
SparkFun
Inventor’s Kit
VERS ION 4 . 1

Your Guide to the SIK
for the SparkFun RedBoard

SparkFun Inventor’s Kit, Version 4.1

WELCOME TO THE
SPARKFUN INVENTOR’S
KIT (SIK) GUIDE.
This is your map for navigating beginning embedded electronics.

This booklet contains all the information you will need to build five

projects encompassing the 16 circuits of the SIK for the SparkFun

RedBoard. At the center of this manual is one core philosophy: that

anyone can (and should) play around with electronics. When you’re

done with this guide, you will have built five great projects and

acquired the know-how to create countless more. Now enough talk

— let’s start something!

For a digital version of this guide with more in-depth information for

each circuit and links explaining relevant terms and concepts, visit:

sparkfun.com/SIKguide

Contents

INTRODUCTION 2
2 The RedBoard Platform

3 Baseplate Assembly

4 RedBoard Anatomy

5 Breadboard Anatomy

6 The Arduino IDE

10 Inventory of Parts

PROJECT 1: LIGHT 12
13 Circuit 1A: Blinking an LED

20 Circuit 1B: Potentiometer

26 Circuit 1C: Photoresistor

31 Circuit 1D: RGB Night-Light

PROJECT 2: SOUND 36
37 Circuit 2A: Buzzer

42 Circuit 2B: Digital Trumpet

47 Circuit 2C: “Simon Says” Game

PROJECT 3: MOTION 53
54 Circuit 3A: Servo Motors

60 Circuit 3B: Distance Sensor

65 Circuit 3C: Motion Alarm

PROJECT 4: DISPLAY 71
72 Circuit 4A: LCD “Hello, World!”

77 Circuit 4B: Temperature Sensor

82 Circuit 4C: “DIY Who Am I?” Game

PROJECT 5: ROBOT 88
89 Circuit 5A: Motor Basics

96 Circuit 5B: Remote-Controlled Robot

102 Circuit 5C: Autonomous Robot

GOING FURTHER 106

1 : i n tro

IOREF

RESET

SCL
SDA

AREF
GND

13
12

~11
~10

~9
8

7
~6
~5

4
~3

2
1

RX

TX

0

TXRX

13

3.3V

5V

GND

GND

VIN

A0

A1

A2

A3

A4

A5

PO
W

ER
AN

ALO
G IN

D
IG

ITA
L (P

W
M

 ~
)O

N

ISP

S
T

A
R

T
 S

O
M

E
T

H
IN

G

I/O

3.3V

5V

C
106

C
10

6C
106

2 : i n tro

A COMPUTER FOR THE
PHYSICAL WORLD
The SparkFun RedBoard Qwiic is your

development platform. At its roots, the

RedBoard is essentially a small, portable

computer, also known as a microcontroller.

It is capable of taking inputs (such as the

push of a button or a reading from a light

sensor) and interpreting that information

to control various outputs (like blinking an

LED light or spinning an electric motor).

That’s where the term “physical computing”

comes in; this board is capable of taking the

world of electronics and relating it to the

physical world in a real and tangible way.

THE SPARKFUN REDBOARD QWIIC is one of a multitude of development boards

based on the ATmega328 microprocessor. It has 14 digital input/output pins (six of which

can be PWM outputs), six analog inputs, a 16MHz crystal oscillator, a USB connection, a

power jack, and a reset button. You’ll learn more about each of the RedBoard's features as

you progress through this guide.

The RedBoard Platform
THE DIY REVOLUTION: At SparkFun we believe that an understanding of electronics

is a core literacy that opens up a world of opportunities in the fields of robotics, Internet

of Things (IoT), engineering, fashion, medical industries, environmental sciences,

performing arts and more. This guide is designed to explore the connection between

software and hardware, introducing Arduino code and SparkFun parts as they are

used in the context of building engaging projects. The circuits in this guide progress

in difficulty as new concepts and components are introduced. Completing each circuit

means much more than just “experimenting”; you will walk away with a fun project you

can use — and a sense of accomplishment that is just the beginning of your electronics

journey. At the end of each circuit, you'll find coding challenges that extend your learning

and fuel ongoing innovation.

