74HC390; 74HCT390 # **Dual decade ripple counter** Rev. 5 — 18 October 2021 Product data sheet # 1. General description The 74HC390; 74HCT390 is a dual 4-bit decade ripple counter divided into four separately clocked sections. The counters have two divide-by-2 sections and two divide-by-5 sections. These sections share an asynchronous master reset input (nMR) and can be used in a BCD decade or bi-quinary configuration. If master reset inputs (1MR and 2MR) are used to simultaneously clear all 8 bits of the counter, a number of counting configurations are possible within one package. The separate clocks ($\overline{nCP0}$ and $\overline{nCP1}$) of each section allow ripple counter or frequency division applications of divide-by-2, 4, 5, 10, 20, 25, 50 or 100. Each section is triggered by the HIGH-to-LOW transition of the clock inputs ($\overline{nCP0}$ and $\overline{nCP1}$). For BCD decade operation, the nQ0 output is connected to the $\overline{nCP0}$ input of the divide-by-5 section. For bi-quinary decade operation, the nQ3 output is connected to the $\overline{nCP0}$ input and nQ0 becomes the decade output. A HIGH on the nMR input overrides the clocks and sets the four outputs LOW. This device features reduced input threshold levels to allow interfacing to TTL logic levels. Inputs also include clamp diodes, this enables the use of current limiting resistors to interface inputs to voltages in excess of V_{CC} . #### 2. Features and benefits - Input levels: - For 74HC390: CMOS level - For 74HCT390: TTL level - · Two BCD decade or bi-quinary counters - One device can be configured to divide-by-2, 4, 5, 10, 20, 25, 50 or 100 - Two master reset inputs to clear each decade counter individually - Supply voltage range from 4.5 V to 5.5 V - · High noise immunity - Latch-up performance exceeds 100 mA per JESD 78 Class II Level B - Complies with JEDEC standard JESD7A (4.5 V to 5.5 V) - ESD protection: - HBM JESD22-A114F exceeds 2000 V - MM JESD22-A115-A exceeds 200 V - Specified from -40 °C to +85 °C and from -40 °C to +125 °C # 3. Ordering information **Table 1. Ordering information** | Type number | Package | | | | | | | | | | |-------------|-------------------|---------|--|----------|--|--|--|--|--|--| | | Temperature range | Name | Description | Version | | | | | | | | 74HC390D | -40 °C to +125 °C | SO16 | plastic small outline package; 16 leads; | SOT109-1 | | | | | | | | 74HCT390D | | | body width 3.9 mm | | | | | | | | | 74HC390PW | -40 °C to +125 °C | TSSOP16 | plastic thin shrink small outline package; 16 leads; | SOT403-1 | | | | | | | | 74HCT390PW | | | body width 4.4 mm | | | | | | | | # 4. Functional diagram # 5. Pinning information #### 5.1. Pinning # 5.2. Pin description Table 2. Pin description | Symbol | Pin | Description | | | | |--------------------------------------|---------------|---|--|--|--| | 1 CP 0, 2 CP 0 | 1, 15 | clock input divide-by-2 section (HIGH-to-LOW; edge-triggered) | | | | | 1MR, 2MR | 2, 14 | asynchronous master reset input (active HIGH) | | | | | 1Q0, 1Q1, 1Q2, 1Q3 | 3, 5, 6, 7 | flip-flop outputs | | | | | 1 CP 1, 2 CP 1 | 4, 12 | clock input divide-by-5 section (HIGH-to-LOW; edge-triggered) | | | | | GND | 8 | ground (0 V) | | | | | 2Q0, 2Q1, 2Q2, 2Q3 | 13, 11, 10, 9 | flip-flop outputs | | | | | V _{CC} | 16 | supply voltage | | | | # 6. Functional description #### Table 3. BCD count sequence Output nQ0 connected to $n\overline{CP}1$; counter input on $n\overline{CP}0$; H = HIGH voltage level; L = LOW voltage level | Count | Output | | | | | | | | | | |-------|--------|-----|-----|-----|--|--|--|--|--|--| | | nQ0 | nQ1 | nQ2 | nQ3 | | | | | | | | 0 | L | L | L | L | | | | | | | | 1 | Н | L | L | L | | | | | | | | 2 | L | Н | L | L | | | | | | | | 3 | Н | Н | L | L | | | | | | | | 4 | L | L | Н | L | | | | | | | | 5 | Н | L | Н | L | | | | | | | | 6 | L | Н | Н | L | | | | | | | | 7 | Н | Н | Н | L | | | | | | | | 8 | L | L | L | Н | | | | | | | | 9 | Н | L | L | Н | | | | | | | #### Table 4. Bi-quinary count sequence Output nQ3 connected to $n\overline{CP}0$; counter input on $n\overline{CP}1$; H = HIGH voltage level; L = LOW voltage level | Count | Output | | | | |-------|--------|-----|-----|-----| | | nQ0 | nQ1 | nQ2 | nQ3 | | 0 | L | L | L | L | | 1 | L | Н | L | L | | 2 | L | L | Н | L | | 3 | L | Н | Н | L | | 4 | L | L | L | Н | | 5 | Н | L | L | L | | 6 | Н | Н | L | L | | 7 | Н | L | Н | L | | 8 | Н | Н | Н | L | | 9 | Н | L | L | Н | # 7. Limiting values #### Table 5. Limiting values In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V). | Symbol | Parameter | Conditions | Min | Max | Unit | |------------------|-------------------------|---|------|------|------| | V _{CC} | supply voltage | | -0.5 | +7 | V | | I _{IK} | input clamping current | $V_{I} < -0.5 \text{ V or } V_{I} > V_{CC} + 0.5 \text{ V}$ | - | ±20 | mA | | I _{OK} | output clamping current | V_{O} < -0.5 V or V_{O} > V_{CC} + 0.5 V | - | ±20 | mA | | Io | output current | $-0.5 \text{ V} < \text{V}_{\text{O}} < \text{V}_{\text{CC}} + 0.5 \text{ V}$ | - | ±25 | mA | | I _{CC} | supply current | | - | +50 | mA | | I _{GND} | ground current | | -50 | - | mA | | T _{stg} | storage temperature | | -65 | +150 | °C | | P _{tot} | total power dissipation | [1] | - | 500 | mW | ^[1] For SOT109-1 (SO16) package: P_{tot} derates linearly with 12.4 mW/K above 110 °C. For SOT403-1 (TSSOP16) package: P_{tot} derates linearly with 8.5 mW/K above 91 °C. # 8. Recommended operating conditions #### Table 6. Recommended operating conditions Voltages are referenced to GND (ground = 0 V) | Symbol | Parameter | Conditions | 74HC390 | | 7 | Unit | | | | |------------------|-------------------------------------|-------------------------|---------|------|-----------------|------|------|-----------------|------| | | | | Min | Тур | Max | Min | Тур | Max | | | V _{CC} | supply voltage | | 2.0 | 5.0 | 6.0 | 4.5 | 5.0 | 5.5 | V | | VI | input voltage | | 0 | - | V _{CC} | 0 | - | V _{CC} | V | | Vo | output voltage | | 0 | - | V _{CC} | 0 | - | V _{CC} | V | | T _{amb} | ambient temperature | | -40 | +25 | +125 | -40 | +25 | +125 | °C | | Δt/ΔV | input transition rise and fall rate | V _{CC} = 2.0 V | - | - | 625 | - | - | - | ns/V | | | | V _{CC} = 4.5 V | - | 1.67 | 139 | - | 1.67 | 139 | ns/V | | | | V _{CC} = 6.0 V | - | - | 83 | - | - | - | ns/V | ### 9. Static characteristics #### **Table 7. Static characteristics** At recommended operating conditions; voltages are referenced to GND (ground = 0 V). | Symbol | Parameter | rameter Conditions 25 °C | | | | -40 °C to
+85 °C | | | -40 °C to
+125 °C | | |----------|---------------|--------------------------|------|-----|------|---------------------|------|------|----------------------|---| | | | | Min | Тур | Max | Min | Max | Min | Max | | | 74HC39 | 0 | | | | • | | | | | | | V_{IH} | HIGH-level | V _{CC} = 2.0 V | 1.5 | 1.2 | - | 1.5 | - | 1.5 | - | V | | | input voltage | V _{CC} = 4.5 V | 3.15 | 2.4 | - | 3.15 | - | 3.15 | - | V | | | | V _{CC} = 6.0 V | 4.2 | 3.2 | - | 4.2 | - | 4.2 | - | V | | V_{IL} | LOW-level | V _{CC} = 2.0 V | - | 0.8 | 0.5 | - | 0.5 | - | 0.5 | V | | | input voltage | V _{CC} = 4.5 V | - | 2.1 | 1.35 | - | 1.35 | - | 1.35 | V | | | | V _{CC} = 6.0 V | - | 2.8 | 1.8 | - | 1.8 | - | 1.8 | V | | Symbol | Parameter | Conditions | | 25 °C | | | °C to
5 °C | -40 °C to
+125 °C | | Unit | |------------------|---------------------------|--|------|-------|------|------|---------------|----------------------|-------|------| | | | | Min | Тур | Max | Min | Max | Min | Max | | | V _{OH} | HIGH-level | V _I = V _{IH} or V _{IL} | | | | | | | | | | | output voltage | I _O = -20 μA; V _{CC} = 2.0 V | 1.9 | 2.0 | - | 1.9 | - | 1.9 | - | ٧ | | | | I _O = -20 μA; V _{CC} = 4.5 V | 4.4 | 4.5 | - | 4.4 | - | 4.4 | - | V | | | | I _O = -20 μA; V _{CC} = 6.0 V | 5.9 | 6.0 | - | 5.9 | - | 5.9 | - | ٧ | | | | I _O = -4.0 mA; V _{CC} = 4.5 V | 3.98 | 4.32 | - | 3.84 | - | 3.7 | - | ٧ | | | | I _O = -5.2 mA; V _{CC} = 6.0 V | 5.48 | 5.81 | - | 5.34 | - | 5.2 | - | ٧ | | V _{OL} | LOW-level | V _I = V _{IH} or V _{IL} | | | | | | | | | | | output voltage | I _O = 20 μA; V _{CC} = 2.0 V | - | 0 | 0.1 | - | 0.1 | - | 0.1 | ٧ | | | | I _O = 20 μA; V _{CC} = 4.5 V | - | 0 | 0.1 | - | 0.1 | - | 0.1 | V | | | | I _O = 20 μA; V _{CC} = 6.0 V | - | 0 | 0.1 | - | 0.1 | - | 0.1 | ٧ | | | | I _O = 4.0 mA; V _{CC} = 4.5 V | - | 0.15 | 0.26 | - | 0.33 | - | 0.4 | V | | | | I _O = 5.2 mA; V _{CC} = 6.0 V | - | 0.16 | 0.26 | - | 0.33 | - | 0.4 | ٧ | | I _I | input leakage
current | $V_I = V_{CC}$ or GND; $V_{CC} = 6.0 \text{ V}$ | - | - | ±0.1 | - | ±1 | - | ±1 | μΑ | | I _{CC} | supply current | $V_I = V_{CC}$ or GND; $I_O = 0$ A;
$V_{CC} = 6.0 \text{ V}$ | - | - | 8.0 | - | 80 | - | 160 | μΑ | | Cı | input
