Atmel M90E26

Atmel

Single-Phase High-Performance Wide-Span Energy Metering IC

DATASHEET

FEATURES

Metering Features

- Metering features fully in compliance with the requirements of IEC62052-11, IEC62053-21 and IEC62053-23; applicable in class 1 or class 2 single-phase watthour meter or class 2 single-phase var-hour meter.
- Accuracy of 0.1% for active energy and 0.2% for reactive energy over a dynamic range of 5000:1.
- Temperature coefficient is 15 ppm/ ℃ (typical) for on-chip reference voltage
- Single-point calibration over a dynamic range of 5000:1 for active energy; no calibration needed for reactive energy.
- Energy Meter Constant doubling at low current to save verification time.
- Electrical parameters measurement: less than $\pm 0.5\%$ fiducial error for Vrms, lrms, mean active/ reactive/ apparent power, frequency, power factor and phase angle.
- Forward/ reverse active/ reactive energy with independent energy registers. Active/ reactive energy can be output by pulse or read through energy registers to adapt to different applications.
- Programmable startup and no-load power threshold.
- Dedicated ADC and different gains for L line and N line current sampling circuits. Current sampled over shunt resistor or current transformer (CT); voltage sampled over resistor divider network or potential transformer (PT).
- Programmable L line and N line metering modes: anti-tampering mode (larger power), L line mode (fixed L line), L+N mode (applicable for single-phase three-wire system) and flexible mode (configure through register).
- Programmable L line and N line power difference threshold in anti-tampering mode.

Other Features

- 3.3V single power supply. Operating voltage range: 2.8~3.6V. Metering accuracy guaranteed within 3.0V~3.6V. 5V compatible for digital input.
- Built-in hysteresis for power-on reset.
- Selectable UART interface and SPI interface (four-wire SPI interface or simplified three-wire SPI interface with fixed 24 cycles for all registers operation).
- Parameter diagnosis function and programmable interrupt output of the IRQ interrupt signal and the WarnOut signal.
- Programmable voltage sag detection and zero-crossing output.
- Channel input range
 - Voltage channel (when gain is '1'): 120µVrms~600mVrms.
 - L line current channel (when gain is '24'): 5μVrms~25mVrms.
 - N line current channel (when gain is '1'): $120\mu Vrms{\sim}600mVrms.$
- Programmable L line current gain: 1, 4, 8, 16, 24; Programmable N line gain: 1, 2, 4.
- Support L line and N line offset compensation.
- CF1 and CF2 output active and reactive energy pulses respectively which can be used for calibration or energy accumulation.
- Crystal oscillator frequency: 8.192 MHz.

- Green SSOP28 package.
- Operating temperature: -40 $^\circ\!\!\!C$ ~ +85 $^\circ\!\!\!C$.

APPLICATION

The M90E26 is used for active and reactive energy metering for single-phase two-wire (1P2W), single-phase three-wire (1P3W) or anti-tampering energy meters. With the measurement function, the M90E26 can also be used in power instruments which need to measure voltage, current, etc.

DESCRIPTION

The M90E26 is a high-performance wide-span energy metering chip. The ADC and DSP technology ensure the chip's long-term stability over variations in grid and ambient environmental conditions.

BLOCK DIAGRAM

Figure-1 M90E26 Block Diagram

Table of Contents

	eatures	
A	pplication	2
D	escription	2
B	lock Diagram	2
1	Pin Assignment	7
2	Pin Description	
3	Functional Description	
	3.1 Dynamic Metering Range	
	3.2 Startup and No-Load Power	
	3.3 Energy Registers	
	3.4 N Line Metering and Anti-Tampering	
	3.4.1 Metering Mode and L/N Line Current Sampling Gain Configuration	
	3.4.2 Anti-Tampering Mode	
	3.5 Measurement and Zero-Crossing	
	3.5.1 Measurement	
	3.5.2 Zero-Crossing	
	3.6 Calibration	
	3.7 Reset	
4	Interface	
	4.1 SPI Interface	
	4.1.1 Four-Wire Mode	
	4.1.2 Three-Wire Mode	
	4.2 UART Interface	
	4.2.1 Byte Level Timing	
	4.2.2 Write Transaction	
	4.2.3 Read transaction	19
	4.2.4 Checksum	
	4.3 WarnOut Pin for Fatal Error Warning	
	4.4 Low Cost Implementation in Isolation with MCU	
5	Register	
	5.1 Register List	21
	5.2 Status and Special Register	
	5.3 Metering/ Measurement Calibration and Configuration	
	5.3.1 Metering Calibration and Configuration Register	
	5.3.2 Measurement Calibration Register	
	5.4 Energy Register	
	5.5 Measurement Register	44

6	Electrical Specification	. 51
	6.1 Electrical Specification	
	6.2 SPI Interface Timing	
	6.3 Power On Reset Timing	
	6.4 Zero-Crossing Timing	. 55
	6.5 Voltage Sag Timing	. 55
	6.6 Pulse Output	. 56
	6.7 Absolute Maximum Rating	
Or	dering Information	57
	ickaging Drawings	
	evision History	

List of Tables

Table-1	Pin Description	8
Table-2	Active Energy Metering Error	. 10
Table-3	Reactive Energy Metering Error	. 10
Table-4	Threshold Configuration for Startup and No-Load Power	
Table-5	Energy Registers	. 11
Table-6	Metering Mode	. 12
Table-7	The Measurement Format	
Table-8	Read / Write Result in Four-Wire Mode	
Table-9	Read / Write Result in Three-Wire Mode	. 17
Table-10	Register List	. 21
	SPI Timing Specification	
	Power On Reset Specification	
Table-13	Zero-Crossing Specification	. 55
Table-14	Voltage Sag Specification	. 56

List of Figures

M90E26 Block Diagram	2
Pin Assignment (Top View)	7
Write Sequence in Four-Wire Mode	15
Read Sequence in Three-Wire Mode	16
Write Sequence in Three-Wire Mode	16
UART Byte Level Timing	18
Write Transaction	18
Read Transaction	19
4-Wire SPI Timing Diagram	53
Power On Reset Timing Diagram	54
Output Pulse Width	56
	M90E26 Block Diagram Pin Assignment (Top View) Read Sequence in Four-Wire Mode Write Sequence in Three-Wire Mode Write Sequence in Three-Wire Mode UART Byte Level Timing Write Transaction Read Transaction 4-Wire SPI Timing Diagram 3-Wire SPI Timing Diagram Power On Reset Timing Diagram Zero-Crossing Timing Diagram Voltage Sag Timing Diagram Output Pulse Width

Figure-2 Pin Assignment (Top View)

2 **PIN DESCRIPTION**

Table-1 Pin Description

Name	Pin No.	I/O note 1	Туре	Description
Reset	4	I	LVTTL	Reset : Reset Pin (active low) This pin should connect to ground through a 0.1µF filter capacitor. In application it can also directly connect to one output pin from microcontroller (MCU).
DVDD	3	I	Power	DVDD: Digital Power Supply This pin provides power supply to the digital part. It should be decoupled with a 10μ F electrolytic capacitor and a 0.1μ F capacitor.
DGND	2		Power	DGND: Digital Ground
AVDD	5	I	Power	AVDD: Analog Power Supply This pin provides power supply to the analog part. It should be decoupled with a 0.1μ F capacitor.
Vref	13	0	Analog	Vref: Output Pin for Reference Voltage This pin should be decoupled with a 1μ F capacitor and a 1nF capacitor.
AGND	6, 14	I	Power	AGND: Analog Ground
I1P I1N	10 11	I	Analog	I1P: Positive Input for L Line Current I1N: Negative Input for L Line Current These pins are differential inputs for L line current. Input range is 5μVrms~25mVrms when gain is '24'.
I2P I2N	7 8	I	Analog	I2P: Positive Input for N Line Current I2N: Negative Input for N Line Current These pins are differential inputs for N line current. Input range is 120μVrms~600mVrms when gain is '1'.
VP VN	16 15	I	Analog	VP: Positive Input for Voltage VN: Negative Input for Voltage These pins are differential inputs for voltage. Input range is 120μVrms~600mVrms.
USEL	12	I	LVTTL	USEL: UART/SPI Interface Selection High: UART interface Low: SPI interface Note: This pin should not change after reset.
CS	24	I	LVTTL	CS: Chip Select (Active Low) of SPI In 4-wire SPI mode, this pin must be driven from high to low for each read/write operation, and maintain low for the entire operation. In 3-wire SPI mode, this pin must be low all the time. Refer to section 4.1. In UART interface, this pin should be connected to VDD.
SCLK	25	I	LVTTL	SCLK: Serial Clock of SPI This pin is used as the clock for the SPI interface. Data on SDI is shifted into the chip on the rising edge of SCLK while data on SDO is shifted out of the chip on the falling edge of SCLK. In UART interface, this pin should be connected to ground.

Table-1 Pin Description (Continued)

Name	Pin No.	I/O ^{note 1}	Туре	Description
				SDO: Serial Data Output of SPI This pin is used as the data output for the SPI interface. Data on this pin is shifted out of the chip on the falling edge of SCLK.
SDO/UTX	26	ΟZ	LVTTL	UTX: UART Data Transmit This pin is used to transmit data for the UART interface. This pin needs to be pulled up to VDD by a $10k\Omega$ resistor."
				Note: UART and SPI interface is selected by the USEL pin.
				SDI: Serial Data Input of SPI This pin is used as the data input for the SPI interface. Address and data on this pin is shifted into the chip on the rising edge of SCLK.
SDI/URX	27	I	LVTTL	URX: UART Data Receive This pin is used to receive data for the UART interface.
				Note: UART and SPI interface is selected by the USEL pin.
MMD1 MMD0	1 28	I	LVTTL	MMD1/0: Metering Mode Configuration 00: anti-tampering mode (larger power); 01: L line mode (fixed L line); 10: L LN mode (applicable for single phase three wire system);
				10: L+N mode (applicable for single-phase three-wire system);11: flexible mode (line specified by the LNSel bit (MMode, 2BH))
OSCI	22	I	LVTTL	OSCI: External Crystal Input An 8.192 MHz crystal is connected between OSCI and OSCO. In applica- tion, this pin should be connected to ground through a 12pF capacitor.
OSCO	23	0	LVTTL	OSCO: External Crystal Output An 8.192 MHz crystal is connected between OSCI and OSCO. In applica- tion, this pin should be connected to ground through a 12pF capacitor.
CF1 CF2	18 19	0	LVTTL	CF1: Active Energy Pulse Output CF2: Reactive Energy Pulse Output These pins output active/reactive energy pulses.
ZX	21	0	LVTTL	ZX: Voltage Zero-Crossing Output This pin is asserted when voltage crosses zero. Zero-crossing mode can be configured to positive zero-crossing, negative zero-crossing or all zero-crossing by the Zxcon[1:0] bits (MMode, 2BH).
IRQ 20 O		0	LVTTL	IRQ: Interrupt Output This pin is asserted when one or more events in the SysStatus register (01H) occur. It is deasserted when there is no bit set in the SysStatus register (01H).
WarnOut	17	0	LVTTL	WarnOut: Fatal Error Warning This pin is asserted when there is metering parameter calibration error or voltage sag. Refer to section 4.3.
Resv_Low	9	I	LVTTL	Reserved For normal operation, these pins should be connected to ground.