NOTE : For the remainder of this guide, in the interest of brevity,

we will refer to the RedBoard Qwiic simply as the “RedBoard.”

Baseplate Assembly
Before you can build circuits, you’ll want to first assemble the breadboard baseplate. This

apparatus makes circuit building easier by keeping the RedBoard microcontroller and the

breadboard connected without the worry of disconnecting or damaging your circuit.

TO BEGIN, collect your parts: the RedBoard,

breadboard, included screwdriver, baseplate and

two baseplate screws.

Your screwdriver has both Phillips and

flatheads. If it is not already in position,

pull the shaft out and switch to the

Phillips head.

3 : i n tro

PEEL the adhesive backing off the breadboard.

CAREFULLY ALIGN the breadboard over its spot on the baseplate. The text on the

breadboard should face the same direction as the text on the baseplate. Firmly press the

breadboard to the baseplate to adhere it.

ALIGN THE REDBOARD with its spot

on the baseplate. The text on it should

face the same direction as the text on

the breadboard and the baseplate. Using

one of the two included screws, affix the

RedBoard to one of the four stand-off holes

found on the baseplate. The plastic holes

are not threaded, so you will need to apply

pressure as you twist the screwdriver.

Screw the second screw in the stand-off

hole diagonally across from the first. With

that, your baseplate is now assembled.

4 : i n tro

IO
R

EF

R
ES

ET

S
C

L
S

D
A

A
R

EF
G

N
D 13 12

~
11

~
10 ~

9 8 7
~

6
~

5 4
~

3 2 1
R

X

TX

0

TX
RX

13

3.
3V

5V G
N

D

G
N

D

VI
N

A
0

A
1

A
2

A
3

A
4

A
5

POWER ANALOG IN

DIGITAL (PWM ~)

ON

ISP

S T A R T S O M E T H I N G

I/O

3.3
V 5V

C106

C106

C106

Anatomy of the SparkFun RedBoard

REDBOARD HARDWARE OVERVIEW
A P OW E R I N

(B A R R E L JAC K) Can be used with either a 9V or 12V “wall-wart” or a battery pack.

B P OW E R I N
(U S B P O R T)

Provides power and communicates with your board
when plugged into your computer via USB.

C L E D
(R X : R E C E I V I N G) Shows when the USB-to-serial chip is receiving data bits from the computer.

D L E D
(T X : T R A N S M I T T I N G) Shows when the USB-to-serial chip is transmitting data bits to the computer.

E O N B OA R D L E D
P I N D 1 3

This LED, connected to digital pin 13, can be controlled
in your program and is great for troubleshooting.

F
P I N S A R E F ,

G R O U N D , D I G I TA L ,
R X , T X , S DA , S C L

These pins can be used for inputs, outputs, power and ground.

G P OW E R L E D Illuminated when the board is connected to a power source.

H R E S E T B U T TO N A manual reset switch that will restart the RedBoard and your code.

I I S P H E A D E R
This is the In-System Programming header. It is used to program the ATMega328
directly. It will not be used in this guide.

J
A N A L OG I N ,
V O L TAG E I N ,

G R O U N D , 3 . 3 A N D
5 V O U T , R E S E T

The power bus has pins to power your circuits with various voltages. The analog
inputs allow you to read analog signals.

K R F U This stands for Reserved for Future Use.

L QW I I C ® CO N N E C TO R
SparkFun Qwiic® Cable Connector for I2C Devices.
This connection will not be used in this guide.

A

B

C

D

E

F

H

I

L

J

G

K

5 : i n tro

Anatomy of the Breadboard
A breadboard is a circuit-building platform that allows you to

connect multiple components without using a soldering iron.

CENTERL INE
This line divides

the breadboard

in half, restricting

electricity to one

half or the other.

POWER BUS
Each side of the breadboard has a pair of

vertical connections marked – and +

+ POWER: Each + sign runs power

anywhere in the vertical column.

– GROUND: Each – sign runs to ground

anywhere in the vertical column.

HORIZONTAL ROWS
Each series of 5 sockets marked

a–e and f–j are connected.

Components connected to a row

will be connected to any other

part inserted in the same row.

