

Features

- Double superhet architecture for high degree of image rejection
- **G** FSK for digital data and FM reception for analog signal transmission
- □ FSK/FM demodulation with phase-coincidence demodulator
- □ Low current consumption in active mode and very low standby current
- Switchable LNA gain for improved dynamic range
- RSSI allows signal strength indication and ASK detection
- □ Surface mount package LQFP32

Ordering Information

Part No.	Temperature Code	Package Code
TH71102	E (-40 °C to 85 °C)	NE (LQFP32)

Application Examples

- General digital and analog 315 MHz or 433 MHz ISM band usage
- Low-power telemetry
- Alarm and security systems
- Remote Keyless Entry (RKE)
- □ Tire Pressure Monitoring System (TPMS)
- Garage door openers
- Home automation
- Pagers

Pin Description

General Description

The TH71102 FSK/FM/ASK double-conversion superheterodyne receiver IC is designed for applications in the European 433 MHz industrial-scientific-medical (ISM) band, according to the EN 300 220 telecommunications standard. It can also be used for any other system with carrier frequencies ranging from 300 MHz to 450 MHz (e.g. for applications in the US 315 MHz ISM band).

Document Content

1	T	heory of Operation	3
	1.1	General	3
	1.2	Technical Data Overview	3
	1.3	Block Diagram	4
	1.4	Mode Configurations	4
	1.5	LNA GAIN Control	4
	1.6	Frequency Planning	
	1.	6.1 Selected Frequency Plans	5
2	Ρ	Pin Definitions and Descriptions	6
3	Te	echnical Data	9
	3.1	Absolute Maximum Ratings	9
	3.2	Normal Operating Conditions	9
	3.3	Crystal Parameters	9
	3.4	DC Characteristics	10
	3.5	AC System Characteristics	11
4	T	est Circuits	
	4.1	FSK Reception	12
	4.2	FSK test circuit component list (Fig. 2)	13
	4.3	FSK/FM Circuit with AFC and Ceramic Resonator Compensation	
	4.4	FSK/FM (with AFC) test circuit component list (Fig.3)	15
	4.5	ASK Reception	16
	4.6	ASK Test Circuit Component List (Fig. 4)	17
5	P	Package Dimensions	
6	R	Reliability Information	
7	E	SD Precautions	
8	D	Disclaimer	20

Theory of Operation 1

1.1 General

With the TH71102 receiver chip, various circuit configurations can be arranged in order to meet a number of different customer requirements. For FSK/FM reception the IF tank used in the phase coincidence demodulator can be constituted either by a ceramic resonator or an LC tank (optionally with a varactor diode to create an AFC circuit). In ASK configuration, the RSSI signal is feed to an ASK detector, which is constituted by the operational amplifier.

Demodulation	Type of receiver
FSK / FM	narrow-band RX with ceramic demodulation tank
FSK / FM	wide-band RX with LC demodulation tank
ASK	RX with RSSI-based demodulation

The superheterodyne configuration is double conversion where MIX1 and MIX2 are driven by the internal local oscillator signals LO1 and LO2, respectively. This allows a high degree of image rejection, achieved in conjunction with an RF frontend filter. Efficient RF front-end filtering is realized by using a SAW, ceramic or helix filter in front of the LNA and by adding an LC filter at the LNA output.

A single-conversion variant, called TH71101, is also available. Both Receiver ICs have the same die. At the TH71101 the second mixer MIX2 operates as an amplifier.

