74ABT648 Octal transceiver/register; inverting; 3-state Rev. 04 – 27 April 2005 Prod

Product data sheet

1. General description

The 74ABT648 high-performance BiCMOS device combines low static and dynamic power dissipation with high speed and high output drive.

The 74ABT648 transceiver/register consists of bus transceiver circuits with inverting 3-state outputs, D-type flip-flops, and control circuitry arranged for multiplexed transmission of data directly from the input bus or the internal registers. Data on the A or B bus will be clocked into the registers as the appropriate clock pin goes HIGH.

Output enable (\overline{OE}) and direction (DIR) pins are provided to control the transceiver function.

In the transceiver mode, data present at the high-impedance port may be stored in either the A or B register or both.

The select (SAB, SBA) pins determine whether data is stored or transferred through the device in real time. The DIR determines which bus will receive data when the \overline{OE} is active (LOW).

In the isolation mode (\overline{OE} = HIGH), data from bus A may be stored in the B register and/or data from bus B may be stored in the A register. Outputs from real time or stored registers will be inverted. When an output function is disabled, the input function is still enabled and may be used to store and transmit data. Only one of the two buses A or B may be driven at a time.

2. Features

- Combines 74ABT245 and 74ABT374A type functions in one device
- Independent registers for A and B buses
- Multiplexed real time and stored data
- 3-state buffers
- Live insertion and extraction permitted
- Output capability: +64 mA and –32 mA
- Power-up 3-state
- Power-up reset
- Latch-up protection:
 - JESD78: exceeds 500 mA
- ESD protection:
 - MIL STD 883 method 3015: exceeds 2000 V
 - Machine model: exceeds 200 V

PHILIPS

Octal transceiver/register; inverting; 3-state

3. Quick reference data

Table 1: <i>GND = 0</i>	Quick reference data <i>V</i> ; $T_{amb} = 25 \circ C$.					
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
t _{PLH}	propagation delay An to Bn or Bn to An	$C_{L} = 50 \text{ pF}; V_{CC} = 5 \text{ V}$	-	3.3	-	ns
t _{PHL}	propagation delay An to Bn or Bn to An	$C_{L} = 50 \text{ pF}; V_{CC} = 5 \text{ V}$	-	3.4	-	ns
CI	input capacitance on pins CP, S, $\overline{\text{OE}},\text{DIR}$	$V_1 = 0 V \text{ or } V_{CC}$	-	4	-	pF
C _{I/O}	I/O capacitance	outputs disabled; $V_O = 0 V \text{ or } V_{CC}$	-	7	-	pF
I _{CC}	quiescent supply current	outputs 3-state; V_{CC} = 5.5 V	-	110	-	μΑ

4. Ordering information

Table 2: Ordering information									
Type number	Package	Package							
	Temperature range	Name	Description	Version					
74ABT648D	–40 °C to +85 °C	SO24	plastic small outline package; 24 leads; bodywidth 7.5 mm	SOT137-1					
74ABT648PW	–40 °C to +85 °C	TSSOP24	plastic thin shrink small outline package; 24 leads; body width 4.4 mm	SOT355-1					

5. Functional diagram

Octal transceiver/register; inverting; 3-state

Octal transceiver/register; inverting; 3-state

6. Pinning information

6.1 Pinning

6.2 Pin description

Table 3:	Pin description	
Symbol	Pin	Description
CPAB	1	A to B clock input
SAB	2	A to B select input
DIR	3	direction control input
A0	4	data input/output 0 (A side)
A1	5	data input/output 1 (A side)
A2	6	data input/output 2 (A side)
A3	7	data input/output 3 (A side)
A4	8	data input/output 4 (A side)
A5	9	data input/output 5 (A side)
A6	10	data input/output 6 (A side)
A7	11	data input/output 7 (A side)
GND	12	ground (0 V)
B7	13	data input/output 7 (B side)
B6	14	data input/output 6 (B side)
B5	15	data input/output 5 (B side)
B4	16	data input/output 4 (B side)
B3	17	data input/output 3 (B side)
B2	18	data input/output 2 (B side)
B1	19	data input/output 1 (B side)
B0	20	data input/output 0 (B side)
ŌĒ	21	output enable input (active LOW)

9397 750 14858 Product data sheet © Koninklijke Philips Electronics N.V. 2005. All rights reserved.