MAKING A
CONNECT ION
Most of the

components in this

kit are breadboard-

friendly and can be

easily installed and

removed.

Circuit_01
Circuit_02
Circuit_03
Circuit_04
Circuit_05
Circuit_06
Circuit_07

6 : i n tro

The Arduino IDE
IN ORDER TO GET YOUR
REDBOARD UP AND RUNNING ,

you'll need to download the newest

version of the Arduino software

from www.arduino.cc (it's free!).

This software, known as the Arduino

IDE (Integrated Development

Environment), will allow you to program the RedBoard to do exactly what you want.

It’s like a word processor for coding. With an internet-capable computer, open up your

favorite browser and type the following URL into the address bar:

DOWNLOAD THE SOFTWARE HERE:
arduino.cc/downloads

1. DOWNLOAD AND INSTALL ARDUINO IDE
Select the installer option appropriate for the operating system you are using. Once

finished downloading, open the file and follow the instructions to install.

2. INSTALL USB DRIVERS
In order for the RedBoard hardware to work with your computer’s operating system, you

will need to install a few drivers. Please go to www.sparkfun.com/ch340 for specific

instructions on how to install the USB drivers onto your computer.

3. CONNECT THE REDBOARD TO A COMPUTER
Use the USB cable provided in the SIK to connect the RedBoard to one of your computer’s

USB inputs.

7 : i n tro

sparkfun.com/SIKcode

MAC OS: Find “Arduino” in your

“Applications” folder in Finder.

Right-click (ctrl + click) on “Arduino”

and select “Show Package Contents.”

Arduino Open
Show Package Contents
Move to Trash

WINDOWS: Copy or move the unzipped “SIK Guide Code” files from “Downloads” to the

Arduino application’s “Examples” folder.

LINUX: Distribution-specific setup instructions for Linux can be found at:

Copy or move the unzipped “SIK Guide Code” folder from your

“Downloads” folder into the Arduino application’s folder named “Examples.”

PROGRAM
F I LES

LOCAL
D ISK (C :)

ARDUINO EXAMPLES

CONTENTSARDUINO JAVA EXAMPLES

Arduino Open
Show Package Contents
Move to Trash

4. DOWNLOAD AND INSTALL THE SIK CODE

Each of the circuits you will build in the SparkFun Inventor’s Kit has an Arduino

code sketch already written for it. This guide will show you how to manipulate that

code to control your hardware.

DOWNLOAD THE CODE HERE:

COPY “SIK GUIDE CODE” INTO “EXAMPLES”
LIBRARY IN ARDUINO FOLDER
Your browser will download the code automatically or ask you if you would like to

download the .zip file. Select “Save File.” Locate the code (usually in your browser’s

“Downloads” folder). You'll need to relocate it to the “Examples” subfolder in your

Arduino IDE installation in order for it to function properly.

Unzip the file “SIK GUIDE CODE.” It should be located in your browser’s “Downloads”

folder. Right-click (or ctrl + click) the zipped folder and choose “unzip.”

www.sparkfun.com/ch340

Blink

Blink | Arduino 1.8.9

Arduino/Genuino Uno on/dev/cu.usbserialDNO18JWS

Arduino/Genuino Uno on /dev/cu.Bluetooth-Modem

8 : i n tro

GRAPHICAL USER INTERFACE (GUI)

A V E R I F Y
Compiles and approves your code. It will catch errors in syntax
(like missing semicolons or parentheses).

B U P L OA D
Sends your code to the RedBoard. When you click it, you
should see the lights on your board blink rapidly.

C S AV E Saves the currently active sketch.

D O P E N Opens an existing sketch.

E N E W Opens up a new code window tab.

F D E B U G W I N DOW Displays any errors generated by your sketch.

G S K E TC H N A M E Displays the name of the sketch you are currently working on.

H CO D E A R E A Where you compose or edit the code for your sketch.

I M E S S AG E A R E A Indicates if the code is compiling, uploading or has errors.

J CO N N E C T I O N A R E A Displays the board and serial port currently selected.

K S E R I A L M O N I TO R
Opens a window that displays any serial information
your RedBoard is transmitting (useful for debugging).