The TH71102 receiver IC consists of the following building blocks:

- PLL synthesizer (PLL SYNTH) for generation of the first and second local oscillator signals LO1 and LO2 .
- Parts of the PLL SYNTH are the high-frequency VCO1, the feedback dividers DIV 8 and DIV 2, . a phase-frequency detector (PFD) with charge pump (CP) and a crystal-based reference oscillator (RO)
- Low-noise amplifier (LNA) for high-sensitivity RF signal reception .
- First mixer (MIX1) for down-conversion of the RF signal to the first IF (IF1)
- Second mixer (MIX2) for down-conversion of the IF1 to the second IF (IF2)
- IF amplifier (IFA) to amplify and limit the IF2 signal and for RSSI generation
- Phase coincidence demodulator (DEMOD) with third mixer (MIX3) to demodulate the IF signal
- Operational amplifier (OA) for data slicing, filtering and ASK detection
- Bias circuitry for bandgap biasing and circuit shutdown

1.2 Technical Data Overview

- □ Input frequency range: 300 MHz to 450 MHz
- □ Power supply range: 2.3 V to 5.5 V @ ASK
- Temperature range: -40 °C to +85 °C
- Standby current: 50 nA
- Operating current: 6.5 mA at low gain mode 8.2 mA at high gain mode
 Sensitivity: -114 dBm¹⁾ with 40 kHz IF filter BW
 Sensitivity: -107 dBm²⁾ with 150 kHz IF filter BW

- Range of first IF1: 10 MHz to 80 MHz
- □ Range of second IF2: 400 kHz to 22 MHz
- Maximum data rate: 80 kbit/s NRZ

- Maximum input level: -10 dBm at ASK 0 dBm at FSK
- □ Image rejection: > 65 dB (e.g. with SAW front-end filter and at 10.7 MHz IF2)
- Spurious emission: < -70 dBm
- □ Input frequency acceptance: ±50 kHz (with AFC option)
- RSSI range: 70 dB
- □ Frequency deviation range: ±4 kHz to ±120 kHz
- Maximum analog modulation frequency: 15 kHz
- 1) at \pm 8 kHz FSK deviation, BER = $3 \cdot 10^{-3}$ and phase-coincidence demodulation 2) at \pm 50 kHz FSK deviation, BER = $3 \cdot 10^{-3}$ and phase-coincidence demodulation

1.3 Block Diagram

Fig. 1: TH71102 block diagram

1.4 Mode Configurations

ENRX	Mode	Description
0	RX standby	RX disabled
1	RX active	RX enable

Note: ENRX are pulled down internally

1.5 LNA GAIN Control

V _{GAIN_LNA}	Mode	Description
< 0.8 V	HIGH GAIN	LNA set to high gain
> 1.4 V	LOW GAIN	LNA set to low gain

Note: hysteresis between gain modes to ensure stability

1.6 Frequency Planning

Frequency planning is straightforward for single-conversion applications because there is only one IF that might be chosen, and then the only possible choice is low-side or high-side injection of the LO signal (which is now the one and only LO signal in the receiver).

The receiver's double-conversion architecture requires careful frequency planning. Besides the desired RF input signal, there are a number of spurious signals that may cause an undesired response at the output. Among them are the image of the RF signal (that must be suppressed by the RF front-end filter), spurious signals injected to the first IF (IF1) and their images which could be mixed down to the same second IF (IF2) as the desired RF signal (they must be suppressed by the LC filter at IF1 and/or by low-crosstalk design).

By configuring the TH71102 for double conversion and using its internal PLL synthesizer with fixed feedback divider ratios of N1 = 8 (DIV_8) and N2 = 2 (DIV_2), four types of down-conversion are possible: low-side injection of LO1 and LO2 (**low-low**), LO1 low-side and LO2 high-side (**low-high**), LO1 high-side and LO2 low-side (**high-low**) or LO1 and LO2 high-side (**high-high**). The following table summarizes some equations that are useful to calculate the crystal reference frequency (REF), the first IF (IF1) and the VCO1 or first LO frequency (LO1), respectively, for a given RF and second IF (IF2).

Injection type	high-high	low-low	high-low	low-high
REF	(RF – IF2)/14	(RF – IF2)/18	(RF + IF2)/14	(RF + IF2)/18
LO1	16•REF	16•REF	16•REF	16•REF
IF1	LO1 – RF	RF – LO1	LO1 – RF	RF – LO1
LO2	2•REF	2•REF	2•REF	2•REF
IF2	LO2 – IF1	IF1 – LO2	IF1 – LO2	LO2 – IF1

1.6.1 Selected Frequency Plans

The following table depicts crystal, LO and image signals considering the examples of 315 MHz and 433.92 MHz RF reception at IF2 = 10.7 MHz.