Philips Semiconductors

Octal transceiver/register; inverting; 3-state

Table 3:	Pin description .	continued
Symbol	Pin	Description
SBA	22	B to A select input
CPBA	23	B to A clock input
V _{CC}	24	supply voltage

7. Functional description

7.1 Function table

Operating mode	Input	Input					Data I/O		
	ŌĒ	DIR	CPAB	СРВА	SAB	SBA	An	Bn	
Store A or B				·					
Store A, B unspecified	Х	Х	Ŷ	Х	Х	Х	input	unspecified output ^[2]	
Store B, A unspecified	Х	Х	Х	ſ	Х	Х	unspecified output ^[2]	input	
Store A and B									
Store A and B data	Н	Х	\uparrow	Ŷ	Х	Х	input	input	
Isolation, hold storage	Н	Х	H or L	H or L	Х	Х			
B data to A bus									
Real time B data to A bus	L	L	Х	Х	Х	L	output	input	
Stored B data to A bus	L	L	Х	H or L	Х	Н			
A data to B bus									
Real time A data to B bus	L	Н	Х	Х	L	Х	input	output	
Stored A data to B bus	L	Н	H or L	Х	Н	Х			

[1] H = HIGH voltage level;

L = LOW voltage level;

X = don't care;

 \uparrow = LOW-to-HIGH clock transition.

[2] The data output function may be enabled or disabled by various signals at the \overline{OE} input. Data input functions are always enabled, i.e., data at the bus pins will be stored on every LOW-to-HIGH transition of the clock.

Octal transceiver/register; inverting; 3-state

7.2 Bus management function

Octal transceiver/register; inverting; 3-state

8. Limiting values

Table 5: Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0V).

.0	,				
Symbol	Parameter	Conditions	Min	Max	Unit
V _{CC}	supply voltage		-0.5	+7.0	V
VI	input voltage		<u>[1]</u> –1.2	+7.0	V
Vo	output voltage	output in OFF-state or HIGH-state	<u>[1]</u> –0.5	+5.5	V
I _{IK}	input diode current	V _I < 0 V	-	-18	mA
I _{OK}	output diode current	V _O < 0 V	-	-50	mA
lo	output current	output in LOW-state	-	128	mA
Tj	junction temperature		[2]	150	°C
T _{stg}	storage temperature		-65	+150	°C

[1] The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

[2] The performance capability of a high-performance integrated circuit in conjunction with its thermal environment can create junction temperatures which are detrimental to reliability. The maximum junction temperature of this integrated circuit should not exceed 150 °C.

Decommonded energing conditions

9. Recommended operating conditions

Table C.

Table 6:	Recommended operating conditions						
Symbol	Parameter	Conditions	Min	Тур	Max	Unit	
V _{CC}	supply voltage		4.5	-	5.5	V	
VI	input voltage		0	-	V_{CC}	V	
V _{IH}	HIGH-level input voltage		2.0	-	-	V	
V _{IL}	LOW-level input voltage		-	-	0.8	V	
I _{OH}	HIGH-level output current		-	-	-32	mA	
I _{OL}	LOW-level output current		-	-	64	mA	
$\Delta t / \Delta V$	input transition rise or fall rate		0	-	10	ns/V	
T _{amb}	ambient temperature	in free air	-40	-	+85	°C	