3 FUNCTIONAL DESCRIPTION

3.1 DYNAMIC METERING RANGE

Accuracy is 0.1% for active energy metering and 0.2% for reactive energy metering over a dynamic range of 5000:1 (typical). Refer to Table-2 and Table-3.

Table-2 Active Energy Metering Error

Current	Power Factor	Error (%)	
$20 \text{mA} \leq I < 50 \text{mA}$	1.0	±0.2	
$50 \text{mA} \leq I \leq 100 \text{A}$	1.0	±0.1	
$50 \text{mA} \leq I < 100 \text{mA}$	0.5 (Inductive)	±0.2	
$100 \text{mA} \leq \text{I} \leq 100 \text{A}$	0.8 (Capacitive)	±0.1	
Note: Shunt resistor is 250 $\mu\Omega$ or CT ratio is 1000:1 and load resistor is 6 Ω .			

Table-3 Reactive Energy Metering Error

Current	sinφ (Inductive or Capacitive)	Error (%)		
$20 \text{mA} \leq I < 50 \text{mA}$	1.0	±0.4		
$50 \text{mA} \leqslant \text{I} \leqslant 100 \text{A}$	1.0	±0.2		
50mA ≤ I < 100mA	0.5	±0.4		
$100 \text{mA} \leq \text{I} \leq 100 \text{A}$	0.0	±0.2		
Note: Shunt resistor is 250 $\mu\Omega$ or CT ratio is 1000:1 and load resistor is 6 Ω .				

3.2 STARTUP AND NO-LOAD POWER

Startup and no-load power thresholds are programmable, both for active and reactive power. The related registers are listed in Table-4.

Table-4 Threshold Configuration for Startup and No-Load Power

Threshold	Register
Threshold for Active Startup Power	PStartTh, 27H
Threshold for Active No-load Power	PNoITh, 28H
Threshold for Reactive Startup Power	QStartTh, 29H
Threshold for Reactive No-load Power	QNoITh, 2AH

The M90E26 will start within 1.2 times of the theoretical startup time of the configured startup power, if startup power is less than the corresponding power of 20mA when power factor or sin_{ϕ} is 1.0.

The M90E26 has no-load status bits, the Pnoload/Qnoload bit (EnStatus, 46H). The M90E26 will not output any active pulse (CF1) in active no-load state. The M90E26 will not output any reactive pulse (CF2) in reactive no-load state.

3.3 ENERGY REGISTERS

The M90E26 provides energy pulse output CFx (CF1/CF2) which is proportionate to active/reactive energy. Energy is usually accumulated by adding the CFx pulses in system applications. Alternatively, the M90E26 provides energy registers. There are forward (inductive), reverse (capacitive) and absolute energy registers for both active and reactive energy. Refer to Table-5.

Table-5 Energy Registers

Energy	Register
Forward Active Energy	APenergy, 40H
Reverse Active Energy	ANenergy, 41H
Absolute Active Energy	ATenergy, 42H
Forward (Inductive) Reactive Energy	RPenergy, 43H
Reverse (Capacitive) Reactive Energy	RNenergy, 44H
Absolute Reactive Energy	RTenergy, 45H

Each energy register is cleared after read. The resolution of energy registers is 0.1CF, i.e. one LSB represents 0.1 energy pulse.

3.4 N LINE METERING AND ANTI-TAMPERING

3.4.1 METERING MODE AND L/N LINE CURRENT SAMPLING GAIN CONFIGURATION

The M90E26 has two current sampling circuits with N line metering and anti-tampering functions. The MMD1 and MMD0 pins are used to configure the metering mode. Refer to Table-6.

Table-6 Metering Mode

MMD1	MMD1 MMD0 Metering Mode		CFx (CF1 or CF2) Output		
10 ID Anti-tampering Wode (larger power)		Anti-tampering Mode (larger power)	CFx represents the larger energy line. Refer to section 3.4.2.		
0	1	L Line Mode (fixed L line)	CFx represents L line energy all the time.		
1	0	L+N Mode (applicable for single-phase three-wire sys- tem)	energy		
1	1	Flexible Mode (line specified by the LNSel bit (MMode, 2BH))	CFx represents energy of the specified line.		

The M90E26 has two current sampling circuits with different gain configurations. L line gain can be 1, 4, 8, 16 and 24, and N line gain can be 1, 2 and 4. The configuration is made by the MMode register (2BH). Generally L line can be sampled over shunt resistor or CT. N line can be sampled over CT for isolation consideration. Note that Rogowski coil is not supported.

3.4.2 ANTI-TAMPERING MODE

Threshold

In anti-tampering mode, the power difference threshold between L line and N line can be: 1%, 2%,... 12%, 12.5%, 6.25%, 3.125% and 1.5625%, altogether 16 choices. The configuration is made by the Pthresh[3:0] bits (MMode, 2BH) and the default value is 3.125%. The threshold is applicable for active energy. The metering line of the reactive energy follows that of the active energy.

Compare Method

In anti-tampering mode, the compare method is as follows:

If current metering line is L line and

NLine Active Power - L Line Active Power L Line Active Power * 100% > Threshold

N line is switched as the metering line, otherwise L line keeps as the metering line.

If current metering line is N line and

L Line Active Power - N Line Active Power N Line Active Power * 100% > Threshold

L line is switched as the metering line, otherwise N line keeps as the metering line.

This method can achieve hysteresis around the threshold automatically. L line is employed after reset by default.

Special Treatment at Low Power

When power is low, general factors such as the quantization error or calibration difference between L line and N line might cause the power difference to be exceeded. To ensure L line and N line to start up normally, special treatment as follows is adopted:

The line with higher power is selected as the metering line when both L line and N line power are lower than 8 times of the startup power but higher than the startup power.

3.5 MEASUREMENT AND ZERO-CROSSING

3.5.1 MEASUREMENT

The M90E26 has the following measurements:

- voltage rms
- current rms (L line/N line)
- mean active power (L line/N line)
- mean reactive power (L line/N line)
- voltage frequency
- power factor (L line/N line)
- phase angle between voltage and current (L line/N line)
- mean apparent power (L line/N line)

The above measurements are all calculated with fiducial error except for frequency. The frequency accuracy is 0.01Hz, and the other measurement accuracy is 0.5%. Fiducial error is calculated as follow:

$$Fiducial_E rror = \frac{U_{mea} - U_{real}}{U_{FV}} * 100\%$$

Where U_{mea} is the measured voltage, U_{real} is the actual voltage and U_{FV} is the fiducial value.

Table-7 The Measurement Format

Measurement	Fiducial Value (FV)	M90E26 Defined Format	Range	Comment
Voltage rms	Un	XXX.XX	0~655.35V	
Current rms ^{note 1, note 2}	lmax as 4lb	XX.XXX	0~65.535A	
Active/ Reactive Power ^{note 1}	maximum power as Un*4Ib	XX.XXX	-32.768~+32.767 kW/kvar	Complement, MSB as the sign bit
Apparent Power ^{note 1}	Un*4lb	XX.XXX	0~+32.767 kVA	Complement, MSB always '0'
Frequency	fn	XX.XX	45.00~65.00 Hz	
Power Factor ^{note 3}	1.000	X.XXX	-1.000~+1.000	Signed, MSB as the sign bit
Phase Angle ^{note 4}	180°	XXX.X	-180°~+180°	Signed, MSB as the sign bit

Note 1: All registers are of 16 bits. For cases when the current and active/reactive/apparent power goes beyond the above range, it is suggested to be handled by microcontroller (MCU) in application. For example, register value can be calibrated to 1/2 of the actual value during calibration, then multiply 2 in application. Note that if the actual current is twice of that of the M90E26, the actual active/reactive/ apparent power is also twice of that of the M90E26.

Note 2: The accuracy is not guaranteed when the current is lower than 15mA. Note that the tolerance is 25 mA at I_{FV} of 5A and fiducial accuracy of 0.5%.

Note 3: Power factor is obtained by active power dividing apparent power

Note 4: Phase angle is obtained when voltage/current crosses zero at the frequency of 256kHz. Precision is not guaranteed at small current.

3.5.2 ZERO-CROSSING

The ZX pin is asserted when the sampling voltage crosses zero. Zero-crossing mode can be configured to positive zero-crossing, negative zero-crossing and all zero-crossing by the Zxcon[1:0] bits (MMode, 2BH). Refer to section 6.4.

The zero-crossing signal can facilitate operations such as relay operation and power line carrier transmission in typical smart meter applications.

3.6 CALIBRATION

Calibration includes metering and measurement calibration.

Metering Calibration

The M90E26 design methodology guarantees the accuracy over the entire dynamic range, after metering calibration at one specific current, i.e. the basic current of I_b.

The calibration procedure includes the following steps:

- 1. Calibrate gain at unity power factor;
- 2. Calibrate phase angle compensation at 0.5 inductive power factor.

Generally, line current sampling is susceptible to the circuits around the sensor when shunt resistor is employed as the current sensor in L line. For example, the transformer in the energy meter's power supply may conduct interference to the shunt resistor. Such interference will cause perceptible metering error, especially at low current conditions. The total interfere is at a statistically constant level. In this case, the M90E26 provides the power offset compensation feature to improve metering performance.

L line and N line need to be calibrated sequentially. Reactive energy does not need to be calibrated after active energy calibration completed.

Measurement Calibration

Measurement calibration includes gain calibration for voltage rms and current rms.

Considering the possible nonlinearity around zero caused by external components, the M90E26 also provides offset compensation for voltage rms, current rms, mean active power and mean reactive power.

The M90E26 design methodology guarantees automatic calibration for frequency, phase angle and power factor measurement.

3.7 RESET

The M90E26 has an on-chip power supply monitor circuit with built-in hysteresis. The M90E26 only works within the voltage range.

The M90E26 has three means of reset: power-on reset, hardware reset and software reset. All registers resume to their default value after reset.

Power-on Reset: Power-on reset is initiated during power-up. Refer to section 6.3.

Hardware Reset: Hardware Reset is initiated when the reset pin is pulled low. The width of the reset signal should be over 200µs.

Software Reset: Software Reset is initiated when '789AH' is written to the software reset register (SoftReset, 00H).

4 INTERFACE

The M90E26 supports both Serial Peripheral Interface (SPI) and UART interface. The selection is made by the USEL pin. When the USEL pin is low, SPI interface is selected. When the USEL pin is high, UART interface is selected. Note that the USEL pin should not change after reset.

4.1 SPI INTERFACE

SPI is a full-duplex, synchronous channel. There are two SPI modes: four-wire mode and three-wire mode. In four-wire mode, four pins are used: \overline{CS} , SCLK, SDI and SDO. In three-wire mode, three pins are used: SCLK, SDI and SDO. Data on SDI is shifted into the chip on the rising edge of SCLK while data on SDO is shifted out of the chip on the falling edge of SCLK. The LastData register (06H) stores the 16-bit data that is just read or written.

4.1.1 FOUR-WIRE MODE

In four-wire mode, the \overline{CS} pin must be driven low for the entire read or write operation. The first bit on SDI defines the access type and the lower 7-bit is decoded as address.