Signal type	RF = 315 MHz	RF = 315 MHz	RF = 315 MHz	RF = 315 MHz	RF = 433.92 MHz	RF = 433.92 MHz	RF = 433.92 MHz	RF = 433.92 MHz
Injection type	high-high	low-low	high-low	low-high	high-high	low-low	high-low	low-high
REF / MHz	21.73571	16.90556	23.26429	18.09444	30.23000	23.51222	31.75857	24.70111
LO1 / MHz	347.77143	270.48889	372.22857	289.51111	483.68000	376.19556	508.13714	395.21778
IF1 / MHz	32.77143	44.51111	57.22857	25.48889	49.76000	57.72444	74.21714	38.70222
LO2 / MHz	43.47143	33.81111	46.52857	36.18889	60.46000	47.02444	63.51714	49.40222
RF image/MHz	380.54286	225.97778	429.45714	264.02222	533.44000	318.47112	582.35428	356.51556
IF1 image/MHz	54.17143	23.11111	35.82857	46.88889	71.16000	36.32444	52.81717	60.10222

The selection of the reference crystal frequency is based on some assumptions. As for example: the first IF and the image frequencies should not be in a radio band where strong interfering signals might occur (because they could represent parasitic receiving signals), the LO1 signal should be in the range of 300 MHz to 450 MHz (because this is the optimum frequency range of the VCO1). Furthermore the first IF should be as high as possible to achieve highest RF image rejection. The columns in bold depict the selected frequency plans to receive at 315 MHz and 433.92 MHz, respectively.

2 Pin Definitions and Descriptions

Pin No.	Name	I/O Type	Functional Schematic	Description
3	OUT_LNA	analog output		LNA open-collector output, to be connected to external LC tank that resonates at RF
31	IN_LNA	analog input		LNA input, approx. 26Ω single-ended
1	VEE_LNAC	ground	31 VEE 1 VEE 1	ground of LNA core (cascode)
2	GAIN_LNA	analog input		LNA gain control (input with hysteresis)
				RX standby: no pull-up RX active: pull-up
4	IN_MIX1	analog input		MIX1 input, approx. 33Ω single-ended
5	VEE_MIX	ground		ground of MIX1 and MIX2
6	IF1P	analog I/O	IF1P 6 VCC 20p 20p IF1N 7	open-collector output, to be connected to external LC tank that resonates at first IF
7	IF1N	analog I/O		open-collector output, to be connected to external LC tank that resonates at first IF
8	VCC_MIX	supply		positive supply of MIX1 and MIX2
9	OUT_MIX2	analog output	OUT_MIX2	MIX2 output, approx. 330Ω output impedance
10	VEE_IF	ground		ground of IFA and DEMOD

Pin No.	Name	I/O Type	Functional Schematic	Description
11	IN_IFA	analog input		IFA input, approx. $2.2k\Omega$ input impedance
12	FBC1	analog I/O	$11 \\ VEE \\ VCC \\ WCC \\$	to be connected to external IFA feedback capacitor
13	FBC2	analog I/O	FBC2 13 VEE	to be connected to external IFA feedback capacitor
14	VCC_IF	supply		positive supply of IFA and DEMOD
15	OUT_IFA	analog I/O		IFA output and MIX3 input (of DEMOD)
16	IN_DEM	analog input		DEMOD input, to MIX3 core
17	VCC_BIAS	supply		positive supply of general bias system and OA
18	OUT_OA	analog output		OA output, 40uA current drive capability
19	OAN	analog input	$OAN = 50\Omega$	negative OA input
20	ΟΑΡ	analog input		positive OA input