9397 750 14858 Product data sheet

Octal transceiver/register; inverting; 3-state

10. Static characteristics

Table 7: Static characteristics

At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
T _{amb} = 2	5 °C					
V _{IK}	input diode voltage	$V_{CC} = 4.5 \text{ V}; \text{ I}_{IK} = -18 \text{ mA}$	-	-0.9	-1.2	V
V _{OH}	HIGH-level output voltage	V_{CC} = 4.5 V; V_I = V_{IL} or V_{IH}				
		$I_{O} = -3 \text{ mA}$	2.5	3.2	-	V
		$I_{O} = -32 \text{ mA}$	2.0	2.3	-	V
		V_{CC} = 5.0 V; V_{I} = V_{IL} or V_{IH}				
		$I_{O} = -3 \text{ mA}$	3.0	3.7	-	V
V _{OL}	LOW-level output voltage	V_{CC} = 4.5 V; V_{I} = V_{IL} or V_{IH}				
		I _O = 64 mA	-	0.42	0.55	V
V _{RST}	power-up output low voltage	V_{CC} = 5.5 V; I_{O} = 1 mA; V_{I} = GND or V_{CC}	<u>[1]</u> _	0.13	0.55	V
I _{LI}	input leakage current	V_{CC} = 5.5 V; V_I = GND or 5.5 V				
	control pins		-	±0.01	±1.0	μΑ
	data pins		-	±5	±100	μΑ
I _{OFF}	power-off leakage current	V_{CC} = 0 V; V_O or V_I \leq 4.5 V	-	±5.0	±100	μΑ
I _{PU,} I _{PD}	power-up or power-down 3-state output current	V_{CC} = 2.1 V; V_O = 0.5 V; V_I = GND or $V_{CC};$ V_{OE} = don't care	[2] _	±5.0	±50	μA
l _{oz}	3-state output current	V_{CC} = 5.5 V; V_{I} = V_{IL} or V_{IH}				
		output HIGH-state at $V_0 = 2.7 V$	-	5.0	50	μΑ
		output LOW-state at $V_0 = 0.5 V$	-	-5.0	-50	μΑ
I _{CEX}	output HIGH-state leakage current	V_{CC} = 5.5 V; V_{O} = 5.5 V; V_{I} = GND or V_{CC}	-	5.0	50	μA
lo	output current	$V_{CC} = 5.5 \text{ V}; V_{O} = 2.5 \text{ V}$	<mark>[3]</mark> –50	-65	-180	mΑ
I _{CC}	quiescent supply current	V_{CC} = 5.5 V; V_I = GND or V_{CC}				
		outputs HIGH-state	-	110	250	μΑ
		outputs LOW-state	-	20	30	mΑ
		outputs 3-state	-	110	250	μΑ
Δl _{CC}	additional supply current per data input pin	one data input at 3.4 V and other inputs at V _{CC} or GND; V _{CC} = 5.5 V	<u>[4]</u>	0.3	1.5	mA
CI	input capacitance	$V_I = 0 V \text{ or } V_{CC}$	-	4	-	pF
C _{I/O}	I/O capacitance	outputs disabled; V_{O} = 0 V or V_{CC}	-	7	-	pF