capacitance | | - | 3.5 | - | - | - | - | - | pF | | 74HCT3 | 90 | | | | • | | | | | | | V _{IH} | HIGH-level input voltage | V _{CC} = 4.5 V to 5.5 V | 2.0 | 1.6 | - | 2.0 | - | 2.0 | - | V | | V_{IL} | LOW-level input voltage | V _{CC} = 4.5 V to 5.5 V | - | 1.2 | 0.8 | - | 0.8 | - | 0.8 | V | | V _{OH} | HIGH-level | $V_I = V_{IH}$ or V_{IL} ; $V_{CC} = 4.5 \text{ V}$ | | | | | | | | | | | output voltage | I _O = -20 μA | 4.4 | 4.5 | - | 4.4 | - | 4.4 | - | V | | | | I _O = -4.0 mA | 3.98 | 4.32 | - | 3.84 | - | 3.7 | - | V | | V _{OL} | LOW-level | $V_I = V_{IH}$ or V_{IL} ; $V_{CC} = 4.5 \text{ V}$ | | | | | | | | | | | output voltage | I _O = 20 μA; V _{CC} = 4.5 V | - | 0 | 0.1 | - | 0.1 | - | 0.1 | V | | | | I _O = 4.0 mA; V _{CC} = 5.5 V | - | 0.15 | 0.26 | - | 0.33 | - | 0.4 | V | | l _l | input leakage
current | $V_I = V_{CC}$ or GND; $V_{CC} = 5.5 \text{ V}$ | - | - | ±0.1 | - | ±1 | - | ±1 | μΑ | | I _{CC} | supply current | $V_I = V_{CC}$ or GND; $I_O = 0$ A;
$V_{CC} = 5.5 \text{ V}$ | - | - | 8.0 | - | 80 | - | 160 | μΑ | | ΔI _{CC} | additional supply current | per input pin; $V_1 = V_{CC} - 2.1 \text{ V}$; other inputs at V_{CC} or GND; $V_{CC} = 4.5 \text{ V}$ to 5.5 V | | | | | | | | | | | | nCP0 inputs | - | 45 | 162 | - | 202.5 | - | 220.5 | μΑ | | | | nCP1, nMR inputs | - | 60 | 216 | - | 270 | - | 294 | μΑ | | Cı | input
capacitance | | - | 3.5 | - | - | - | - | - | pF | # 10. Dynamic characteristics #### **Table 8. Dynamic characteristics** Voltages are referenced to GND (ground = 0 V); C_L = 50 pF unless otherwise specified; for test circuit, see Fig. 7. | Symbol | Parameter | Conditions | | 25 °C | | | °C to
5 °C | | °C to
5 °C | Unit | |------------------|-----------------|---|-----|---------|-----|-----|---------------|-----|---------------|------| | | | | Min | Typ [1] | Max | Min | Max | Min | Max | | | 74HC39 | 0 | | | | | | | | | | | t _{pd} | propagation | nCP0 to nQ0; see Fig. 5 [2] | | | | | | | | | | | delay | V _{CC} = 2.0 V | - | 47 | 145 | - | 180 | - | 220 | ns | | | | V _{CC} = 4.5 V | - | 17 | 29 | - | 36 | - | 44 | ns | | | | V _{CC} = 5 V; C _L = 15 pF | - | 14 | - | - | - | - | - | ns | | | | V _{CC} = 6.0 V | - | 14 | 25 | - | 31 | - | 38 | ns | | | | nCP1 to nQ1; see Fig. 5 | | | | | | | | | | | | V _{CC} = 2.0 V | - | 50 | 155 | - | 195 | - | 235 | ns | | | | V _{CC} = 4.5 V | - | 18 | 31 | - | 39 | - | 47 | ns | | | | V _{CC} = 5 V; C _L = 15 pF | - | 15 | - | - | - | - | - | ns | | | | V _{CC} = 6.0 V | - | 14 | 26 | - | 33 | - | 40 | ns | | | | nCP1 to nQ2; see Fig. 5 | | | | | | | | | | | | V _{CC} = 2.0 V | - | 74 | 210 | - | 265 | - | 315 | ns | | | | V _{CC} = 4.5 V | - | 27 | 42 | - | 53 | - | 63 | ns | | | | V _{CC} = 5 V; C _L = 15 pF | - | 23 | - | - | - | - | - | ns | | | | V _{CC} = 6.0 V | - | 22 | 36 | - | 45 | - | 54 | ns | | | | nCP1 to nQ3; see Fig. 5 | | | | | | | | | | | | V _{CC} = 2.0 V | - | 50 | 155 | - | 195 | - | 235 | ns | | | | V _{CC} = 4.5 V | - | 18 | 31 | - | 39 | - | 47 | ns | | | | V _{CC} = 5 V; C _L = 15 pF | - | 15 | - | - | - | - | - | ns | | | | V _{CC} = 6.0 V | - | 14 | 