Pin No.	Name	I/O Type	Functional Schematic	Description
21	RSSI	analog output	RSSI 500 1 (Pi) 21 VEE 36k	RSSI output, for RSSI and ASK detection, approx. 36kΩ output impedance
22	VEE_BIAS	ground		ground of general bias system and OA
23	OUTP	analog output		FSK/FM positive output, output impedance of $100k\Omega$ to $300k\Omega$
24	OUTN	analog output		FSK/FM negative output, output impedance of $100 k\Omega$ to $300 k\Omega$
25	VEE_RO	ground		ground of DIV, PFD, RO and charge pump
26	RO	analog input		RO input, Colpitts type oscillator with internal feed- back capacitors
27	VCC_PLL	supply		positive supply of DIV, PFD, RO and charge pump
28	ENRX	digital input		mode control input, CMOS-compatible with internal pull-down circuit
29	LF	analog I/O		charge pump output and VCO1 control input
30	VEE_LNA	ground		ground of LNA biasing
32	VCC_LNA	supply		positive supply of LNA biasing

3 Technical Data

3.1 Absolute Maximum Ratings

Parameter	Symbol	Condition / Note	Min	Мах	Unit
Supply voltage	V _{cc}		0	7.0	V
Input voltage	V _{IN}		- 0.3	V _{cc} +0.3	V
Input RF level	P _{iRF}	@ LNA input		10	dBm
Storage temperature	T _{STG}		-40	+125	°C
Junction temperature	TJ			+150	°C
Thermal Resistance	R _{thJA}			60	K/W
Power dissipation	P _{diss}			0.1	W
Electrostatic discharge	V _{ESD1}	human body model, 1)	-1.0	+1.0	kV
	V_{ESD2}	human body model, 2)	-0.75	+0.75	NV.

1) all pins except OUT_LNA, IF1P and IF1N

2) pin OUT_LNA, IF1P and IF1N

3.2 Normal Operating Conditions

Parameter	Symbol	Condition	Min	Max	Unit
	V _{CC, FSK}	0 °C to 85 °C	2.5	5.5	
	VCC, FSK	-20 °C to 85 °C	2.6	5.5	
Supply voltage		-40 °C to 85 °C	2.7	5.5	V
	V _{CC, ASK}	-40 °C to 85 °C	2.3	5.5	
Operating temperature	T _A		-40	+85	٥C
Input low voltage (CMOS)	VIL	ENRX pin		0.3*V _{CC}	V
Input high voltage (CMOS)	V _{IH}	ENRX pin	0.7*V _{CC}		V
Input frequency range	f _i		300	450	MHz
First IF range	f _{IF1}		10	80	MHz
Second IF range	f _{IF2}		0.4	22	MHz
XOSC frequency	f _{ref}	set by the crystal	18.75	28.125	MHz
VCO frequency	f _{LO1}	$f_{LO} = 16 \bullet f_{ref}$	300	450	MHz
Frequency deviation	Δf	at FSK or FM	±4	±120	kHz
FSK data rate	R _{FSK}	NRZ		40	kbit/s
ASK data rate	R _{ASK}	NRZ		80	kbit/s
FM bandwidth	f _m			15	kHz

3.3 Crystal Parameters

Parameter	Symbol	Condition	Min	Max	Unit
Crystal frequency	f ₀	fundamental mode, AT	See par	a. 1.6.1	MHz
Load capacitance	CL		10	15	pF
Static capacitance	C ₀			7	pF
Series resistance	R ₁			50	Ω

3.4 DC Characteristics

all parameters under normal operating conditions, unless otherwise stated; typical values at $T_A = 23$ °C and $V_{CC} = 3$ V