A

B D CE G

H

I

K

F

J

THE THREE MOST
IMPORTANT
COMMANDS IN
THE ARDU INO IDE

5. OPEN THE ARDUINO IDE:
Open the Arduino IDE software on your computer. Poke around and get to know the

interface. We aren’t going to code right away; this step is to set your IDE to identify

your RedBoard.

9 : i n tro

Circuit_01
Circuit_02
Circuit_03
Circuit_04
Circuit_05
Circuit_06
Circuit_07

Arduino File Edit Sketch Tools Help

 Auto Format
 Archive Sketch
 Fix Encoding and Reload
 Serial Monitor
 Serial Plotter

 Board: “Arduino/Genuino Uno”
 Port
 Get Board Info

 Programmer: “AVRISPmkII”
 Burn Bootlader

Serial Ports
/dev/cu.usbserialDNO18JWS

Arduino File Edit Sketch Tools Help

 Auto Format
 Archive Sketch
 Fix Encoding and Reload
 Serial Monitor
 Serial Plotter

 Board: “Arduino/Genuino Uno”
 Port
 Get Board Info

 Programmer: “AVRISPmkII”
 Burn Bootlader

Serial Ports
/dev/cu.usbserialDNO18JWS

Arduino File Edit Sketch Tools Help

 Auto Format
 Archive Sketch
 Fix Encoding and Reload
 Serial Monitor
 Serial Plotter

 Board: “Arduino/Genuino Uno”
 Port
 Get Board Info

 Programmer: “AVRISPmkII”
 Burn Bootlader

Serial Ports
COM1
COM2

COM51

6. SELECT YOUR BOARD AND SERIAL DEVICE
NOTE: Your SparkFun RedBoard and the Arduino/Genuino UNO are

interchangeable, but you won’t find the RedBoard listed in the Arduino

software. Select “ARDUINO/GENUINO UNO” instead.

SIK_Circuit_1A-Blink
SIK_Circuit_1A-Potentiometer
SIK_Circuit_1A-Photoresistor
SIK_Circuit_1A-RGBNightlight
SIK_Circuit_1A-Buzzer
SIK_Circuit_1A-DigitalTrumpet
SIK_Circuit_1A-SimonSays

Circuit_01
Circuit_02
Circuit_03
Circuit_04
Circuit_05
Circuit_06
Circuit_07

Arduino File Edit Sketch Tools Help

 Auto Format
 Archive Sketch
 Fix Encoding and Reload
 Serial Monitor
 Serial Plotter

 Board: “Arduino/Genuino Uno”
 Port
 Get Board Info

Boards Manager…

TeensyDuino
Teensy 3.6
Teensy 3.5
Teensy 3.2/3.1
Teensy 3.0
Teensy LC
Teensy++ 2.0
Teensy 2.0

Arduino AVR Boards
Arduino/Genuino Uno
Arduino Duemilanove or Diecimila
Arduino Nano

Circuit_01
Circuit_02
Circuit_03
Circuit_04
Circuit_05
Circuit_06
Circuit_07

SELECT YOUR BOARD

Tools > Board > Arduino/Genuino UNO

SELECT YOUR PORT (WINDOWS)
Tools > Port > COM#XX

SELECT YOUR PORT (MAC OS)
Tools > Port > /dev/cu.usbserialXXXXXXXX

SELECT YOUR PORT (LINUX)
Distribution-specific serial device setup instructions can be found HERE:

http://arduino.cc/playground/Learning/Linux CASE SENSITIVE

+ –

+ –

+ –

+ –

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

abcdefghij

abcdefghij

+ -+ -

+ -+ -

10k

100k

330

10k

100k

330

TM
P

IO
R

EF

R
ES

ET

S
C

L
S

D
A

A
R

EF
G

N
D 13 12

~
11

~
10 ~

9 8 7
~

6
~

5 4
~

3 2 1
R

X

TX

0

TX
RX

13

3.
3V

5V G
N

D

G
N

D

VI
N

A
0

A
1

A
2

A
3

A
4

A
5

POWER ANALOG IN

DIGITAL (PWM ~)

ON

ISP

S T A R T S O M E T H I N G

I/O

3.3
V 5V

C106

C106

C106

VM

VCC

GND

A01

A02

B02

B01

GND

PWMA

AI2

AI1

ST
BY

BI1

BI2

PWMB

GND

MOTOR
DRIVERT R

V
C
C

T
r
i
g

E
c
h
o

G
N
D

HC-SR04

1 0 : i n tro

Inventory of Parts
The SparkFun Inventor’s Kit contains an extensive array of electronic components. As

you work your way through each circuit, you will learn to use new and more complicated

parts to accomplish increasingly complex tasks.