Read Sequence

As shown in Figure-3, a read operation is initiated by a high on SDI followed by a 7-bit register address. A 16-bit data in this register is then shifted out of the chip on SDO. A complete read operation contains 24 cycles.

Figure-3 Read Sequence in Four-Wire Mode

Write Sequence

As shown in Figure-4, a write operation is initiated by a low on SDI followed by a 7-bit register address. A 16-bit data is then shifted into the chip on SDI. A complete write operation contains 24 cycles.

4.1.2 THREE-WIRE MODE

In three-wire mode, \overline{CS} is always at low level. When there is no operation, SCLK keeps at high level. The start of a read or write operation is triggered if SCLK is consistently low for at least 400 μ s. The subsequent read or write operation is similar to that in four-wire mode. Refer to Figure-5 and Figure-6.

Figure-6 Write Sequence in Three-Wire Mode

4.1.3 TIMEOUT AND PROTECTION

Timeout occurs if SCLK does not toggle for 6ms in both four-wire and three-wire modes. When timeout, the read or write operation is aborted.

If there are more than 24 SCLK cycles when \overline{CS} is driven low in four-wire mode or between two starts in three-wire mode, writing operation is prohibited while normal reading operation can be completed by taking the first 24 SCLK cycles as the valid ones. However, the reading result might not be the intended one.

A read access to an invalid address returns all zero. A write access to an invalid address is discarded.

Table-8 and Table-9 list the read or write result in different conditions.

Table-8 Read / Write Result in Four-Wire Mode

	Condition		Result		
Operation	Timeout	SCLK Cycles ^{note 1}	Read/Write Status	LastData Register Update	
	note 2	>=24	Normal Read	Yes	
Read	note 2	<24	Partial Read	No	
	No	=24	Normal Write	Yes	
	No	!=24	No Write	No	
Write	Yes	-	No Write	No	

Note 2: '-' stands for Don't Care.

Table-9 Read / Write Result in Three-Wire Mode

	Condition		Res	sult
Operation	Timeout	SCLK Cycles ^{note 1}	Read/Write Status	LastData Register Update
	No	>=24 ^{note 2}	Normal Read	Yes
	Timeout after 24 cycles	>24	Normal Read	Yes
	Timeout before 24 cycles	note 3	Partial Read	No
Read	Timeout at 24 cycles	=24	Normal Read	Yes
	No	=24	Normal Write	Yes
	No	!=24	No Write	No
Write	Yes	-	No Write	No

Note 1: The number of SCLK cycles between 2 starts or the number of SCLK cycles before timeout if any. Note 2: There is no such case of less than 24 SCLK cycles when there is no timeout in three-wire mode, because the first few SCLK cycles in the next operation is counted into this operation. In this case, data is corrupted. Note 3: '-' stands for Don't Care.

4.2 UART INTERFACE

The UART interface is of 8-bit data only, with no parity checking features.

A read/write transaction is composed of 6 bytes' transfer, starting always from the host transmitting the first byte 'FEH'. The second byte is referenced as RW_ADDRESS, which has a R/W bit (bit7) and 7 address bits (bit6-0).

Upon receiving commands from the host, the M90E26 will send data and/or checksum bytes back to the host within 5ms if the checksum is confirmed to be correct. Interval between successive UART bytes from the M90E26 is 5 bits maximum.

The M90E26 will time out the current transaction if the host byte interval (idling time between two successive bytes) is greater than 20ms. Once transaction timeout or checksum failure, the M90E26 will abort the current transaction and wait for the starting byte 'FEH' of the new transaction and ignore other data that received. The host needs to have a timeout scheme to detect transaction failure. In addition, host needs to wait at least 20ms to start a new transaction to allow the M90E26 to recover from a failure condition.

UART baud rate is determined by the host, and it can be auto-detected by the M90E26. The baud rates supported are 2400 and 9600. The first byte (FEH) is used in detecting the baud-rate. The baud-rate of a transaction shall be kept unchanged. For a new transaction, host may change the baud rate. However, it is suggested that boad rate remain the same in application.

The 8-bit data in TX/RX pin is shifted in a LSB (bit0) first manner.

4.2.1 BYTE LEVEL TIMING

The timing for each byte is as shown in Figure-7.

Note: The UTX pin will be in high impedance state when not transmitting

Figure-7 UART Byte Level Timing

4.2.2 WRITE TRANSACTION

A complete write transaction is composed of six bytes, five from the host and one from the M90E26 as shown in Figure-8.

Figure-8 Write Transaction

4.2.3 READ TRANSACTION

A complete read transaction is composed of six bytes, three from the host and three from the M90E26 as shown in Figure-9.

Figure-9 Read Transaction

4.2.4 CHECKSUM

Checksum is done by adding the bytes as unsigned numbers, dropping the overflow bits, and taking the result as the checksum.

Checksum is calculated with address, data or address+data, depending on the transaction type:

Write Transaction:

Host Checksum = RW_Address+DATA_MSB+DATA_LSB

M90E26 Checksum = RW_Address+DATA_MSB+DATA_LSB

Read Transaction:

Host Checksum = RW_Address

M90E26 Checksum = DATA_MSB + DATA_LSB

4.3 WARNOUT PIN FOR FATAL ERROR WARNING

Fatal error warning is raised through the WarnOut pin in two cases: checksum calibration error and voltage sag.

Calibration Error

The M90E26 performs diagnosis on a regular basis for important parameters such as calibration parameters and metering configuration. When checksum is not correct, the CalErr[1:0] bits (SysStatus, 01H) are set, and both the WarnOut pin and the IRQ pin are asserted. When checksum is not correct, the metering part does not work to prevent a large number of pulses during power-on or any abnormal situation upon incorrect parameters.

Voltage Sag

Voltage sag is detected when voltage is continuously below the voltage sag threshold for one cycle which starts from any zero-crossing point. Voltage threshold is configured by the SagTh register (03H). Refer to section 6.5.

When voltage sag occurs, the SagWarn bit (SysStatus, 01H) is set and the WarnOut pin is asserted if the FuncEn register (02H) enables voltage sag warning through the WarnOut pin. This function helps reduce power-down detection circuit in system design. In addition, the method of judging voltage sag by detecting AC side voltage eliminates the influence of large capacitor in traditional rectifier circuit, and can detect voltage sag earlier.

4.4 LOW COST IMPLEMENTATION IN ISOLATION WITH MCU

The following functions can be achieved at low cost when the M90E26 is isolated from the MCU:

SPI/UART: MCU can perform read and write operations through low speed optocoupler (e.g. PS2501) when the M90E26 is isolated from the MCU. For the SPI interface, it can be either of 3-wire or 4-wire.

Energy Pulses CFx: Energy can be accumulated by reading values in corresponding energy registers. CFx can also connect to the optocoupler and the energy pulse light can be turned on by CFx.

Fatal Error WarnOut: Fatal error can be acquired by reading the CalErr[1:0] bits (SysStatus, 01H).

IRQ: IRQ interrupt can be acquired by reading the SysStatus register (01H).

Reset: The M90E26 is reset when '789AH' is written to the software reset register (SoftReset, 00H).

5 **REGISTER**

5.1 REGISTER LIST

Table-10 Register List

Register Address	Register Name	Read/Write Type	Functional Description	Page
		Status and Sp	ecial Register	
00H	SoftReset	W	Software Reset	P 22
01H	SysStatus	R/C	System Status	P 23
02H	FuncEn	R/W	Function Enable	P 24
03H	SagTh	R/W	Voltage Sag Threshold	P 24
04H	SmallPMod	R/W	Small-Power Mode	P 25
06H	LastData	R	Last Read/Write SPI/UART Value	P 25
	Μ	etering Calibration and	d Configuration Register	
08H	LSB	R/W	RMS/Power 16-bit LSB	P 26
20H	CalStart	CalStart R/W Calibration Start Command		
21H	PLconstH	R/W	High Word of PL_Constant	P 27
22H	PLconstL	R/W	Low Word of PL_Constant	P 27
23H	Lgain	R/W	L Line Calibration Gain	P 28
24H	Lphi	R/W	L Line Calibration Angle	P 28
25H	Ngain	R/W	N Line Calibration Gain	P 28
26H	Nphi	R/W	N Line Calibration Angle	P 29
27H	PStartTh	R/W	Active Startup Power Threshold	P 29
28H	PNolTh	R/W	Active No-Load Power Threshold	P 29
29H	QStartTh	R/W	Reactive Startup Power Threshold	P 30
2AH	QNolTh	R/W	Reactive No-Load Power Threshold	P 30
2BH	MMode	R/W	Metering Mode Configuration	P 31
2CH	CS1	R/W	Checksum 1	P 33
		Measurement Ca	libration Register	
30H	AdjStart	R/W	Measurement Calibration Start Command	P 34
31H	Ugain	R/W	Voltage rms Gain	P 34
32H	IgainL	R/W	L Line Current rms Gain	P 35
33H	IgainN	R/W	N Line Current rms Gain	P 35
34H	Uoffset	R/W	Voltage Offset	P 35
35H	loffsetL	R/W	L Line Current Offset	P 36
36H	loffsetN	R/W	N Line Current Offset	P 36
37H	PoffsetL	R/W	L Line Active Power Offset	P 36
38H	QoffsetL	R/W	L Line Reactive Power Offset	P 37
39H	PoffsetN	R/W	N Line Active Power Offset	P 37
3AH	QoffsetN	R/W	N Line Reactive Power Offset	P 37
3BH	CS2	R/W	Checksum 2	P 38
I		Energy	Register	
40H	APenergy	R/C	Forward Active Energy	P 39
41H	ANenergy	R/C	Reverse Active Energy	P 40
42H	ATenergy	R/C	Absolute Active Energy	P 40
43H	RPenergy	R/C	Forward (Inductive) Reactive Energy	P 41

Table-10 Register List (Continued)

Register Address	-		Functional Description	Page	
44H	RNenergy	R/C	Reverse (Capacitive) Reactive Energy	P 41	
45H	RTenergy	R/C	Absolute Reactive Energy	P 42	
46H	EnStatus	R	Metering Status	P 43	
		Measure	ment Register	1	
48H	Irms	R	L Line Current rms	P 44	
49H	Urms	R	Voltage rms	P 44	
4AH	Pmean	R	L Line Mean Active Power	P 45	
4BH	Qmean	R	L Line Mean Reactive Power	P 45	
4CH	Freq	R	Voltage Frequency	P 46	
4DH	PowerF	R	L Line Power Factor	P 46	
4EH	Pangle	R	Phase Angle between Voltage and L Line Current	P 47	
4FH	Smean	R	L Line Mean Apparent Power	P 47	
68H	Irms2	R	N Line Current rms	P 48	
6AH	Pmean2	R	N Line Mean Active Power	P 48	
6BH	Qmean2	R	N Line Mean Reactive Power	P 49	
6DH	PowerF2	R	N Line Power Factor	P 49	
6EH	Pangle2	R	Phase Angle between Voltage and N Line Current	P 50	
6FH	Smean2	R	N Line Mean Apparent Power		

5.2 STATUS AND SPECIAL REGISTER

SoftReset Software Reset

Address: 00H Type: Write Default Value: 0000H										
15		14		13	12	11	10	9	8	
SoftRes	et15	SoftReset	:14	SoftReset13	SoftReset12	SoftReset11	SoftReset10	SoftReset9	SoftReset8	
7		6		5	4	3	2	1	0	
SoftRes	set7	SoftRese	t6	SoftReset5	SoftReset4	SoftReset3	SoftReset2	SoftReset1	SoftReset0	
Bit	N	lame				Descri	ption			
15 - 0	SoftR	eset[15:0]	set[15:0] Software reset register. The M90E26 resets if only 789AH is written to this register.							