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Operating Currents						
Standby current	I _{SBY}	ENRX=0		50	100	nA
Supply current at low gain	I _{CC, low}	ENRX=1 GAIN_LNA=1	4.0	6.5	10.0	mA
Supply current at high gain	I _{CC, high}	ENRX=1 GAIN_LNA=0	4.5	8.2	12.0	mA
Digital Pin Characteristics						
Input low voltage CMOS	V _{IL}	ENRX pin	-0.3		0.3*V _{cc}	V
Input high voltage CMOS	V _{IH}	ENRX pin	0.7*V _{CC}		V _{CC} +0.3	V
Pull down current ENRX pin	I _{PDEN}	ENRX=1	0.1	2	10	μA
Low level input current ENRX pin	I _{INLEN}	ENRX=0			0.05	μA
Analog Pin Characteristics						
High level input current GAIN_LNA pin	I _{INHGAIN}	GAIN_LNA=1			0.05	μA
Pull up current GAIN_LNA pin active	I _{PUGAINa}	GAIN_LNA=0 ENRX=1	0.08	0.15	0.3	μA
Pull up current GAIN_LNA pin standby	I _{PUGAINs}	GAIN_LNA=0 ENRX=0			0.05	μA
High gain input voltage	VIHGAIN	ENRX=1			0.7	V
Low gain input voltage	V _{ILGAIN}	ENRX=1	1.5			V
Opamp Characteristics						
Opamp input offset voltage	V _{offs}		-35		35	mV
Opamp input offset current	I _{offs}	I _{OAP} – I _{OAN}	-50		50	nA
Opamp input bias current	I _{bias}	0.5 * (I _{OAP} + I _{OAN})	-150		150	nA
RSSI Characteristics						
RSSI voltage at low input level	V _{RSSI, low}	P _i = -65 dBm, GAIN_LNA=1	0.5	1.0	1.5	V
RSSI voltage at high input level	V _{RSSI, high}	P _i = -35 dBm, GAIN_LNA=1	1.2	1.9	2.5	V

3.5 AC System Characteristics

all parameters under normal operating conditions, unless otherwise stated; typical values at T_A = 23 °C and V_{CC} = 3 V, RF at 433.92 MHz; SAW frond-end filter loss and second IF at 10.7 MHz; all parameters based on test circuits for FSK (Fig. 2) and ASK (Fig. 4), respectively;

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Receive Characteristics						
Input sensitivity – FSK (narrow band)	P _{min, n}	$B_{1F2} = 40 \text{kHz}$ $\Delta f = \pm 15 \text{kHz} (FSK/FM)$ $BER \le 3 \cdot 10^{-3}, 1)$		-111		dBm
Input sensitivity – FSK (wide band)	P _{min, w}	$B_{IF2} = 150 \text{kHz}$ $\Delta f = \pm 50 \text{kHz} (FSK/FM)$ $BER \le 3 \cdot 10^{-3}, 1)$		-104		dBm
Input sensitivity – ASK (narrow band)	P _{minA, n}	$B_{IF2} = 40 \text{kHz}$ BER $\leq 3 \cdot 10^{-3}$, 1)		-109		dBm
Input sensitivity – ASK (wide band)	P _{minA, w}	$B_{IF2} = 150 \text{kHz}$ BER $\leq 3.10^{-3}$, 1)		-106		dBm
Maximum input signal – FSK/FM	P _{max, FSK}	$BER \le 3.10^{-3}$ GAIN_LNA=1		0		dBm
Maximum input signal – ASK	P _{max, ASK}	$BER \le 3.10^{-3}$ GAIN_LNA=1		-10		dBm
Spurious emission	P _{spur}				-70	dBm
Image rejection	ΔP_{imag}			65		dB
Blocking immunity	ΔP_{block}	$\Delta f_{block} > \pm 2MHz, 2)$		57		dB
Start-up Parameters						
Start-up time – FSK/FM	T _{FSK}	ENRX from 0 to 1, valid data at output			0.9	ms
Start-up time – ASK	Т _{АSK}	depends on ASK detector time constant, valid data at output			R3•C12 + T _{FSK}	ms
PLL Parameters						
VCO gain	K _{VCO}			250		MHz/V
Charge pump current	I _{CP}			60		μA