MOTOR
DR IVER

JUMPER
WIRES

SERVO
MOTOR

ULTRASONIC
D ISTANCE SENSOR

1OK Ω RES ISTORS

330Ω RES ISTORS

PHOTORES ISTOR

P IEZO
BUZZER

SWITCH

POTENT IOMETER

GEARMOTORS

SPARKFUN REDBOARD BREADBOARD

LEDS

TEMPERATURE
SENSOR

PUSH
BUTTONS

LCD D ISPL AY

1 1 : i n tro

Let’s Get
Started
With Your
First Circuit!

1 2 : c i r cu i t 1 a

 PROJECT 1
Welcome to your first SparkFun Inventor’s Kit

project. Each project is broken up into several

circuits, the last circuit being a culmination of

the technologies that came before. There are five

projects total, each designed to help you learn about

new technologies and concepts. This first project

will set the foundation for the rest and will aid in

helping you understand the fundamentals of circuit

building and electricity!

In Project 1, you will learn about Light-

Emitting Diodes (LEDs) , resistors ,

inputs , outputs and sensors . The first

project will be to build and program your own

multicolored night-light! The night-light uses a

sensor to turn on an RGB (Red, Green, Blue) LED

when it gets dark, and you will be able to change the

color using an input knob.

N E W CO M P O N E N T S I N T R O D U C E D
I N T H I S P R OJ E C T
•   L E D S
•   R E S I S TO R S
•   P OT E N T I O M E T E R S
•   P H OTO R E S I S TO R S

N E W CO N C E P T S I N T R O D U C E D I N T H I S P R OJ E C T
•   P O L A R I T Y
•   O H M ' S L AW
•   D I G I TA L O U T P U T
•   A N A L OG V S . D I G I TA L
•   A N A L OG I N P U T
•   A N A L OG TO D I G I TA L CO N V E R S I O N
•   V O L TAG E D I V I D E R
•   P U L S E - W I DT H M O D U L AT I O N
•   F U N C T I O N S

Y O U W I L L L E A R N
•   H OW TO U P L OA D A P R OG R A M TO
 Y O U R R E D B OA R D
•   C I R C U I T - B U I L D I N G B A S I C S
•   H OW TO CO N T R O L L E D S W I T H
 D I G I TA L O U T P U T S
•   H OW TO R E A D S E N S O R S
 W I T H A N A L OG I N P U T S

B L I N K I N G
A N L E D

R E A D I N G A
P OT E N T I O M E T E R

R E A D I N G A
P H OTO R E S I S TO R

R G B N I G H T - L I G H T

NEW IDEAS
Each project will introduce new

concepts and components, which will

be described in more detail as you

progress through the circuits.

A B C D

1 3 : c i r cu i t 1 a

YOU
NEED

NEW COMPONENTS
LIGHT-EMITTING DIODES (LEDS)
are small lights made from a silicon diode.

They come in different colors, brightnesses

and sizes. LEDs (pronounced el-ee-dees)

have a positive (+) leg and a negative (-)

leg, and they will only let electricity flow

through them in one direction. LEDs can

also burn out if too much electricity flows

through them, so you should always use a

resistor to limit the current when you wire

an LED into a circuit.

RESISTORS resist the flow of electricity.

You can use them to protect sensitive

components like LEDs. The strength of a

resistor (measured in ohms) is marked on

the body of the resistor using small colored

bands. Each color stands for a number,

which you can look up using a resistor chart.

One can be found at the back of this book.

NEW CONCEPTS
POLARITY: Many electronics

components have polarity,

meaning electricity can (and

should) flow through them in

only one direction. Polarized

components, like an LED, have a

positive and a negative leg and

only work when electricity flows

through them in one direction.