26 | - | 33 | - | 40 | ns | | t _{PHL} | HIGH to LOW | nMR to nQn; see Fig. 6 | | | | | | | | | | | propagation | V _{CC} = 2.0 V | - | 52 | 165 | - | 205 | - | 250 | ns | | | delay | V _{CC} = 4.5 V | - | 19 | 33 | - | 41 | - | 50 | ns | | | | V _{CC} = 5 V; C _L = 15 pF | - | 16 | - | - | - | - | - | ns | | | | V _{CC} = 6.0 V | - | 15 | 28 | - | 35 | - | 43 | ns | | t _t | transition time | nQn; see Fig. 5 [3] | | | | | | | | | | | | V _{CC} = 2.0 V | - | 19 | 75 | - | 95 | - | 110 | ns | | | | V _{CC} = 4.5 V | - | 7 | 15 | - | 19 | - | 22 | ns | | | | V _{CC} = 6.0 V | - | 6 | 13 | - | 16 | - | 19 | ns | | Symbol | Parameter | arameter Conditions | | 25 °C | | | °C to
5 °C | -40 °C to
+125 °C | | Unit | |------------------|-------------------------------------|--|-----|---------|-----|-----|---------------|----------------------|-----|------| | | | | Min | Typ [1] | Max | Min | Max | Min | Max | | | t _W | pulse width | nCP0, nCP1; HIGH or LOW; see Fig. 5 | | | | | | | | | | | | V _{CC} = 2.0 V | 80 | 19 | - | 100 | - | 120 | - | ns | | | | V _{CC} = 4.5 V | 16 | 7 | - | 20 | - | 24 | - | ns | | | | V _{CC} = 6.0 V | 14 | 6 | - | 17 | - | 20 | - | ns | | | | nMR HIGH; see Fig. 6 | | | | | | | | | | | | V _{CC} = 2.0 V | 80 | 28 | - | 105 | - | 130 | - | ns | | | | V _{CC} = 4.5 V | 17 | 10 | - | 21 | - | 26 | - | ns | | | | V _{CC} = 6.0 V | 14 | 8 | - | 18 | - | 22 | - | ns | | t _{rec} | recovery time | nMR to nCPn; see Fig. 6 | | | | | | | | | | | | V _{CC} = 2.0 V | 75 | 22 | - | 95 | - | 110 | - | ns | | | | V _{CC} = 4.5 V | 15 | 8 | - | 19 | - | 22 | - | ns | | | | V _{CC} = 6.0 V | 13 | 6 | - | 16 | - | 19 | - | ns | | f _{max} | maximum | nCPn; see Fig. 5 | | | | | | | | | | | frequency | V _{CC} = 2.0 V | 6.0 | 20 | - | 4.8 | - | 4.0 | - | MHz | | | | V _{CC} = 4.5 V | 30 | 60 | - | 24 | - | 20 | - | MHz | | | | V _{CC} = 5 V; C _L = 15 pF | - | 66 | - | - | - | - | - | MHz | | | | V _{CC} = 6.0 V | 35 | 71 | - | 28 | - | 24 | - | MHz | | C _{PD} | power
dissipation
capacitance | C_L = 50 pF; f = 1 MHz; [4]
V_I = GND to V_{CC} | - | 20 | - | - | - | - | - | pF | | 74HCT3 | 90 | | | | | | | | | | | t _{pd} | propagation | nCP0 to nQ0; see Fig. 5 [2] | | | | | | | | | | | delay | V _{CC} = 4.5 V | - | 21 | 34 | - | 43 | - | 51 | ns | | | | V _{CC} = 5 V; C _L = 15 pF | - | 18 | - | - | _ | - | _ | ns | | | | nCP1 to nQ1; see Fig. 5 | | | | | | | | | | | | V _{CC} = 4.5 V | - | 22 | 38 | - | 48 | - | 57 | ns | | | | V _{CC} = 5 V; C _L = 15 pF | - | 19 | - | - | _ | - | - | ns | | | | nCP1 to nQ2; see Fig. 5 | | | | | | | | | | | | V _{CC} = 4.5 V | - | 30 | 51 | - | 64 | - | 77 | ns | | | | V _{CC} = 5 V; C _L = 15 pF | - | 26 | - | - | _ | - | - | ns | | | | nCP1 to nQ3; see Fig. 5 | | | | | | | | | | | | V _{CC} = 4.5 V | - | 22 | 38 | - | 48 | - | 57 | ns | | | | V _{CC} = 5 V; C _L = 15 pF | - | 19 | - | - | - | - | - | ns | | t _{PHL} | HIGH to LOW | nMR to nQn; see Fig. 6 | | | | | | | | | | = | propagation | V _{CC} = 4.5 V | - | 21 | 36 | - | 45 | - | 54 | ns | | | delay | V _{CC} = 5 V; C _L = 15 pF | - | 18 | - | - | - | - | - | ns | | | transition time | nQn; see Fig. 5 [3] | | | | | | | | | | t _t | | | | | | | | | | | | Symbol | Parameter | Conditions | 25 °C | | -40 °C to