1) inclusive 3 dB loss of front-end SAW filter

2) desired signal with FSK/FM or ASK modulation, CW blocking signal

4 Test Circuits

4.1 FSK Reception

Fig. 2: Test circuit for FSK reception

4.2 FSK test circuit component list (Fig. 2)

Part	Size	Value / Type	Tolerance	Description
C1	0805	15 pF	±10%	crystal series capacitor
C3	0805	1 nF	±10%	loop filter capacitor
C4	0603	3.3 pF	±5%	capacitor to match to SAW filter input
C5	0603	3.3 pF	±5%	capacitor to match to SAW filter output
C6	0603	4.7 pF	±5%	LNA output tank capacitor
C7	0603	2.2 pF	±5%	MIX1 input matching capacitor
C8	0603	27 pF	±5%	IF1 tank capacitor
C9	0805	33 nF	±10%	IFA feedback capacitor
C10	0603	1 nF	±10%	IFA feedback capacitor
C11	0603	1 nF	±10%	IFA feedback capacitor
C12	0603	1.5 pF	±5%	DEMOD phase-shift capacitor
C13	0603	680 pF	±10%	DEMOD coupling capacitor
CP	0805	10 – 12 pF	±5%	CERRES parallel capacitor
C14	0805	10 – 47 pF	±5%	demodulator output low-pass capacitor, depending on data rate
C15	0805	10 – 47 pF	±5%	demodulator output low-pass capacitor, depending on data rate
C16	0603	1.5 nF	±10%	RSSI output low-pass capacitor
R1	0805	10 kΩ	±10%	loop filter resistor
L1	0603	33 nH	±5%	inductor to match SAW filter
L2	0603	33 nH	±5%	inductor to match SAW filter
L3	0603	15 nH	±5%	LNA output tank inductor
L4	0805	100 nH	±5%	IF1 tank inductor
L5	0805	100 nH	±5%	IF1 tank inductor
XTAL	HC49 SMD	23.51222 MHz @ RF = 433.92 MHz	±25ppm calibration ±30ppm temp.	fundamental-mode crystal, C_{load} = 10 pF to 15pF, $C_{0, max}$ = 7 pF, $R_{m, max}$ = 50 Ω
SAWFIL	QCC8C	B3555	B _{3dB} = 860 kHz	low-loss SAW filter from EPCOS
		@ RF = 433.92 MHz	±100 kHz	
CERFIL	leaded	SFE10.7MFP	TBD	ceramic filter from Murata
	type	@ B _{IF2} = 40 kHz		
	SMD type	SFECV10.7MJS-A	±40 kHz	
		@ B _{IF2} = 150 kHz		
CERRES	SMD type	CDACV10.7MG18-A		ceramic demodulator tank from Murata

4.3 FSK/FM Circuit with AFC and Ceramic Resonator Compensation

Circuit Features

- $\hfill\square$ Improves input frequency acceptance range up to $RF_{nom}\pm 50\ kHz$
- Eliminates calibration tolerances of ceramic resonator
- $\hfill\square$ Eliminates temperature tolerances of ceramic resonator
- Non-inverted and inverted CMOS-compatible outputs
- □ Recommended FM receiver configuration