SysStatus System Status

ddress: 01F /pe: Read/C efault Value	lear									
15	14	13	12	11	10	9	8			
CalErr1	CalEr	0 AdjErr1	AdjErr0	-	-	-	-			
7	6	5	4	3	2	1	0			
LNchang	e RevQc	hg RevPchg	-	-	-	SagWarn	-			
Bit	Name			Descri	ption					
15 - 14	CalErr[1:0]	These bits indicate CS1 checksum status. 00: CS1 checksum correct (default) 11: CS1 checksum error. At the same time, the WarnOut pin is asserted.								
13 - 12	AdjErr[1:0]	00: CS2 checksum	nese bits indicate CS2 checksum status.): CS2 checksum correct (default) : CS2 checksum error.							
11 - 8	-	Reserved.								
7	LNchange	This bit indicates wh 0: metering line no c 1: metering line cha	hange (default)	y change of the r	netering line (L	line and N line).				
6	RevQchq	This bit indicates wh 0: direction of reacti 1: direction of reacti This status is enable	ve energy no cha ve energy change	inge (default) ed		active energy.				
5	RevPchg	This bit indicates wh 0: direction of active 1: direction of active This status is enable	energy no changed	ge (default)		ctive energy.				
4 - 2	-	Reserved.								
1	SagWarn	This bit indicates the 0: no voltage sag (d 1: voltage sag Voltage sag is enab Voltage sag status 02H).	efault) led by the SagEn	bit (FuncEn, 02ł		enabled by the Sa	agWo bit(Funct			
0	+	- Reserved.								

FuncEn Function Enable

Address: 02H Type: Read/V Default Value	Vrite										
15	14	13	12	11	10	9	8				
-	-	-	-	-	-	-	-				
7	6	5	4	3	2	1	0				
_	-	SagEn	SagWo	RevQEn	RevPEn	-	-				
Bit	Name	me Description									
15 - 6	-	Reserved.									
5	SagEn	This bit determines v 0: disable (default) 1: enable	vhether to enable	e the voltage sag	interrupt.						
4	SagWo	This bit determines v 0: disable (default) 1: enable	vhether to enable	e voltage sag to l	be reported by th	e WarnOut pin.					
3	RevQEn	This bit determines v 0: disable 1: enable (default)									
2	RevPEn	This bit determines v 0: disable 1: enable (default)									
1 - 0	-	Reserved.									

SagTh Voltage Sag Threshold

Ту	dress: 03H pe: Read/W fault Value:	/rite								
	15 14		13	12	11	10	9	8		
	SagTh15	5 SagTh1	4 SagTh13	SagTh12	SagTh11	SagTh10	SagTh9	SagTh8		
L	7	6	5	4	3	2	1	0		
	SagTh7 SagTh		6 SagTh5	SagTh4	SagTh3	SagTh2	SagTh1	SagTh0		
	Bit	Name		Description						
	15 - 0	SagTh[15:0] Voltage sag threshold configuration. Data format is XXX.XX. Unit is V. The power-on value of SagTh is 1D6AH, which is calculated by 22000*sqrt(2)*0.78/(4*Ugain/32768) For details, please refer to related application note 46102.								

SmallPMod Small-Power Mode

Address: 04H Type: Read/Write Default Value: 0000H											
15	15 14			13	12	11	10	9	8		
SmallP 5	SmallPMod1 SmallPMo 5 4		od1 Sr	mallPMod1 3	SmallPMod1 2	SmallPMod1 1	SmallPMod1 0	SmallPMod9	SmallPMod8		
7	7 6			5	4	3	2	1	0		
SmallP	SmallPMod7 S		od6 Sr	mallPMod5	SmallPMod4	SmallPMod3	SmallPMod2	SmallPMod1	SmallPMod0		
Bit	N	lame				Descri	ption				
15 - 0	15 - 0 SmallPMod[15:0]			Small-power mode command. A987H: small-power mode. The relationship between the register value of L line and N line active/reactive power in small-power mode and normal mode is: power in normal mode = power in small-power mode *Igain*Ugain /(100000 * 2^42) Others: Normal mode. Small-power mode is mainly used in the power offset calibration.							

LastData Last Read/Write SPI/UART Value

Address: 06H Type: Read Default Value: 0000H											
15	15 14		13	12	11	10	9	8			
LastDa	LastData15		14 LastData13	LastData12	LastData11	LastData10	LastData9	LastData8			
7		6	5	4	3	2	1	0			
LastD	ata7	LastData	a6 LastData5	LastData4	LastData3	LastData2	LastData1	LastData0			
	I										
Bit	N	lame	Description								
15 - 0	LastD	0ata[15:0]	This register stores and Table-9.	nis register stores the data that is just read or written through the SPI/UART interface. Refer to Table-8 ad Table-9.							

5.3 METERING/ MEASUREMENT CALIBRATION AND CONFIGURATION

5.3.1 METERING CALIBRATION AND CONFIGURATION REGISTER

LSB RMS/Power 16-bit LSB

Address: 08H Type: Read Default Value:											
15	14	13	12	11	10	9	8				
LSB15	LSB14	LSB13	LSB12	LSB11	LSB10	LSB0	LSB8				
7	6	5	4	3	2	1	0				
LSB7	LSB6	LSB5	LSB4	LSB3	LSB2	LSB1	LSB0				
Dit											
Bit	Name		Description								
15 - 0	LSB[15:0]		16-bit LSB of the RMS or Power registers. Note that reading of the LSB[7:0] bits is always 0.								

CalStart Calibration Start Command

Address: 20H Type: Read/W Default Value:	/rite									
15	14	13	12	11	10	9	8			
CalStart1	5 CalStart	14 CalStart13	CalStart12	CalStart11	CalStart10	CalStart9	CalStart8			
7	6	5	4	3	2	1	0			
CalStart7	' CalStart	6 CalStart5	CalStart4	CalStart3	CalStart2	CalStart1	CalStart0			
Bit 15 - 0	Name CalStart[15:0]	6886H: Power-on va 5678H: Metering cal resume to the of the correctr IRQ pins do n 8765H: Check the co ing function is report warning	Calstants Calstants							

PLconstH High Word of PL_Constant

Address: 21H Type: Read/W Default Value:		Н							
15		14		13	12	11	10	9	8
PLconstH1	5	PLconstH	114	PLconstH13	PLconstH12	PLconstH11	PLconstH10	PLconstH9	PLconstH8
7		6		5	4	3	2	1	0
PLconstH	7	PLconst	-16	PLconstH5	PLconstH4	PLconstH3	PLconstH2	PLconstH1	PLconstH0
Bit	N	lame				Descri			
15 - 0		Lcon- 1[15:0]	PL_0 inver M90 and f It is s curre Note	Constant is a conservation of the set of the	onstant which is il to the Meter Co larger than PL_ Fx. t PL_constant as verification time s effect after PLo	s proportional to onstant. PL_Con Constant will be s a multiple of 4	astant is a thresh accumulated in so as to double gured.	atios of voltage old for energy ca the correspondi	ant respectively. and current, and alculated inside the ng energy registers ter Constant in low

PLconstL Low Word of PL_Constant

Address: 22H Type: Read/W Default Value:	/rite						
15	14	13	12	11	10	9	8
PLconstL1	5 PLconstL	.14 PLconstL13	PLconstL12	PLconstL11	PLconstL10	PLconstL9	PLconstL8
7	6	5	4	3	2	1	0
PLconstL	7 PLconst	L6 PLconstL5	PLconstL4	PLconstL3	PLconstL2	PLconstL1	PLconstL0
		-					
Bit	Name			Descri	ption		
15 - 0	PLcon- stL[15:0]	The PLconstH[15:0] It is suggested to se 46102.					

Lgain L Line Calibration Gain

Address: 23H Type: Read/W Default Value:	/rite						
15	14	13	12	11	10	9	8
Lgain15	Lgain1	4 Lgain13	Lgain12	Lgain11	Lgain10	Lgain9	Lgain8
7	6	5	4	3	2	1	0
Lgain7	Lgaine	6 Lgain5	Lgain4	Lgain3	Lgain2	Lgain1	Lgain0
Bit	Name			Descri	ption		
15 - 0	Lgain[15:0]	L line calibration gai	n. For details, ple	ease refer to rela	ted application n	ote 46102.	

Lphi L Line Calibration Angle

Address: 24H Type: Read/W Default Value	/rite						
15	14	13	12	11	10	9	8
Lphi15	-	-	-	-	-	Lphi9	Lphi8
7	6	5	4	3	2	1	0
Lphi7	Lphi6	Lphi5	Lphi4	Lphi3	Lphi2	Lphi1	Lphi0
	1	1					J
Bit	Name			Descri	ption		
15 - 0	Lphi[15:0]	L line calibration pha	ase angle. For de	etails, please refe	er to related appl	ication note 461	02.

Ngain N Line Calibration Gain

Address: 25H Type: Read/W Default Value:	/rite						
15	14	13	12	11	10	9	8
Ngain15	Ngain	4 Ngain13	Ngain12	Ngain11	Ngain10	Ngain9	Ngain8
7	6	5	4	3	2	1	0
Ngain7	Ngain	6 Ngain5	Ngain4	Ngain3	Ngain2	Ngain1	Ngain0
Bit	Name	N line colibration of	ain. Far dataila al	Descri	•	ata 46400	
15 - 0	Ngain[15:0]	N line calibration g	ain. For details, pl	ease refer to rela	ated application r	note 46102.	

Nphi N Line Calibration Angle

Address: 26H Type: Read/W Default Value:	/rite						
15	14	13	12	11	10	9	8
Nphi15	-	-	-	-	-	Nphi9	Nphi8
7	6	5	4	3	2	1	0
Nphi7	Nphi6	Nphi5	Nphi4	Nphi3	Nphi2	Nphi1	Nphi0
	Τ	1					
Bit	Name			Descri	ption		
15 - 0	Nphi[15:0]	N line calibration ph	ase angle. For d	etails, please ref	er to related app	lication note 461	02.

PStartTh Active Startup Power Threshold

Address: 27 Type: Read Default Valu	/Write	3DH						
15		14	13	12	11	10	9	8
PStartT	h15	PStartTh	14 PStartT	h13 PStartTh	I2 PStartTh	11 PStartTh10	PStartTh9	PStartTh8
7		6	5	4	3	2	1	0
PStart ⁻	「h7	PStartTh	6 PStart	Th5 PStartTh	4 PStartTh	3 PStartTh2	PStartTh1	PStartTh0
Bit		Name			Da	corintian		
ы						e refer to related a		

PNoITh Active No-Load Power Threshold

Address: 28H Type: Read/W Default Value:	/rite						
15	14	13	12	11	10	9	8
PNolTh1	5 PNolTh	14 PNolTh13	PNolTh12	PNolTh11	PNolTh10	PNolTh9	PNoITh8
7	6	5	4	3	2	1	0
PNolTh7	PNoITh	6 PNolTh5	PNolTh4	PNolTh3	PNolTh2	PNolTh1	PNoITh0
		1					
Bit	Name			Descri	ption		
15 - 0	PNoITh[15:0]	Active no-load powe	er threshold. For	details, please re	efer to related ap	plication note 46	102.

