXP Semiconductors

8 Document Details

8.1 References

The following references are available to supplement this document:

Document/Link Remark

http://www.nxp.com/MCUXpresso MCUXpresso IDE Download

https://www.nxp.com/docs/en/user-
guide/MCUXpresso_IDE_User_Guide.pdf

MCUXpresso IDE User Guide

 SLN-VIZN-IOT User Guide

https://www.nxp.com/mcu-vision SLN-VIZN-IOT Home Page

 SLN-VIZN-IOT Power Reference

Table 3: Reference Documents

8.2 Acronyms, Abbreviations, & Definitions

Acronym Meaning (Definition)

FTDI
Future Technology Devices
International

GUI Graphic User Interface

IOT Internet of Things

IVT Instruction Vector Table

JTAG Joint Test Action Group

MANF Manufacturer

MCU Microcontroller Unit

MEMS
Micro-Electro-Mechanical
System

MSD Mass Storage Device

OEM
Original Equipment
Manufacturer

OTW Over the Wire

OTP One Time Programmable

ROM Read Only Memory

RTOS
Real-Time Operating
System

SDK Software Development Kit

UART
Universal asynchronous
receiver-transmitter

Table 4: Abbreviations and Definitions

http://www.nxp.com/MCUXpresso
https://www.nxp.com/docs/en/user-guide/MCUXpresso_IDE_User_Guide.pdf
https://www.nxp.com/docs/en/user-guide/MCUXpresso_IDE_User_Guide.pdf
https://www.nxp.com/mcu-vision

42 SLN-VIZN-IOT Developer’s Guide, Rev. 1.0, 02/2020 NXP Semiconductors

8.3 Revision History

Date Version Details of Change Author Reviewers

2/11/20 Production 1.0
Complete revamp;
split UG into UG +
DG

Cooper
Carnahan

NXP

19 December Release 0.5 Added
Manufacturing
tools/security info

Cooper
Carnahan

NXP

12 November Release 0.4 Revision Cooper
Carnahan

NXP

30-
September

Draft 0.1 Initial Draft Cooper
Carnahan

NXP

Table 5: Revision History

43 SLN-VIZN-IOT Developer’s Guide, Rev. 1.0, 02/2020 NXP Semiconductors

How to Reach Us:

Home Page:

www.nxp.com

Web Support:

www.nxp.com/support

Information in this document is provided solely to

enable system and software implementers to use

NXP products. There are no express or implied

copyright licenses granted hereunder to design or

fabricate any integrated circuits based on the

information in this document. NXP reserves the right

to make changes without further notice to any

products herein.

NXP makes no warranty, representation, or

guarantee regarding the suitability of its products for

any particular purpose, nor does NXP assume any

liability arising out of the application or use of any

product or circuit, and specifically disclaims any and

all liability, including without limitation consequential

or incidental damages. “Typical” parameters that may

be provided in NXP data sheets and/or specifications

can and do vary in different applications, and actual

performance may vary over time. All operating

parameters, including “typicals,” must be validated for

each customer application by customer’s technical

experts. NXP does not convey any license under its

patent rights nor the rights of others. NXP sells

products pursuant to standard terms and conditions

of sale, which can be found at the following address:

www.nxp.com/SalesTermsandConditions.

NXP, the NXP logo, NXP SECURE CONNECTIONS

FOR A SMARTER WORLD,

Freescale, the Freescale logo are trademarks of NXP

B.V. All other product or service names are the

property of their respective owners. Arm, AMBA, Arm

Powered, Artisan, Cortex, Jazelle, Keil, SecurCore,

Thumb, TrustZone, and μVision are registered

trademarks of Arm Limited (or its subsidiaries) in the

EU and/or elsewhere. Arm7, Arm9, Arm11,

big.LITTLE, CoreLink, CoreSight, DesignStart, Mali,

Mbed, NEON, POP, Sensinode, Socrates, ULINK

and Versatile are trademarks of Arm Limited (or its

subsidiaries) in the EU and/or elsewhere. All rights

reserved.

http://www.nxp.com/
http://www.nxp.com/support
http://www.nxp.com/SalesTermsandConditions