Some components, like resistors,

do not have polarity; electricity

can flow through them in either direction.

OHM’S LAW describes the relationship between

the three fundamental elements of electricity:

voltage, resistance and current. This

relationship can be represented by this equation:

V=I•R
V = Voltage in volts

I = Current in amps

R = Resistance in ohms (Ω)

This equation is used to calculate what resistor

values are suitable to sufficiently limit the current

flowing to the LED so that it does not get too hot

and burn out.

Circuit 1A:
Blinking an LED

You can find LEDs in just about any source

of light, from the bulbs lighting your home

to the tiny status lights flashing on your

home electronics. Blinking an LED is the

classic starting point for learning how to

program embedded electronics. It’s the

“Hello, World!” of microcontrollers. In this

circuit, you’ll write code that makes an LED

blink on and off.

+–

10
k

10
0k

33
0

LED 330Ω RESISTOR 2 JUMPER WIRES

1 4 : c i r cu i t 1 a

DIGITAL OUTPUT: When working with

microcontrollers such as the RedBoard, there

are a variety of pins to which you can connect

electronic components. Knowing which pins

perform which functions is important when

building your circuit. In this circuit, we will be

using what is known as a digital output. There

are 14 of these pins found on the RedBoard.

A digital output only has two states: ON or

OFF. These two states can also be thought of

as HIGH or LOW, TRUE or FALSE. When an LED is connected to one of these pins, the pin

can only perform two jobs: turning on the LED and turning off the LED. We’ll explore the

other pins and their functions in later circuits.

P O L A R I Z E D
C O M P O N E N T S
Pay close attention to the LED. The

negative side of the LED is the short leg,

marked with a flat edge.

FL AT EDGE

SHORT LEG

– +

R E S I S T O R
L E A D S
Components like resistors need to have

their legs bent into 90° angles in order to

correctly fit in the breadboard sockets.

NEW IDEAS
ELECTRICAL SAFETY: Never work on your circuits while the board is connected to

a power source. The SparkFun RedBoard operates at 5 volts, which, while not enough to

injure you, is enough to damage the components in your circuit.

COMPONENT ORIENTATION & POLARITY: Instructions on how to orient each of

the new components will be given before each circuit diagram. Many components have

polarity and have only one correct orientation, while others are nonpolarized.

IO
R

EF

R
ES

ET

S
C

L
S

D
A

A
R

EF
G

N
D 13 12

~
11

~
10 ~

9 8 7
~

6
~

5 4
~

3 2 1
R

X

TX

0

TX
RX

13

3.
3V

5V G
N

D

G
N

D

VI
N

A
0

A
1

A
2

A
3

A
4

A
5

POWER ANALOG IN

DIGITAL (PWM ~)

ON

ISP

S T A R T S O M E T H I N G

I/O

3.3
V 5V

C106

C106

C106

IOREF

RESET

SCL
SDA

AREF
GND

13
12

~11
~10

~9
8

7
~6
~5

4
~3

2
1

RX

TX

0

TXRX

13

3.3V

5V

GND

GND

VIN

A0

A1

A2

A3

A4

A5

PO
W

ER
AN

ALO
G IN

D
IG

ITA
L (P

W
M

 ~
)O

N

ISP

S
T

A
R

T
 S

O
M

E
T

H
IN

G

I/O

3.3V

5V

C
106

C
10

6C
106

+ –

+ –

+ –

+ –

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

a b c d e f g h i j

a b c d e f g h i j+ - + -

+ - + -

HOOKUP GUIDE
READY TO START HOOKING EVERYTHING UP? Check out the circuit diagram and

hookup table below to see how everything is connected.

10k

100k

330

1 5 : c i r cu i t 1 a

CO N N E C T I O N T Y P E S

 REDBOARD CONNECTION BREADBOARD CONNECTION

J U M P E R W I R E S D13 to J2 GND to E1

L E D A1(-) to A2(+)

3 3 0 Ω R E S I S TO R
(O R A N G E , O R A N G E ,

B R OW N)
E2 to F2

 D13 to J2

In this table, a yellow
highlight indicates that a
component has polarity
and will only function if
properly oriented.