4.4 FSK/FM (with AFC) test circuit component list (Fig.3)

Part	Size	Value / Type	Tolerance	Description	
C1	0805	15 pF	±10%	crystal series capacitor	
C3	0805	1 nF	±10%	loop filter capacitor	
C4	0603	3.3 pF	±5%	capacitor to match to SAW filter input	
C5	0603	3.3 pF	±5%	capacitor to match to SAW filter output	
C6	0603	4.7 pF	±5%	LNA output tank capacitor	
C7	0603	2.2 pF	±5%	MIX1 input matching capacitor	
C8	0603	27 pF	±5%	IF1 tank capacitor	
C9	0805	33 nF	±10%	IFA feedback capacitor	
C10	0603	1 nF	±10%	IFA feedback capacitor	
C11	0603	1 nF	±10%	IFA feedback capacitor	
C12	0603	1.5 pF	±5%	DEMOD phase-shift capacitor	
C13	0603	680 pF	±10%	DEMOD coupling capacitor	
CP	0805	27 pF	±5%	ceramic resonator loading capacitor	
C14	0805	10 – 47 pF	±5%	demodulator output low-pass capacitor, depending on data rate	
C15	0805	10 – 47 pF	±5%	demodulator output low-pass capacitor, depending on data rate	
C16	0603	1.5 nF	±10%	RSSI output low-pass capacitor	
C17		33 nF	±10%	integrator capacitor, fixed	
C18	0805	33 nF	±10%	integrator capacitor, @ 0.5 to 2 kbit/s NRZ	
		10 nF		integrator capacitor, @ 2 to 20 kbit/s NRZ	
		1 nF		integrator capacitor, @ 20 to 40 kbit/s NRZ	
R1	0805	10 kΩ	±10%	loop filter resistor	
R3	0805	100 kΩ	±10%	varactor diode biasing resistor	
R4	0805	680 kΩ	±10%	integrator resistor	
R5	0805	680 kΩ	±10%	integrator resistor	
L1	0603	33 nH	±5%	inductor to match SAW filter	
L2	0603	33 nH	±5%	inductor to match SAW filter	
L3	0603	15 nH	±5%	LNA output tank inductor	
L4	0805	100 nH	±5%	IF1 tank inductor	
L5	0805	100 nH	±5%	IF1 tank inductor	
VD	SOD-323	BB535		varactor diode from Infineon	
XTAL	HC49 SMD	23.51222 MHz MHz	±25ppm calibration	fundamental-mode crystal, $C_{load} = 10 \text{ pF to } 15 \text{pF}$,	
		@ RF = 433.92 MHz	±30ppm temp.	$C_{0, \text{ max}} = 7 \text{ pF}, R_{\text{m}, \text{ max}} = 50 \Omega$	
SAWFIL	QCC8C	B3555	$B_{3dB} = 860 \text{ kHz}$	low-loss SAW filter from EPCOS	
	looded	@ RF = 433.92 MHz	±100 kHz	a succession filters from Munoto	
CERFIL	leaded type	SFE10.7MFP	TBD	ceramic filter from Murata	
		@ B _{IF2} = 40 kHz SFECV10.7MJS-A		4	
	SMD type	@ B _{IF2} = 150 kHz	±40 kHz		
CERRES	SMD type	CDACV10.7MG18-A		ceramic demodulator tank from Murata	

4.5 ASK Reception

Fig. 4: Test circuit for ASK reception

4.6 ASK Test Circuit Component List (Fig. 4)

Part	Size	Value / Type	Tolerance	Description
C1	0805	15 pF	±10%	crystal series capacitor
C3	0805	1 nF	±10%	loop filter capacitor
C4	0603	3.3 pF	±5%	capacitor to match to SAW filter input
C5	0603	3.3 pF	±5%	capacitor to match to SAW filter output
C6	0603	4.7 pF	±5%	LNA output tank capacitor
C7	0603	2.2 pF	±5%	MIX1 input matching capacitor
C8	0805	27 pF	±5%	IF1 tank capacitor
C9	0805	33 nF	±10%	IFA feedback capacitor
C10	0603	1 nF	±10%	IFA feedback capacitor
C11	0603	1 nF	±10%	IFA feedback capacitor
C12	0805	1 nF to 100 nF	±10%	ASK data slicer capacitor, depending on data rate
C13	0603	1.5 nF	±10%	RSSI output low-pass capacitor
R1	0805	10 kΩ	±10%	loop filter resistor
R3	0603	100 kΩ	±5%	ASK data slicer resistor, depending on data rate
L1	0603	33 nH	±5%	inductor to match SAW filter
L2	0603	33 nH	±5%	inductor to match SAW filter
L3	0603	15 nH	±5%	LNA output tank inductor
L4	0603	100 nH	±5%	IF1 tank inductor
L5	0603	100 nH	±5%	IF1 tank inductor
XTAL	HC49	23.51222 MHz	±25ppm calibration	fundamental-mode crystal, $C_{load} = 10 \text{ pF}$ to 15pF,
	SMD	@ RF = 433.92 MHz	±30ppm temp.	$C_{0, max} = 7 \text{ pF}, R_{m, max} = 50 \Omega$
SAWFIL	QCC8C	B3555	B _{3dB} = 860 kHz	low-loss SAW filter from EPCOS
		@ RF = 433.92 MHz	±100 kHz	
CERFIL	leaded	SFE10.7MFP	TBD	ceramic filter from Murata
	type	@ B _{IF2} = 40 kHz		
	SMD type	SFECV10.7MJS-A	±40 kHz	
		@ B _{IF2} = 150 kHz		