Octal transceiver/register; inverting; 3-state

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
T _{amb} = -	40 °C to +85 °C					
V _{IK}	input diode voltage	$V_{CC} = 4.5 \text{ V}; \text{ I}_{IK} = -18 \text{ mA}$	-	-	-1.2	V
V _{OH}	HIGH-level output voltage	V_{CC} = 4.5 V; V_{I} = V_{IL} or V_{IH}				
		$I_{O} = -3 \text{ mA}$	2.5	-	-	V
		I _O = -32 mA	2.0	-	-	V
		V_{CC} = 5.0 V; V_{I} = V_{IL} or V_{IH}				
		$I_{O} = -3 \text{ mA}$	3.0	-	-	V
V _{OL}	LOW-level output voltage	V_{CC} = 4.5 V; V_I = V_{IL} or V_{IH}				
		I _O = 64 mA	-	-	0.55	V
V _{RST}	power-up output low voltage	V_{CC} = 5.5 V; I_{O} = 1 mA; V_{I} = GND or V_{CC}	<u>[1]</u> _	-	0.55	V
I _{LI}	input leakage current	V_{CC} = 5.5 V; V_{I} = GND or 5.5 V	-	-	±1.0	μΑ
I _{OFF}	power-off leakage current	V_{CC} = 0.0 V; V_O or $V_I \leq 4.5$ V	-	-	±100	μΑ
I _{PU} , I _{PD}	power-up or power-down down 3-state output current	V_{CC} = 2.1 V; V_{O} = 0.5 V; V_{I} = GND or $V_{CC};$ V_{OE} = don't care	[2] _	-	±50	μA
l _{oz}	3-state output current	V_{CC} = 5.5 V; V_I = V_{IL} or V_{IH}				
		output HIGH-state at $V_0 = 2.7 V$	-	-	50	μΑ
		output LOW-state at $V_0 = 0.5 V$	-	-	-50	μΑ
I _{CEX}	output HIGH-state leakage current	V_{CC} = 5.5 V; V_{O} = 5.5 V; V_{I} = GND or V_{CC}	-	-	50	μA
lo	output current	$V_{CC} = 5.5 \text{ V}; V_{O} = 2.5 \text{ V}$	<u>[3]</u> –50	-	-180	mA
lcc	quiescent supply current	V_{CC} = 5.5 V; V_I = GND or V_{CC}				
		outputs HIGH-state	-	-	250	μΑ
		outputs LOW-state	-	-	30	mA
		outputs 3-state	-	-	250	μΑ
Δl _{CC}	additional supply current per data input pin	one data input at 3.4 V and other inputs at V _{CC} or GND; V _{CC} = 5.5 V	<u>[4]</u>		1.5	mA

Table 7: Static characteristics ...continued

At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

[1] For valid test results, data must not be loaded into the flip-flops (or latches) after applying the power.

[2] This parameter is valid for any V_{CC} between 0 V and 2.1 V, with a transition time of up to 10 ms. From V_{CC} = 2.1 V to V_{CC} = 5 V \pm 10 % a transition time of up to 100 μ s is permitted.

[3] Not more than one output should be tested at a time, and the duration of the test should not exceed one second.

[4] This is the increase in supply current for each input at 3.4 V.

Octal transceiver/register; inverting; 3-state

11. Dynamic characteristics

Table 8:Dynamic characteristicsCND = 0.11 for test simult app Figure 12

GND = 0	<i>V; for test circuit see <u>Figure 12</u></i>					
Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
T _{amb} = 2	5 °C; V _{CC} = 5.0 V					
t _{PLH}	propagation delay					
	CPAB to Bn or CPBA to An	see Figure 6	1.8	3.2	4.6	ns
	An to Bn, Bn to An	see Figure 7 and 8	1.9	3.3	4.2	ns
	SAB to Bn or SBA to An	see Figure 7 and 8	1.8	3.9	4.5	ns
t _{PHL}	propagation delay					
	CPAB to Bn or CPBA to An	see Figure 6	2.6	4.0	5.7	ns
	An to Bn, Bn to An	see Figure 7 and 8	2.2	3.4	5.0	ns
	SAB to Bn or SBA to An	see Figure 7 and 8	2.5	4.1	5.6	ns
t _{PZH}	output enable time to HIGH leve	el				ns
	OE to An or Bn	see Figure 10	2.2	3.5	4.4	ns
	DIR to An or Bn	see Figure 10	2.1	3.3	4.4	ns
t _{PHZ}	output disable time from HIGH level					
	OE to An or Bn	see Figure 10	2.3	3.6	4.6	ns
	DIR to An or Bn	see Figure 10	1.9	3.5	4.8	ns
t _{PZL}	output disable time to LOW leve	9				
	OE to An or Bn	see Figure 11	3.2	4.5	6.0	ns
	DIR to An or Bn	see Figure 11	3.1	4.4	5.6	ns
t _{PLZ}	output disable time from LOW level					
	OE to An or Bn	see Figure 11	2.1	3.0	4.4	ns
	DIR to An or Bn	see Figure 11	1.9	3.4	4.7	ns
t _{su(H)}	set-up time HIGH An to CPAB, Bn to CPBA	see Figure 9	3.0	1.5	-	ns
t _{su(L)}	set-up time LOW An to CPAB, Bn to CPBA	see Figure 9	3.0	1.0	-	ns
t _{h(H)}	hold time HIGH An to CPAB, Bn to CPBA	see Figure 9	0.0	-0.4	-	ns
t _{h(L)}	hold time LOW An to CPAB, Bn to CPBA	see Figure 9	0.0	-1.0	-	ns
t _{WH}	pulse width HIGH CPAB or CPBA	see Figure 6	3.5	2.6	-	ns
t _{WL}	pulse width LOW CPAB or CPBA	see Figure 6	4.0	1.0	-	ns
f _{max}	maximum clock frequency	see Figure 6	125	200	-	MHz