QStartTh Reactive Startup Power Threshold

Address: 29 Type: Read/ Default Value	Write	СН							
15		14		13	12	11	10	9	8
QStartTh	n15	QStartTh	14 0	QStartTh13	QStartTh12	QStartTh11	QStartTh10	QStartTh9	QStartTh8
7		6		5	4	3	2	1	0
QStartT	h7	QStartTh	n6 (QStartTh5	QStartTh4	QStartTh3	QStartTh2	QStartTh1	QStartTh0
Bit	1	Name				Descri	ption		
15 - 0	QSta	rtTh[15:0]	Reactiv	e startup pov	ver threshold. Fo	r details, please	refer to related a	pplication note	46102.

QNoITh Reactive No-Load Power Threshold

Address: 2AH Type: Read/W Default Value	Vrite	0H							
15		14		13	12	11	10	9	8
QNolTh1	5	QNolTh	4	QNolTh13	QNolTh12	QNolTh11	QNolTh10	QNolTh9	QNolTh8
7		6		5	4	3	2	1	0
QNolTh	7	QNolTh	6	QNolTh5	QNolTh4	QNolTh3	QNolTh2	QNolTh1	QNolTh0
Bit		Name				Descri	ption		
15 - 0	QNo	olTh[15:0]	Reacti	ve no-load po	wer threshold. Fo	or details, please	refer to related a	application note	46102.

MMode Metering Mode Configuration

Address: 2BH Type: Read/W									
Default Value									
15	14	13		12	11	10	0	9	8
Lgain2	Lgain1	Lgain	0	Ngain1	Ngain0	LNS	Sel	DisHPF1	DisHPF0
7	6	5		4	3	2		1	0
Amod	Rmod	ZXCor	1	ZXCon0	Pthresh	B Pthre	esh2	Pthresh1	Pthresh0
Bit	Name				De	scription			
		L line current g	ain, defau	ult value is ''	100'.				
			Lga	ain2	Lgain1	Lgain0	Curren	t Channel Gai	in
15 - 13	Lgain[2:0]			1 D	X 0	X 0		1 4	
			())	0 1	1 0		8 16	
			(0	1	1		24	
12 - 11	Ngain[1:0]	N line current g 00: 2 01: 4 10: 1 (default) 11: 1	jain						
10	LNSel	This bit specific MMD0 pins. 0: N line 1: L line (defau		ng as L line	or N line whe	en metering r	node is s	et to flexible m	ode by MMD1 ar
		These bits con and HPF0. The	configura	ation are ap	plicable to all	channels:			IPF in serial: HPF
9 - 8	DisHPF[1:0]			DisHPF1	DisHPF 0	HP enabl	F Config e HPF1 a	uration and HPF0	
0 0	2101111[1:0]			0	0		(defaul		
				0	1			able HPF0; able HPF0;	
				1	1			and HPF0	
7	Amod	CF1 output for 0: forward or re 1: absolute ene	everse ene	ergy pulse c	output (defaul	t)			
6	Rmod	CF2 output for 0: forward (indu 1: absolute ene	uctive) or	reverse (ca	pacitive) ener	gy pulse out	out (defau	ılt)	

5 - 4	Zxcon[1:0]	zero. 00: positive ze 01: negative ze 10: all zero-cro 11: no zero-cro	ro-crossing ero-crossing ossing: both ossing outpu	positive and t	negative ze	ro-crossing (de	- -
		These bits con	figure the L	line and N li	ne power dif	ference thresh	old in anti-tampering mode.
			Pthresh	Pthresh	Pthresh		
			3	2	1	Pthresh0	Threshold
		0	0	0	0	12.5%	
		0	0	0	1	6.25%	
			0	0	1	0	3.125% (default)
			0	0	1	1	1.5625%
			0	1	0	0	1%
~ ~			0	1	0	1	2%
3 - 0	Pthresh[3:0]		0	1	1	0	3%
			0	1	1	1	4%
			1	0	0	0	5%
			1	0	0	1	6%
			1	0	1	0	7%
			1	0	1	1	8%
			1	1	0	0	9%
			1	1	0	1	10%
			1	1	1	0	11%
		1	1	1	1	12%	

CS1 Checksum 1

/rite							
0000H							
14	13	12	11	10		9	8
CS1_1	4 CS1_13	CS1_12	CS1_11	CS1_	10	CS1_9	CS1_8
6	5	4	3	2	•	1	0
CS1_6	6 CS1_5	CS1_4	CS1_3	CS1_	2	CS1_1	CS1_0
Name			Desc	ription			
			after the 21H-2	BH register		itten. Suppos	e the high byte and
	the low byte of the	e 21H-2BH registe	rs are shown in	below table	•		
				High			
		Regi	ster Address	-			
			21H	H ₂₁	L ₂₁		
			22H	H ₂₂	L ₂₂		
			23H		L ₂₃		
			24H		L ₂₄		
			26H		L ₂₆		
					L ₂₇		
					L ₂₈		
CS1[15:0]					-		
			2BH	H _{2B}	L _{2B}		
	The calculation of	f the CS1 register i	s as follows:				
	The low bute of 2	CH register is: I				1 249)	
	L _{2B}	ZCH register is: H	2C= H 21 XUR H 2	2 XUR X	OR H_{2B}	XUR L21 XU	JR L22 XUR XU
			e CalErr[1:0] bit	s (SysStatu	<mark>s</mark> , 01H) a	are set and th	e WarnOut and IR
	Note: The readout		1 register is the	e calculatior	n by the	M90E26, wh	ich is different fror
	0000H 14 CS1_1 6 CS1_6	0000H 14 13 CS1_13 6 5 CS1_5 CS1_6 CS1_5 CS1_6 CS1_5 CS1[15:0] C	14 13 12 CS1_14 CS1_13 CS1_12 6 5 4 CS1_6 CS1_5 CS1_4 Name The CS1 register should be written the low byte of the 21H-2BH register CS1[15:0] The CS1 register should be written the low byte of the 21H-2BH register CS1[15:0] The calculation of the CS1 register is: L2C The high byte of 2CH register is: L2C The high byte of 2CH register is: H2B The M90E26 calculates CS1 regular is different when CalStart=8765H, the pins are asserted. The readout value of the CS1	0000H 14 13 12 11 CS1_14 CS1_13 CS1_12 CS1_11 6 5 4 3 CS1_6 CS1_5 CS1_4 CS1_3 Mame Desc The CS1 register should be written after the 21H-2 The CS1 register should be written after the 21H-2 The CS1 register should be written after the 21H-2 The CS1 register should be written after the 21H-2 The CS1 register should be written after the 21H-2 The CS1 register should be written after the 21H-2 The CS1 register should be written after the 21H-2 The CS1 register should be written after the 21H-2 21H 22H 22H 23H 22H 23H 22H 28H 20H 20H 28H	0000H 14 13 12 11 10 CS1_14 CS1_13 CS1_12 CS1_11 CS1_ 6 5 4 3 2 CS1_6 CS1_5 CS1_4 CS1_3 CS1_ Mame Description The CS1 register should be written after the 21H-2BH register the low byte of the 21H-2BH registers are shown in below table Register Address Byte 21H H21 22H H22 23H H23 23H H24 23H H24 23H H23 23H H24 23H H	0000H 14 13 12 11 10 CS1_14 CS1_13 CS1_12 CS1_11 CS1_10 6 5 4 3 2 CS1_6 CS1_5 CS1_4 CS1_3 CS1_2 Name Description The CS1 register should be written after the 21H-2BH registers are writte low byte of the 21H-2BH registers are shown in below table. Register Address Byte Byte 21H H21 L21 22H H22 L22 23H H23 L23 24H H24 L24 25H H25 L25 26H H26 L26 27H H22 L22 28H H28 L28 29H H29 L29 2AH H28 L28 29H H28 L28 29H H28 L28 28H H28 L28 28H H28 L28	0000H 14 13 12 11 10 9 6 5 4 3 2 1 6 5 4 3 2 1 Oescription Name Description The CS1 register should be written after the 21H-2BH registers are written. Suppose the low byte of the 21H-2BH registers are shown in below table. Register Address Byte Byte 21H H21 L21 22H H23 L23 23H H23 L23 24H H24 L24 25H H26 L26 27H H27 L26 28H H28 L28 29H H29 L24 28H H28 L28 29H H28 L28 28H H28 L28 28H H28 L24 28H H28 L28 28H H28 L28 28H H28 L24 28H H28 <t< td=""></t<>

5.3.2 MEASUREMENT CALIBRATION REGISTER

AdjStart Measurement Calibration Start Command

Address: 30H Type: Read/W Default Value:										
15	14	13	12	11	10	9	8			
AdjStart1	5 AdjStart	14 AdjStart13	AdjStart12	AdjStart11	AdjStart10	AdjStart9	AdjStart8			
7	6	5	4	3	2	1	0			
AdjStart7	AdjStart	6 AdjStart5	AdjStart4	AdjStart3	AdjStart2	AdjStart1	AdjStart0			
Bit	Name			Descri	ption					
15 - 0	AdjStart[15:0]	6886H: Power-on v 5678H: Measuremen 3AH resume ness of diagr report any inte 8765H: Check the c measurement	Description leasurement Calibration Start Command 886H: Power-on value. No measurement. 678H: Measurement calibration startup command. After 5678H is written to this register, registers 31H 3AH resume to their power-on values. The M90E26 starts to measure regardless of the correct ness of diagnosis. The AdjErr[1:0] bits (SysStatus, 01H) are not set and the IRQ pin does no report any interrupt. 765H: Check the correctness of the 31H-3AH registers. If correct, normal measurement. If not correct measurement function is disabled, the AdjErr[1:0] bits (SysStatus, 01H) are set and the IRQ pin reports interrupt.							

Ugain Voltage rms Gain

Address: 31F Type: Read/V Default Value	Vrite									
15	14	13	12	11	10	9	8			
Ugain18	5 Ugain1	4 Ugain13	Ugain12	Ugain11	Ugain10	Ugain9	Ugain8			
7	6	5	4	3	2	1	0			
Ugain7	Ugaine	6 Ugain5	Ugain4	Ugain3	Ugain2	Ugain1	Ugain0			
	T	I								
Bit	Name		Description							
15 - 0	Ugain[15:0]		oltage rms Gain. For details, please refer to related application note 46102. Iote: the Ugain15 bit should only be '0'							

lgainL L Line Current rms Gain

Address: 32H Type: Read/W Default Value:	/rite									
15	14	13	12	11	10	9	8			
lgainL15	i IgainL1	4 IgainL13	lgainL12	IgainL11	IgainL10	IgainL9	lgainL8			
7	6	5	4	3	2	1	0			
lgainL7	IgainLe	3 IgainL5	IgainL4	lgainL3	lgainL2	lgainL1	lgainL0			
Bit	Name			Descri	ption					
15 - 0	IgainL[15:0]	L Line Current rms (Line Current rms Gain, For details, please refer to related application note 46102.							

lgainN N Line Current rms Gain

Address: 33H Type: Read/W Default Value:	/rite									
15	14	13	12	11	10	9	8			
IgainN15	5 IgainN1	4 IgainN13	lgainN12	lgainN11	IgainN10	IgainN9	IgainN8			
7	6	5	4	3	2	1	0			
lgainN7	IgainNe	6 IgainN5	IgainN4	lgainN3	IgainN2	IgainN1	lgainN0			
Bit	Name Description									
15 - 0	IgainN[15:0]	N Line Current rms	Line Current rms Gain. For details, please refer to related application note 46102.							