5 Package Dimensions

Fig. 5: LQFP32 (Low profile Quad Flat Package)

All Dimer	All Dimension in mm, coplanaríty < 0.1mm									
	E1, D1	E, D	Α	A1	A2	е	b	С	L	α
min	7.00	0.00	1.40	0.05	1.35	0.0	0.30	0.09	0.45	0°
max	7.00	9.00	1.60	0.15	1.45	0.8	0.45	0.20	0.75	7°
All Dimer	All Dimension in inch, coplanaríty < 0.004"									
min	0.070	0.054	0.055	0.002	0.053	0.004	0.012	0.0035	0.018	0°
max	0.276	0.354	0.063	0.006	0.057	0.031	0.018	0.0079	0.030	7°

6 Reliability Information

Melexis devices are classified and qualified regarding suitability for infrared, vapor phase and wave soldering with usual (63/37 SnPb-) solder (melting point at 183degC). The following test methods are applied:

- IPC/JEDEC J-STD-020A (issue April 1999)
- Moisture/Reflow Sensitivity Classification For Nonhermetic Solid State Surface Mount Devices
 CECC00802 (issue 1994)
- Standard Method For The Specification of Surface Mounting Components (SMDs) of Assessed Quality
 MIL 883 Method 2003 / JEDEC-STD-22 Test Method B102
- Solderability

For all soldering technologies deviating from above mentioned standard conditions (regarding peak temperature, temperature gradient, temperature profile etc) additional classification and qualification tests have to be agreed upon with Melexis.

The application of Wave Soldering for SMD's is allowed only after consulting Melexis regarding assurance of adhesive strength between device and board.

For more information on manufacturability/solderability see quality page at our website: http://www.melexis.com/

7 ESD Precautions

Electronic semiconductor products are sensitive to Electro Static Discharge (ESD). Always observe Electro Static Discharge control procedures whenever handling semiconductor products.

8 Disclaimer

Devices sold by Melexis are covered by the warranty and patent indemnification provisions appearing in its Term of Sale. Melexis makes no warranty, express, statutory, implied, or by description regarding the information set forth herein or regarding the freedom of the described devices from patent infringement. Melexis reserves the right to change specifications and prices at any time and without notice. Therefore, prior to designing this product into a system, it is necessary to check with Melexis for current information. This product is intended for use in normal commercial applications. Applications requiring extended temperature range, unusual environmental requirements, or high reliability applications, such as military, medical life-support or life-sustaining equipment are specifically not recommended without additional processing by Melexis for each application.

The information furnished by Melexis is believed to be correct and accurate. However, Melexis shall not be liable to recipient or any third party for any damages, including but not limited to personal injury, property damage, loss of profits, loss of use, interrupt of business or indirect, special incidental or consequential damages, of any kind, in connection with or arising out of the furnishing, performance or use of the technical data herein. No obligation or liability to recipient or any third party shall arise or flow out of Melexis' rendering of technical or other services.

© 2002 Melexis NV. All rights reserved.

For the latest version of this document. Go to our website at www.melexis.com

Or for additional information contact Melexis Direct:

Europe and Japan: Phone: +32 1367 0495 E-mail: sales_europe@melexis.com All other locations: Phone: +1 603 223 2362 E-mail: sales_usa@melexis.com

QS9000, VDA6.1 and ISO14001 Certified