+85 °C | | -40 °C to
+125 °C | | Unit | | |------------------|-------------------------------------|---|-------|---------|---------------------|-----|----------------------|-----|------|-----| | | | | Min | Typ [1] | Max | Min | Max | Min | Max | | | t _W | pulse width | nCP0, nCP1; HIGH or LOW; see Fig. 5 | | | | | | | | | | | | V _{CC} = 4.5 V | 18 | 8 | - | 23 | - | 27 | - | ns | | | | nMR HIGH; see Fig. 6 | | | | | | | | | | | | V _{CC} = 4.5 V | 17 | 10 | - | 21 | - | 26 | - | ns | | t _{rec} | recovery time | nMR to nCPn;see Fig. 6 | | | | | | | | | | | | V _{CC} = 4.5 V | 15 | 8 | - | 19 | - | 22 | - | ns | | f _{max} | maximum | nCPn; see Fig. 5 | | | | | | | | | | | frequency | V _{CC} = 4.5 V | 27 | 55 | - | 22 | - | 18 | - | MHz | | | | V _{CC} = 5 V; C _L = 15 pF | - | 61 | - | - | - | - | - | MHz | | C _{PD} | power
dissipation
capacitance | $C_L = 50 \text{ pF; } f = 1 \text{ MHz;}$ [4]
$V_I = \text{GND to } V_{CC} - 1.5 \text{ V}$ | - | 21 | - | - | - | - | - | pF | - All typical values are measured at T_{amb} = 25 °C. - [2] t_{pd} is the same as t_{PLH} and t_{PHL}. [3] t_t is the same as t_{THL} and t_{TLH}. [4] C_{PD} is used to determine the dynamic power dissipation (P_D in μW). $$P_D = C_{PD} \times V_{CC}^2 \times f_i \times N + \sum (C_L \times V_{CC}^2 \times f_o)$$ where: f_i = input frequency in MHz; f_o = output frequency in MHz; C_L = output load capacitance in pF; V_{CC} = supply voltage in V; N = number of inputs switching; $\sum (C_L \times V_{CC}^2 \times f_0) = \text{sum of outputs.}$ #### 10.1. Waveforms and test circuit V_{OL} and V_{OH} are typical voltage output levels that occur with the output load. Fig. 5. The clock input (nCPn) to output (nQn) propagation delays, output transition time, clock pulse width and maximum clock frequency Measurement points are given in <u>Table 9</u>. V_{OL} and V_{OH} are typical voltage output levels that occur with the output load. Fig. 6. The master reset (nMR) pulse width, master reset to output (nQn) propagation delays and master reset to clock (nCPn) recovery time Table 9. Measurement points | Туре | Input | Output | |----------|--------------------|--------------------| | | V _M | V _M | | 74HC390 | 0.5V _{CC} | 0.5V _{CC} | | 74HCT390 | 1.3 V | 1.3 V | Test data is given in Table 10. Definitions test circuit: R_{T} = Termination resistance should be equal to output impedance Z_{o} of the pulse generator. C_L = Load capacitance including jig and probe capacitance. ### Fig. 7. Test circuit for measuring switching times Table 10. Test data | Туре | Input | | Load | Test | | |----------|-----------------|---------------------------------|--------------|-------------------------------------|--| | | V _I | t _r , t _f | CL | | | | 74HC390 | V _{CC} | 6 ns | 15 pF, 50 pF | t _{PLH} , t _{PHL} | | | 74HCT390 | 3 V | 6 ns | 15 pF, 50 pF | t _{PLH} , t _{PHL} | | # 11. Package outline #### SO16: plastic small outline package; 16 leads; body width 3.9 mm SOT109-1 | UN | IT ma | | A ₁ | A ₂ | A ₃ | bp | С | D ⁽¹⁾ | E ⁽¹⁾ | е | HE | L | Lp | Q | v | w | у | Z ⁽¹⁾ | θ | |------|--------|-----|----------------|----------------|-----------------------|--------------|------------------|------------------|------------------|------|----------------|-------|----------------|----------------|------|------|-------|------------------|----| | mr | n 1.1 | 75 | 0.25
0.10 | 1.45
1.25 | 0.25 | 0.49
0.36 | 0.25
0.19 | 10.0
9.8 | 4.0
3.8 | 1.27 | 6.2
5.8 | 1.05 | 1.0
0.4 | 0.7
0.6 | 0.25 | 0.25 | 0.1 | 0.7
0.3 | 8° | | inch | es 0.0 | 069 | 0.010
0.004 | 0.057
0.049 | 0.01 | | 0.0100
0.0075 | 0.39
0.38 | 0.16
0.15 | 0.05 | 0.244
0.228 | 0.041 | 0.039
0.016 | 0.028
0.020 | 0.01 | 0.01 | 0.004 | 0.028
0.012 | 0° | 1. Plastic or metal protrusions of 0.15 mm (0.006 inch) maximum per side are not included. | OUTLINE | | REFER | RENCES | EUROPEAN | ISSUE DATE | |----------|--------|--------|--------|------------|---------------------------------| | VERSION | IEC | JEDEC | JEITA | PROJECTION | ISSUE DATE | | SOT109-1 | 076E07 | MS-012 | | | 99-12-27
03-02-19 | Package outline SOT109-1 (SO16) TSSOP16: plastic thin shrink small outline package; 16 leads; body width 4.4 mm SOT403-1 #### Notes - 1. Plastic or metal protrusions of 0.15 mm maximum per side are not included. - 2. Plastic interlead protrusions of 0.25 mm maximum per side are not included. | OUTLINE | | REFER | ENCES | EUROPEAN | ISSUE DATE | | |----------|-----|--------|-------|------------|---------------------------------|--| | VERSION | IEC | JEDEC | JEITA | PROJECTION | ISSUE DATE | | | SOT403-1 | | MO-153 | | | 99-12-27
03-02-18 | | Fig. 9. Package outline SOT403-1 (TSSOP16) # 12. Abbreviations #### **Table 11. Abbreviations** | Acronym | Description | |---------|---| | CMOS | Complementary Metal Oxide Semiconductor | | DUT | Device Under Test | | ESD | ElectroStatic Discharge | | НВМ | Human Body Model | | MM | Machine Model | | TTL | Transistor-Transistor Logic | # 13. Revision history #### **Table 12. Revision history** | Page 12. Revision history | Dalassa data | Data about status | Change netice | C | |---------------------------|---|--|-----------------------------------|--| | Document ID | Release date | Data sheet status | Change notice | Supersedes | | 74HC_HCT390 v.5 | 20211018 | Product data sheet | - | 74HC_HCT390 v.4 | | Modifications: | Type number | er 74HCT390PW (SOT403 | -1 / TSSOP16) ac | lded. | | 74HC_HCT390 v.4 | 20200821 | Product data sheet | - | 74HC_HCT390 v.3 | | Modifications: | guidelines of Legal texts Type number Table 1: type | have been adapted to the iters 74HC390DB and 74HC | new company nar
T390DB (SOT338 | ne where appropriate.