Uoffset Voltage Offset

Address: 34H Type: Read/W Default Value:	/rite									
15	14	13	12	11	10	9	8			
Uoffset15	5 Uoffset	14 Uoffset13	Uoffset12	Uoffset11	Uoffset10	Uoffset9	Uoffset8			
7	6	5	4	3	2	1	0			
Uoffset7	Uoffse	t6 Uoffset5	Uoffset4	Uoffset3	Uoffset2	Uoffset1	Uoffset0			
Bit	Bit Name Description									
15 - 0	Uoffset[15:0]	Voltage offset. For	oltage offset. For calculation method, please refer to related application note 46102.							

loffsetL L Line Current Offset

Address: 35H Type: Read/W Default Value	/rite									
15	1	4	13	12	11	10	9	8		
loffsetL1	5 loffse	tL14	loffsetL13	loffsetL12	loffsetL11	loffsetL10	loffsetL9	loffsetL8		
7	(5	5	4	3	2	1	0		
loffsetL7	' loffs	etL6	loffsetL5	loffsetL4	loffsetL3	loffsetL2	loffsetL1	loffsetL0		
	I									
Bit	Name		Description							
15 - 0	loffsetL[15	0] L lir	ine current offset. For calculation method, please refer to related application note 46102.							

loffsetN N Line Current Offset

Address: 36H Type: Read/W Default Value:	/rite									
15	14	13	12	11	10	9	8			
loffsetN1	5 loffsetN ²	14 IoffsetN13	loffsetN12	loffsetN11	loffsetN10	loffsetN9	loffsetN8			
7	6	5	4	3	2	1	0			
loffsetN7	7 loffsetN	6 loffsetN5	loffsetN4	loffsetN3	loffsetN2	loffsetN1	loffsetN0			
Bit	Name		Description							
15 - 0	loffsetN[15:0]	N line current offset. For calculation method, please refer to related application note 46102.								

PoffsetL L Line Active Power Offset

Address: 3 Type: Rea Default Va	d/Writ										
1	5	14	13	12	11	10	9	8			
Poffse	tL15	PoffsetL	14 PoffsetL13	PoffsetL12	PoffsetL11	PoffsetL10	PoffsetL9	PoffsetL8			
7		6	5	4	3	2	1	0			
Poffs	etL7	PoffsetL	6 PoffsetL5	PoffsetL4	PoffsetL3	PoffsetL2	PoffsetL1	PoffsetL0			
Bit		Name		Description							
15 - 0	Ρ	PoffsetL[15:0]		line active power offset. omplement, MSB is the sign bit. For calculation method, please refer to related application note 46102.							
QoffsetL L Line Reactive Power Offset

Address: 38H Type: Read/V Default Value	Vrite						
15	14	13	12	11	10	9	8
QoffsetL1	15 QoffsetL	14 QoffsetL13	QoffsetL12	QoffsetL11	QoffsetL10	QoffsetL9	QoffsetL8
7	6	5	4	3	2	1	0
QoffsetL	.7 QoffsetL	.6 QoffsetL5	QoffsetL4	QoffsetL3	QoffsetL2	QoffsetL1	QoffsetL0
L	1						
Bit	Name			Descri	ption		
15 - 0	QoffsetL[15:0]	L line reactive power Complement, MSB is	[.] offset. s the sign bit. Fo	r calculation met	hod, please refe	r to related appli	cation note 46102.

PoffsetN N Line Active Power Offset

Address: 39H Type: Read/M Default Value	/rite						
15	14	13	12	11	10	9	8
PoffsetN1	5 PoffsetN	14 PoffsetN13	PoffsetN12	PoffsetN11	PoffsetN10	PoffsetN9	PoffsetN8
7	6	5	4	3	2	1	0
PoffsetN	7 PoffsetN	I6 PoffsetN5	PoffsetN4	PoffsetN3	PoffsetN2	PoffsetN1	PoffsetN0
	•						
Bit	Name			Descri	ption		
15 - 0	PoffsetN[15:0]	N line active power of Complement, MSB is	offset. s the sign bit. Fo	r calculation met	hod, please refe	r to related appli	cation note 46102.

QoffsetN N Line Reactive Power Offset

Address: 3A Type: Read/ Default Valu	/Write						
15	14	13	12	11	10	9	8
Qoffset	N15 QoffsetN	QoffsetN13	QoffsetN12	QoffsetN11	QoffsetN10	QoffsetN9	QoffsetN8
7	6	5	4	3	2	1	0
Qoffset	N7 Qoffset	N6 QoffsetN5	QoffsetN4	QoffsetN3	QoffsetN2	QoffsetN1	QoffsetN0
Bit	Name			Descri	ption		
15 - 0	QoffsetN[15:0]	N line reactive power Complement, MSB is		r calculation met	hod, please refe	to related appli	cation note 46102.

CS2 Checksum 2

15	14	13	12	11		10	9	8
CS2_15	CS2_1	4 CS2_13	CS2_12	2_12 CS2_11		2_10	CS2_9	CS2_8
7	6	5	4	3	11	2	1	0
CS2_7	CS2_6	6 CS2_5	CS2_4	CS2_3	CS	62_2	CS2_1	CS2_0
Bit	Name			De	scription			
15 - 0	022145-01			ter Address 31H 32H 33H 34H 35H 36H 37H 38H	Byte H ₃₁ H ₃₂ H ₃₃ H ₃₄ H ₃₅ H ₃₆ H ₃₇ H ₃₈	Byte L ₃₁ L ₃₂ L ₃₃ L ₃₄ L ₃₅ L ₃₆ L ₃₇ L ₃₈		
15 - 0	CS2[15:0]			39H 3AH	H ₃₉ H _{3A}	L ₃₉ L _{3A}		
		The low byte of 3 The high byte of L _{3A} The M90E26 calc is different when	f the CS2 register BH register is: L ₃ 3BH register is: I sulates CS2 regula Adj <mark>Start=</mark> 8765H, t ut value of the C	$_{B}$ =MOD(H_{31} + H_{3B} = H_{31} XOR arly. If the value he AdjErr[1:0]	H ₃₂ XOR e of the CS bits (SysSta	. XOR H₃ 2 register a atus, 01H)	XOR L ₃₁ XO and the calcula are set.	tion by the M90E

5.4 ENERGY REGISTER

Theory of Energy Registers

The internal energy resolution is 0.01 pulse. Within 0.01 pulse, forward and reverse energy are counteracted. When energy exceeds 0.01 pulse, the respective forward/reserve energy is increased. The forward and reverse energy are not counteracted in absolute energy registers. Take the example of active energy, suppose:

T0: Forward energy is 12.34 pulses and reverse energy is 1.23 pulses;

From T0 to T1: 0.005 forward pulse appeared

From T1 to T2: 0.004 reverse pulse appeared

From T2 to T3: 0.003 reverse pulse appeared

	Т0	T1	T2	Т3
Forward Active Pulse	12.34	12.345	12.341	12.34
Reserve Active Pulse	1.23	1.23	1.23	1.232
Absolute Active Pulse	13.57	13.575	13.579	13.582

When forward/reverse energy or absolute energy reaches 0.1 pulse, the respective register is updated. When forward/reverse energy or absolute energy reaches 1 pulse, CFx pins output pulse and the REVP/REVQ bits (EnStatus, 46H) are updated.

Absolute energy might be more than the sum of forward and reverse energies. If "consistency" is required between absolute energy and forward/reverse energy in system application, absolute energy can be obtained by calculating the readout of the forward and reverse energy registers.

APenergy Forward Active Energy

Address: 40 Type: Read Default Valu	/Clear)0H						
15		14	13	12	11	10	9	8
APener	gy15	APenergy	/14 APenergy13	APenergy12	APenergy11	APenergy10	APenergy9	APenergy8
7		6	5	4	3	2	1	0
APener	gy7	APenerg	y6 APenergy5	APenergy4	APenergy3	APenergy2	APenergy1	APenergy0
Bit		Name			Descri	ption		
15 - 0	APer	nergy[15:0]	Forward active energy Data format is XXXX When the accumula 0000H.	XX pulses. Reso	lution is 0.1 puls			ulation will return to

ANenergy Reverse Active Energy

Address: 4 Type: Read Default Valu	l/Clear							
15		14	13	12	11	10	9	8
ANener	gy15	ANenergy	/14 ANenergy13	ANenergy12	ANenergy11	ANenergy10	ANenergy9	ANenergy8
7		6	5	4	3	2	1	0
ANener	rgy7	ANenerg	y6 ANenergy5	ANenergy4	ANenergy3	ANenergy2	ANenergy1	ANenergy0
Bit	1	Name			Descri	iption		
15 - 0	ANer	nergy[15:0]	Reverse active ener Data format is XXX> When the accumula 0000H.	KX pulses. Reso	lution is 0.1 puls			ulation will return t

ATenergy Absolute Active Energy

Address: 42 Type: Read Default Valu	/Clear										
15		14	13	12	11	10	9	8			
ATenerg	y15	ATenergy	/14 ATenergy13	ATenergy12	ATenergy11	ATenergy10	ATenergy9	ATenergy8			
7		6	5	4	3	2	1	0			
ATener	ATenergy7 ATenergy6		y6 ATenergy5	ATenergy4	ATenergy3	ATenergy2	ATenergy1	ATenergy0			
Bit		Name			Descri	ption					
15 - 0	ATen	ergy[15:0]	Data format is XXXX	bsolute active energy, cleared after read. ata format is XXXX.X pulses. Resolution is 0.1 pulse. Maximum is 6553.5 pulses. /hen the accumulation of this register has achieved FFFFH, the continuation accumulation will return to							

RPenergy Forward (Inductive) Reactive Energy

Address: 43 Type: Read/ Default Valu	Clear							
15		14	13	12	11	10	9	8
RPenerg	y15	RPenergy	/14 RPenergy13	RPenergy12	RPenergy11	RPenergy10	RPenergy9	RPenergy8
7		6	5	4	3	2	1	0
RPener	gy7	RPenerg	y6 RPenergy5	RPenergy4	RPenergy3	RPenergy2	RPenergy1	RPenergy0
Bit		Name			Descri	ption		
15 - 0	RPer	nergy[15:0]	Forward (inductive) Data format is XXXX When the accumula 0000H.	(.X pulses. Reso	lution is 0.1 puls	e. Maximum is 6		ulation will return to