Philips Semiconductors

74ABT648

Octal transceiver/register; inverting; 3-state

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
T _{amb} = -40	°C to +85 °C; V _{CC} = 5 V \pm 0.5 V					
t _{PLH}	propagation delay					
	CPAB to Bn or CPBA to An	see Figure 6	1.7	-	5.1	ns
	An to Bn, Bn to An	see Figure 7 and 8	1.8	-	4.8	ns
	SAB to Bn or SBA to An	see Figure 7 and 8	1.8	-	5.1	ns
t _{PHL}	propagation delay					
	CPAB to Bn or CPBA to An	see Figure 6	2.7	-	6.1	ns
	An to Bn, Bn to An	see Figure 7 and 8	2.3	-	5.2	ns
	SAB to Bn or SBA to An	see Figure 7 and 8	2.7	-	6.1	ns
t _{PZH}	output enable time					ns
	OE to An or Bn	see Figure 10	2.0	-	5.0	ns
	DIR to An or Bn	see Figure 10	1.6	-	5.0	ns
t _{PHZ}	output disable time					
	OE to An or Bn	see Figure 10	2.1	-	5.2	ns
	DIR to An or Bn	see Figure 10	1.8	-	5.6	ns
t _{PZL}	output disable time					
	OE to An or Bn	see Figure 11	2.4	-	6.6	ns
	DIR to An or Bn	see Figure 11	2.7	-	6.3	ns
t _{PLZ}	output disable time					
	OE to An or Bn	see Figure 11	2.1	-	5.1	ns
	DIR to An or Bn	see Figure 11	2.0	-	5.1	ns
t _{su(H)}	set-up time HIGH An to CPAB, Bn to CPBA	see Figure 9	3.0	-	-	ns
t _{su(L)}	set-up time LOW An to CPAB, Bn to CPBA	see Figure 9	3.0	-	-	ns
t _{h(H)}	hold time HIGH An to CPAB, Bn to CPBA	see Figure 9	0.0	-	-	ns
t _{h(L)}	hold time LOW An to CPAB, Bn to CPBA	see Figure 9	0.0	-	-	ns
Ŵ(H)	pulse width HIGH CPAB or CPBA	see Figure 6	3.5	-	-	ns
W(L)	pulse width LOW CPAB or CPBA	see Figure 6	4.0	-	-	ns
max	maximum clock frequency	see Figure 6	125	-	-	MHz

Dynamic characteristics ... continued Table 8:

Octal transceiver/register; inverting; 3-state

12. Waveforms

Octal transceiver/register; inverting; 3-state

Octal transceiver/register; inverting; 3-state

Table 9: Test data

Input	Load		V _{EXT}			
VI	CL	RL	t _{PHZ} , t _{PZH}	t _{PLZ} , t _{PZL}	t _{PLH} , t _{PHL}	
3.0 V	50 pF	500 Ω	open	7.0 V	open	

Philips Semiconductors

74ABT648

Octal transceiver/register; inverting; 3-state

13. Package outline

Fig 13. Package outline SOT137-1 (SO24)

Octal transceiver/register; inverting; 3-state

Fig 14. Package outline SOT355-1 (TSSOP24)

Octal transceiver/register; inverting; 3-state

14. Revision history

Document ID	Release date	Data sheet status	Change notice	Doc. number	Supersedes
74ABT648_4	20050427	Product data sheet	-	9397 750 14858	74ABT648_3
Modifications:	information • <u>Section 2</u> : • <u>Table 1</u> : ch	t of this data sheet has I n standard of Philips Ser modified 'JEDEC Std 13 nanged t _{PLH} from 5.9 ns I values changed.	miconductors. 7' into 'JESD78'.		
74ABT648_3	20021213	Product specification	-	9397 750 10848	74ABT648_2
74ABT648_3 74ABT648_2	20021213 19980608	Product specification Product specification	-	9397 750 10848 9397 750 04022	74ABT648_2 74ABT648_1

Octal transceiver/register; inverting; 3-state

15. Data sheet status

Level	Data sheet status [1]	Product status [2] [3]	Definition
I	Objective data	Development	This data sheet contains data from the objective specification for product development. Philips Semiconductors reserves the right to change the specification in any manner without notice.
II	Preliminary data	Qualification	This data sheet contains data from the preliminary specification. Supplementary data will be published at a later date. Philips Semiconductors reserves the right to change the specification without notice, in order to improve the design and supply the best possible product.
III	Product data	Production	This data sheet contains data from the product specification. Philips Semiconductors reserves the right to make changes at any time in order to improve the design, manufacturing and supply. Relevant changes will be communicated via a Customer Product/Process Change Notification (CPCN).

[1] Please consult the most recently issued data sheet before initiating or completing a design.

[2] The product status of the device(s) described in this data sheet may have changed since this data sheet was published. The latest information is available on the Internet at URL http://www.semiconductors.philips.com.

[3] For data sheets describing multiple type numbers, the highest-level product status determines the data sheet status.

16. Definitions

Short-form specification — The data in a short-form specification is extracted from a full data sheet with the same type number and title. For detailed information see the relevant data sheet or data handbook.

Limiting values definition — Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 60134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information — Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors make no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

17. Disclaimers

Life support — These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips Semiconductors

19. Contact information

customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application.

Right to make changes — Philips Semiconductors reserves the right to make changes in the products - including circuits, standard cells, and/or software - described or contained herein in order to improve design and/or performance. When the product is in full production (status 'Production'), relevant changes will be communicated via a Customer Product/Process Change Notification (CPCN). Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified.

18. Trademarks

Notice — All referenced brands, product names, service names and trademarks are the property of their respective owners.

For additional information, please visit: http://www.semiconductors.philips.com For sales office addresses, send an email to: sales.addresses@www.semiconductors.philips.com

Philips Semiconductors

74ABT648

Octal transceiver/register; inverting; 3-state

20. Contents

General description 1
Features 1
Quick reference data 2
Ordering information 2
Functional diagram 2
Pinning information 4
Pinning
Pin description 4
Functional description 5
Function table 5
Bus management function 6
Limiting values 7
Recommended operating conditions7
Static characteristics 8
Dynamic characteristics 10
Waveforms 12
Package outline 15
Revision history 17
Data sheet status 18
Definitions
Disclaimers 18
Trademarks
Contact information 18

© Koninklijke Philips Electronics N.V. 2005

All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent- or other industrial or intellectual property rights.

Published in The Netherlands