3-1) removed. | | 74HC_HCT390 v.3 | 20160816 | Product data sheet | - | 74HC_HCT390_CNV v.2 | | Modifications: | guidelines o Legal texts | of this data sheet has beer
of NXP Semiconductors.
have been adapted to the iters 74HC390N and 74HCT | new company nar | | | 74HC_HCT390_CNV v.2 | 19901201 | Product specification | - | - | # 14. Legal information #### **Data sheet status** | Document status [1][2] | Product
status [3] | Definition | |--------------------------------|-----------------------|---| | Objective [short] data sheet | Development | This document contains data from the objective specification for product development. | | Preliminary [short] data sheet | Qualification | This document contains data from the preliminary specification. | | Product [short]
data sheet | Production | This document contains the product specification. | - Please consult the most recently issued document before initiating or completing a design. - [2] The term 'short data sheet' is explained in section "Definitions". - The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the internet at https://www.nexperia.com. #### **Definitions** **Draft** — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. Nexperia does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information. Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local Nexperia sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail. Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between Nexperia and its customer, unless Nexperia and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the Nexperia product is deemed to offer functions and qualities beyond those described in the Product data sheet. #### **Disclaimers** Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, Nexperia does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. Nexperia takes no responsibility for the content in this document if provided by an information source outside of Nexperia. In no event shall Nexperia be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory. Notwithstanding any damages that customer might incur for any reason whatsoever, Nexperia's aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the Terms and conditions of commercial sale of Nexperia. Right to make changes — Nexperia reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof. Suitability for use — Nexperia products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an Nexperia product can reasonably be expected to result in personal injury, death or severe property or environmental damage. Nexperia and its suppliers accept no liability for inclusion and/or use of Nexperia products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk. **Quick reference data** — The Quick reference data is an extract of the product data given in the Limiting values and Characteristics sections of this document, and as such is not complete, exhaustive or legally binding. **Applications** — Applications that are described herein for any of these products are for illustrative purposes only. Nexperia makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification. Customers are responsible for the design and operation of their applications and products using Nexperia products, and Nexperia accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the Nexperia product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products. Nexperia does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using Nexperia products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). Nexperia does not accept any liability in this respect. Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device. Terms and conditions of commercial sale — Nexperia products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nexperia.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. Nexperia hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of Nexperia products by customer. No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights. **Export control** — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities. Non-automotive qualified products — Unless this data sheet expressly states that this specific Nexperia product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in accordance with automotive testing or application requirements. Nexperia accepts no liability for inclusion and/or use of non-automotive qualified products in automotive equipment or applications. In the event that customer uses the product for design-in and use in automotive applications to automotive specifications and standards, customer (a) shall use the product without Nexperia's warranty of the product for such automotive applications, use and specifications, and (b) whenever customer uses the product for automotive applications beyond Nexperia's specifications such use shall be solely at customer's own risk, and (c) customer fully indemnifies Nexperia for any liability, damages or failed product claims resulting from customer design and use of the product for automotive applications beyond Nexperia's standard warranty and Nexperia's product specifications. **Translations** — A non-English (translated) version of a document is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions. #### **Trademarks** Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners. # **Contents** | 1. General description | 1 | |--|-------------| | 2. Features and benefits | 1 | | 3. Ordering information | 1 | | 4. Functional diagram | 2 | | 5. Pinning information | 2 | | 5.1. Pinning | 2 | | 5.2. Pin description | 3 | | 6. Functional description | 3 | | 7. Limiting values | 4 | | 7. Lilling values | | | 8. Recommended operating conditions | | | | 4 | | 8. Recommended operating conditions | 4
4 | | Recommended operating conditions Static characteristics | 4
4
6 | | Recommended operating conditions Static characteristics Dynamic characteristics | 4
6
 | | 8. Recommended operating conditions 9. Static characteristics 10. Dynamic characteristics 10.1. Waveforms and test circuit | 4
6
9 | | 8. Recommended operating conditions 9. Static characteristics 10. Dynamic characteristics 10.1. Waveforms and test circuit 11. Package outline | | For more information, please visit: http://www.nexperia.com For sales office addresses, please send an email to: salesaddresses@nexperia.com Date of release: 18 October 2021 [©] Nexperia B.V. 2021. All rights reserved