RNenergy Reverse (Capacitive) Reactive Energy

Address: 44 Type: Read/ Default Valu	/Clear							
15		14	13	12	11	10	9	8
RNenerg	gy15	RNenergy	/14 RNenergy13	RNenergy12	RNenergy11	RNenergy10	RNenergy9	RNenergy8
7		6	5	4	3	2	1	0
RNener	gy7	RNenerg	y6 RNenergy5	RNenergy4	RNenergy3	RNenergy2	RNenergy1	RNenergy0
Bit		Name			Descri	iption		
15 - 0	RNe	nergy[15:0]	Reverse (capacitive) Data format is XXXX When the accumulat 0000H.	.X pulses. Reso	lution is 0.1 puls	e. Maximum is 6		ulation will return to

RTenergy Absolute Reactive Energy

		_	-					
Address: 45 Type: Read Default Valu	/Clear							
15		14	13	12	11	10	9	8
RTenerg	iy15	RTenergy	/14 RTenergy13	RTenergy12	RTenergy11	RTenergy10	RTenergy9	RTenergy8
7		6	5	4	3	2	1	0
RTener	RTenergy7 RTenergy6		y6 RTenergy5	RTenergy4	RTenergy3	RTenergy2	RTenergy1	RTenergy0
Bit		Name			Descri	ption		
15 - 0	RTer	nergy[15:0]	Absolute reactive er Data format is XXX When the accumula 0000H.	(.X pulses. Reso	lution is 0.1 pulse			ulation will return to

EnStatus Metering Status

dress: 46⊢ pe: Read ⊧fault Value	After Power On	: C800H							
15	14	13		12	11	10	9	8	
Qnoload	d Pnoload	d Rev0	ו ג	RevP	Lline	-	-	-	
7	6	5		4	3	2	1	0	
-	-	-		-	_	-	LNMode1	LNMode0	
Bit	Name				Desc	ription			
15	Qnoload	This bit indicates whether the M90E26 is in reactive no-load status. 0: not reactive no-load state 1: reactive no-load state							
14	Pnoload	This bit indicates whether the M90E26 is in active no-load status. 0: not active no-load state 1: active no-load state							
13	RevQ	This bit indicat 0: reactive forv 1: reactive rev Note: This bit	vard erse		·	ive output). onfigured to be al	osolute energy.		
12	RevP	This bit indicat 0: active forwa 1: active revers Note: This bit	ird se		·	e output). onfigured to be al	osolute energy.		
11	Lline	This bit indicat 0: N line 1: L line	es the curre	nt metering li	ine in anti-tar	npering mode.			
10 - 2	-	Reserved.							
		These bits indi	icate the cor	figuration of	MMD1 and N LNmod0	/MD0 pins. Their	relationship is a		
		0	0	0	0		ering mode (larg		
1 - 0	LNMode[1:0]	0	1	0	1 0	L line L+N mode (app	e mode (fixed L l licable for single wire system)		
		1	1	1	1	Flexible mode (y the LNSel bit	

5.5 MEASUREMENT REGISTER

Irms L Line Current rms

Address: 48H Type: Read Default Value)0H									
15		14	13	12	11	10	9	8			
Irms15		Irms14	Irms13	Irms12	Irms11	Irms10	Irms9	Irms8			
7		6	5	4	3	2	1	0			
Irms7		Irms6	Irms5	Irms4	Irms3	Irms2	Irms1	Irms0			
Bit		Name			Descri	ption					
15 - 0	Ir	ms[15:0]	For cases when the	ata format is XX.XXX, which corresponds to $0 \sim 65.535A$. or cases when the current exceeds 65.535A, it is suggested to be handled by MCU in application. For cample, the register value can be calibrated to 1/2 of the actual value during calibration, then multiplied							

Urms Voltage rms

Address: 49H Type: Read Default Value:									
15	14	13	12	11	10	9	8		
Urms15	Urms14	4 Urms13	Urms12	Urms11	Urms10	Urms9	Urms8		
7	6	5	4	3	2	1	0		
Urms7	Urms6	Urms5	Urms4	Urms3	Urms2	Urms1	Urms0		
Bit	Name			Descri	ption				
15 - 0	Urms[15:0]	/oltage rms. Data format is XXX.XX, which corresponds to 0 ~ 655.35V.							

Pmean L Line Mean Active Power

Address: 4AH Type: Read Default Value								
15	14	13	12	11	10	9	8	
Pmean1	5 Pmean	14 Pmean13	Pmean12	Pmean11	Pmean10	Pmean9	Pmean8	
7	6	5	4	3	2	1	0	
Pmean7	Pmean	6 Pmean5	Pmean4	Pmean3	Pmean2	Pmean1	Pmean0	
Bit	Name			Descri	ption			
15 - 0	Pmean[15:0]	L line mean active power. Complement, MSB is the sign bit. Data format is XX.XXX, which corresponds to -32.768~+32.768kW If current is specially handle by MCU, the power of the M90E26 and the actual power have the same tiple relationship as the current.						

Qmean L Line Mean Reactive Power

Address: 4BH Type: Read Default Value:										
15	14	13	12	11	10	9	8			
Qmean1	5 Qmean	14 Qmean13	Qmean12	Qmean11	Qmean10	Qmean9	Qmean8			
7	6	5	4	3	2	1	0			
Qmean7	Qmean	6 Qmean5	Qmean4	Qmean3	Qmean2	Qmean1	Qmean0			
Bit	Name		Description							
15 - 0	Qmean[15:0]	L line mean reactive power. Complement, MSB is the sign bit. Data format is XX.XXX, which corresponds to -32.768~+32.768kv If current is specially handled by MCU, the power of the M90E26 and the actual power have the s multiple relationship as the current.								

Freq Voltage Frequency

Address: 4CH Type: Read Default Value:										
15	14	13	12	11	10	9	8			
Freq15	Freq14	4 Freq13	Freq12	Freq11	Freq10	Freq9	Freq8			
7	6	5	4	3	2	1	0			
Freq7	Freq6	Freq5	Freq4	Freq3	Freq2	Freq1	Freq0			
Bit	Name			Descri	ption					
15 - 0	Freq[15:0]	Voltage frequency. Data format is XX.> sponds to 50.00Hz.	Data format is XX.XX. Frequency measurement range is 45.00~65.00Hz. For example, 1388H cor							

PowerF L Line Power Factor

Тур	dress: 4DH be: Read fault Value:										
	15	14	13	12	11	10	9	8			
	PowerF1	5 PowerF ²	14 PowerF13	PowerF12	PowerF11	PowerF10	PowerF9	PowerF8			
	7	6	5	4	3	2	1	0			
	PowerF7	PowerF	6 PowerF5	PowerF4	PowerF3	PowerF2	PowerF1	PowerF0			
		-									
	Bit	Name			Descri	ption					
	15 - 0	PowerF[15:0]		L line power factor. Signed, MSB is the sign bit. Data format is X.XXX. Power factor range: -1.000~+1.000. For example, 03E 8H corresponds to the power factor of 1.000, and 83E8H corresponds to the power factor of -1.000.							

Pangle Phase Angle between Voltage and L Line Current

Address: 4EH Type: Read Default Value:										
15	14	13	12	11	10	9	8			
Pangle1	5 Pangle1	4 Pangle13	Pangle12	Pangle11	Pangle10	Pangle9	Pangle8			
7	6	5	4	3	2	1	0			
Pangle7	Pangle	6 Pangle5	Pangle4	Pangle3	Pangle2	Pangle1	Pangle0			
Bit	Name			Descri	ption					
15 - 0	Pangle[15:0]		e voltage current angle. ied, MSB is the sign bit. Data format is XXX.X. Angle range: -180.0~+180.0 degree.							

Smean L Line Mean Apparent Power

Address: 4FH Type: Read Default Value:										
15	14	13	12	11	10	9	8			
Smean18	5 Smean?	14 Smean13	Smean12	Smean11	Smean10	Smean9	Smean8			
7	6	5	4	3	2	1	0			
Smean7	Smean	6 Smean5	Smean4	Smean3	Smean2	Smean1	Smean0			
Bit	Name		Description							
15 - 0	15 - 0 Smean[15:0] L line mean apparent power. Complement, MSB is always '0'. Data format is XX.XXX, which corresponds to 0~+32.767kVA. If current is specially handled by MCU, the power of the M90E26 and the actual power have the s multiple relationship as the current.									

lrms2 N Line Current rms

Address: 68H Type: Read Default Value									
15		14	13	12	11	10	9	8	
Irms2_1	5 Irm	s2_14	Irms2_13	lrms2_12	Irms2_11	Irms2_10	lrms2_9	Irms2_8	
7	7 6 5 4 3 2 1 0								
Irms2_7	Irn	ıs2_6	Irms2_5	lrms2_4	Irms2_3	Irms2_2	Irms2_1	Irms2_0	
Bit	Name	,			Descri	ption			
15 - 0	Irms2[15	5:0] For exa	line current rms. ata format is XX.XXX, which corresponds to 65.535A. or cases when the current exceeds 65.535A, it is suggested to be handled by MCU in application. Fo xample, the register value can be calibrated to 1/2 of the actual value during calibration, then multiplied y 2 in application.						

Pmean2 N Line Mean Active Power

Address: 6AH Type: Read Default Value:								
15	14		13	12	11	10	9	8
Pmean2_	15 Pmean	2_14	Pmean2_13	Pmean2_12	Pmean2_11	Pmean2_10	Pmean2_9	Pmean2_8
7	6		5	4	3	2	1	0
Pmean2_	7 Pmear	2_6	Pmean2_5	Pmean2_4	Pmean2_3	Pmean2_2	Pmean2_1	Pmean2_0
Bit	Name				Descri	ption		
15 - 0	- 0 Pmean2[15:0] N line mean active power. Complement, MSB is the sign bit. Data format is XX.XXX, which corresponds to -32.768~+32.767kW If current is specially handled by MCU, the power of the M90E26 and the actual power have the s multiple relationship as the current.							

Qmean2 N Line Mean Reactive Power

Address: 6BH Type: Read Default Value										
15	14	13	12	11	10	9	8			
Qmean2_	15 Qmean2	_14 Qmean2_13	Qmean2_12	Qmean2_11	Qmean2_10	Qmean2_9	Qmean2_8			
7	6	5	4	3	2	1	0			
Qmean2_	7 Qmean2	2_6 Qmean2_5	Qmean2_4	Qmean2_3	Qmean2_2	Qmean2_1	Qmean2_0			
Bit	Name		Description							
15 - 0	Qmean2[15:0]	N line mean reactive power. 5:0] Complement, MSB is the sign bit. Data format is XX.XXX, which corresponds to -32.768~+32.767kvar. If current is specially handled by MCU, the power of M90E26 and the actual power have the same mul ple relationship as the current.								

PowerF2 N Line Power Factor

Address: 6D Type: Read Default Value									
15	14	13	12	11	10	9	8		
PowerF2	_15 PowerF2	_14 PowerF2_13	PowerF2_12	PowerF2_11	PowerF2_10	PowerF2_9	PowerF2_8		
7	6	5	4	3	2	1	0		
PowerF2	2_7 PowerF2	_6 PowerF2_5	PowerF2_4	PowerF2_3	PowerF2_2	PowerF2_1	PowerF2_0		
	Γ	1							
Bit	Name			Descri	ption				
15 - 0	PowerF2[15:0]		l line power factor. igned, MSB is the sign bit. Data format is X.XXX. Power factor range: -1.000~+1.000. For example, 03E H corresponds to the power factor of 1.000, and 83E8H corresponds to the power factor of -1.000.						

Pangle2 Phase Angle between Voltage and N Line Current

Address Type: Re Default V	ead							
	15	14	13	12	11	10	9	8
Pang	gle2_1	5 Pangle2_	14 Pangle2_13	Pangle2_12	Pangle2_11	Pangle2_10	Pangle2_9	Pangle2_8
	7	6	5	4	3	2	1	0
Pan	Pangle2_7 Pangle2_6		_6 Pangle2_5	Pangle2_4	Pangle2_3	Pangle2_2	Pangle2_1	Pangle2_0
Dit								
Bit	[Name			Descri	ption		
15 -	0	Pangle2[15:0]	N line voltage curren Signed, MSB is the s		mat is XXX.X. Ar	igle range: -180.	0~+180.0 degree	Э.

Smean2 N Line Mean Apparent Power

Address: 6FH Type: Read Default Value							
15	14	13	12	11	10	9	8
Smean2_	15 Smean2	_14 Smean2_13	Smean2_12	Smean2_11	Smean2_10	Smean2_9	Smean2_8
7	6	5	4	3	2	1	0
Smean2	7 Smean2	2_6 Smean2_5	Smean2_4	Smean2_3	Smean2_2	Smean2_1	Smean2_0
Bit	Name Description						
15 - 0	0 Smean2[15:0] N line mean apparent power Complement, MSB is always '0'. Data format is XX.XXX, which corresponds to 0~+32.767kVA. If current is specially handled by MCU, the power of M90E26 and the actual power have the same multi ple relationship as the current.						

6 ELECTRICAL SPECIFICATION

6.1 ELECTRICAL SPECIFICATION

Parameters and Description	Min.	Typical	Max.	Unit	Test Conditions and Comments
		Αςςι	iracy		
DC Power Supply Rejection Ratio (PSRR)			±0.1	%	VDD=3.3V \pm 0.3V, 100Hz, I=5A, V=220V, L line shunt resistor 150µ Ω , N line CT 1000:1, sampling resistor 4.8 Ω
AC Power Supply Rejection Ratio (PSRR)			±0.1	%	VDD=3.3V superimposes 400mVrms, 100Hz Sinusoidal signal, I=5A, V=220V, L line shunt resistor $150\mu\Omega$, N line CT 1000:1, sampling resistor 4.8Ω
Active Energy Error (Dynamic Range 5000:1)			±0.1	%	L line current gain is '24'; N line current gain is '1'
Measurement Error			\pm 0.5	%	
		Channel Cha	aracteristic	S	
Sampling Frequency		8		kHz	
Harmonic Metering (active and reactive) Bandwidth		1.1		kHz	1% total energy metering error limit; V-harmonic <= 10% of fundamental; I-harmonic<=40% of fundamental
		47.5-62.5		Hz	Active energy metering
Line Frequency		47.5-52.5		Hz	Reactive energy metering
		Analog		1	1
	5μ		25m	-	PGA gain is '24'
L Line Current Channel Differential Input	7.5μ		37.5m	Vrms	PGA gain is '16'
	15µ		75m	-	PGA gain is '8'
	30μ		150m	-	PGA gain is '4'
	120µ		600m	.,	PGA gain is '1'
N Line Current Channel Differential Input	120µ		600m	Vrms	DPGA gain is '1'
Voltage Channel Differential Input	120µ	4	600m	Vrms	DPGA gain is '1'
L Line Current Channel Input Impedance		1		kΩ	single-ended impedance
N Line Current Channel Input Impedance		400		kΩ	single-ended impedance
Voltage Channel Input Impedance		400	40	kΩ	single-ended impedance
L Line Current Channel DC Offset			10	mV	PGA gain is '24'
N Line Current Channel DC Offset			10	mV	
Voltage Channel DC Offset		Defe	10	mV	
On-Chip Reference		Refei	ence	V	
Reference Voltage Temperature Coeffi-		1.26		v	
cient		±15	±40	ppm/°C	
		Clo			1
					The Accuracy of crystal or external clock
Crystal or External Clock		8.192		MHz	is $\pm 100 \text{ ppm}$
I		SPI/UART	Interface	1	
SPI Interface Bit Rate	200		160k	bps	
UART Interface Baud Rate		2400 or 9600		bps	Baud rate of 2400 and 9600 is automati- cally detected.
		±2		%	

		Pulse	Width		
CFx Pulse Width		80		ms	If T \ge 160 ms, width=80ms; if T<160 ms, width = 0.5T. Refer to Section 6.6
		E	SD		
Charged Device Model (CDM)	500			V	JESD22-C101
Human Body Model (HBM)	2000			V	JESD22-A114
Latch Up			±100	mA	JESD78A
Latch Up			4.95	V	JESD78A
		Operating	Conditions		
AVDD, Analog Power Supply	2.8	3.3	3.6	V	Metering precision guaranteed within 3.0V~3.6V.
DVDD, Digital Power Supply	2.8	3.3	3.6	V	Metering precision guaranteed within 3.0V~3.6V.
I _{AVDD} , Analog Current		3.4		mA	VDD=3.3V, T=25°C, Vref decoupling capacitor is 1μ F.
I _{DVDD} , Digital Current		2.4		mA	VDD=3.3V, T=25°C, Vref decoupling capacitor is 1μ F.
		DC Char	acteristics		
Digital Input High Level (pin 1, 4, 24, 25, 27 and 28)	2.0		5.5	V	VDD=3.3V±10%,
Digital Input High Level (pin 9, 12 and 22)	2.0		VDD+0.3	V	VDD=3.3V±10%
Digital Input Low Level			0.8	V	VDD=3.3V±10%
Digital Input Leakage Current			±1	μA	VDD=3.6V, VI=VDD or GND
Digital Output Low Level			0.4	V	VDD=3.3V, I _{OL} =10mA
Digital Output High Level	2.4			V	VDD=3.3V, I _{OH} =-10mA
Digital Output Low Level (OSCO)			0.4	V	VDD=3.3V, I _{OL} =1mA
Digital Output High Level (OSCO)	2.4			V	VDD=3.3V, I _{OH} =-1mA

6.2 SPI INTERFACE TIMING

The SPI interface timing is as shown in Figure-10, Figure-11 and Table-11.

Figure-10 4-Wire SPI Timing Diagram

Figure-11 3-Wire SPI Timing Diagram

Table-11 SPI Timing Specification

Symbol	Description	Min.	Typical	Max.	Unit
t _{CSH} note 1	Minimum CS High Level Time	30T ^{note 2} +10			ns
t _{CSS} ^{note 1}	CS Setup Time	3T+10			ns
t _{CSD} ^{note 1}	CS Hold Time	30T+10			ns
t _{CLD} ^{note 1}	Clock Disable Time	1T			ns
t _{CLH}	Clock High Level Time	30T+10			ns
t _{CLL}	Clock Low Level Time	16T+10			ns
t _{DIS}	Data Setup Time	3T+10			ns

Table-11 SPI Timing Specification (Continued)

t _{DIH}	Data Hold Time	22T+10			ns	
t _{DW}	Minimum Data Width	30T+10			ns	
t _{PD}	Output Delay	14T	15	5T+20	ns	
t _{DF} ^{note 1}	Output Disable Time		16	6T+20	ns	
Note:						

1. Not applicable for three-wire SPI.

2. T means SCLK cycle. T=122ns. (Typical value for four-wire SPI)

6.3 POWER ON RESET TIMING

Figure-12 Power On Reset Timing Diagram

Table-12 Power On Reset Specification

Symbol	Description	Min.	Typical	Max.	Unit
V _H	Power On Trigger Voltage	2.375	2.5	2.625	V
VL	Power Off Trigger Voltage	2.185	2.3	2.415	V
V _H -V _L	Hysteretic Voltage Difference		0.2		V
T ₁	Delay Time After Power On	5			ms
T ₂	Delay Time After Power Off	10			μs

6.4 ZERO-CROSSING TIMING

Figure-13 Zero-Crossing Timing Diagram

Table-13 Zero-Crossing Specification

Symbol	Description	Min.	Typical	Max.	Unit
T _{ZX}	High Level Width		5		ms
T _D	Delay Time			0.5	ms

6.5 VOLTAGE SAG TIMING

Figure-14 Voltage Sag Timing Diagram

Table-14 Voltage Sag Specification

Symbol	Description	Min.	Typical	Max.	Unit
T _D	Delay Time			0.5	ms

6.6 PULSE OUTPUT

Figure-15 Output Pulse Width

6.7 ABSOLUTE MAXIMUM RATING

Parameter	Maximum Limit
Relative Voltage Between AVDD and AGND	-0.3V~3.7V
Relative Voltage Between DVDD and DGND	-0.3V~3.7V
Analog Input Voltage (I1P, I1N, I2P, I2N, VP, VN)	-1V~VDD
Digital Input Voltage	-0.3V~VDD+2.6V
Operating Temperature Range	-40~85 °C
Maximum Junction Temperature	150 °C

Package Type	Thermal Resistance θ_{JA}	Unit	Condition
Green SSOP28	49	°C/W	No Airflow

ORDERING INFORMATION

Atmel Ordering Code	Package	Carrier	Temperature Range
ATM90E26-YU-R	SSOP28	Tape&Reel	Industry (-40°C to +85°C)
ATM90E26-YU-B	SSOP28	Tube	Industry (-40°C to +85°C)

Packaging Drawings

Atmel

REVISION HISTORY

Doc. Rev.	Date	Comments
46002A	4/18/2014	Initial document release.
46002B	11/7/2014	Removed Preliminary.

Atmel Enabling Unlimited Possibilities 🛛 🖬 🗹 in

Atmel Corporation 1600 Technology Drive, San Jose, CA 95110 USA T: (+1)(408) 441.0311 F: (+1)(408)

F: (+1)(408) 436.4200

www.atmel.com

I

You

Tube

© 2014 Atmel Corporation. All rights reserved. / Rev.: Atmel-46002B-SE-M90E26-Datasheet_110714.

Atmel®, Atmel logo and combinations thereof, Enabling Unlimited Possibilities®, and others are registered trademarks or trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others.

DISCLAIMER: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN THE ATMEL TERMS AND CONDITIONS OF SALES LOCATED ON THE ATMEL WEBSITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and products descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life.

SAFETY-CRITICAL, MILITARY, AND AUTOMOTIVE APPLICATIONS DISCLAIMER: Atmel products are not designed for and will not be used in connection with any applications where the failure of such products would reasonably be expected to result in significant personal injury or death ("Safety-Critical Applications") without an Atmel officer's specific written consent. Safety-Critical Applications include, without limitation, life support devices and systems, equipment or systems for the operation of nuclear facilities and weapons systems. Atmel products are not designed nor intended for use in military or aerospace applications or environments unless specifically designated by Atmel as military-grade. Atmel products are not designed nor intended for use in automotive applications unless specifically designated by Atmel as automotive-grade.