CIRCUIT DIAGRAMS: Each circuit contains a circuit diagram, which

acts as a visual aid designed to make it easier for you to see how your circuit

should be built. Each colored line represents a jumper wire connection in the

circuit. All wires should have two connection points, which you also see in the

hookup table below.

COLORS: Please note that while traditionally red is used for power and

black is used for ground, all wires, no matter their color, function the same.

HOOKUP TABLES: Many electronics beginners find

it helpful to have a coordinate system when building their

circuits. For each circuit, you’ll find a hookup table that

lists the coordinates of each component or wire and where

it connects to the RedBoard, the breadboard, or both. The

breadboard has a letter/number coordinate system, just

like the game Battleship.

…means one end of a

component connects

to digital pin 13 on

your RedBoard and

the other connects to

J2 on the breadboard

FL AT EDGE

1 6 : c i r cu i t 1 a

Arduino File Edit Sketch Tools Help

About Arduino

Preferences

Services

Hide Arduino
Hide Others
Show All

Quit Arduino

Arduino File Edit Sketch Tools Help

New
Open
Open Recent
Sketchbook
Examples
Close
Save
Save As

Page Setup
Print

01.Basics
02.Digital
03.Analog
04.Communication
05.Control
06.Sensors
07.Display
08.Strings
09.USB
10.Starter Kit
ArduinoISP
SIK-Guide-Code-master SIK_Circuit_1A-Blink

SIK_Circuit_1A-Potentiometer
SIK_Circuit_1A-Photoresistor
SIK_Circuit_1A-RGBNightlight
SIK_Circuit_1A-Buzzer
SIK_Circuit_1A-DigitalTrumpet
SIK_Circuit_1A-SimonSays

W H AT Y O U
S H O U L D S E E
The LED will flash on for two seconds, then

off for two seconds. If it doesn’t, make sure

you have assembled the circuit correctly

and verified and uploaded the code to your

board. See the Troubleshooting section at the

end of this circuit if that doesn’t work. One

of the best ways to understand the code you

uploaded is to change something and see

how it affects the behavior of your circuit.

What happens when you change the number

in one or both of the delay(2000);

lines of code (try 100 or 5000)?

Open the Arduino IDE

Connect the RedBoard to a USB port on your computer.

 Open the Sketch: File > Examples > SIK-Guide-Code-master > CIRCUIT_1A-BLINK

 Select UPLOAD to program the sketch on the RedBoard.

1 7 : c i r cu i t 1 a

ONBOARD LED PIN 13:
You may have noticed a second,

smaller LED blinking in unison

with the LED in your breadboard

circuit. This is known as the

onboard LED, and you can find

one on almost any Arduino or

Arduino-compatible board. In

most cases, this LED is connected

to digital pin 13 (D13), the

same pin used in this circuit.

CODE TO NOTE

SETUP AND LOOP:

void setup(){} &

void loop(){}

Every Arduino program needs these two functions. Code that goes in

between the curly brackets {} of setup()runs once. The code in

between the loop()curly brackets {} runs over and over until the

RedBoard is reset or powered off.

INPUT OR OUTPUT?:

 pinMode(13, OUTPUT);

Before you can use one of the digital pins, you need to tell the RedBoard

whether it is an INPUT or OUTPUT. We use a built-in “function” called

pinMode() to make pin 13 a digital output. You’ll learn more about

digital inputs in Project 2.

PROGRAM OVERVIEW
1 Turn the LED on by sending power (5V) to digital pin 13.

2 Wait 2 seconds (2000 milliseconds).

3 Turn the LED off by cutting power (0V) to digital pin 13.

4 Wait 2 seconds (2000 milliseconds).

5 Repeat.

NEW IDEAS
CODE TO NOTE: The sketches that accompany each circuit introduce new programming techniques and

concepts as you progress through the guide. The Code to Note section highlights specific lines of code from the

sketch and explains them in greater detail.

1 8 : c i r cu i t 1 a

CODE TO NOTE

DIGITAL OUTPUT:

digitalWrite(D13, HIGH);

When you’re using a pin as an OUTPUT, you can command it to be

HIGH (output 5 volts) or LOW (output 0 volts).

DELAY:

delay(2000);

Causes the program to wait on this line of code for the amount of

time in between the brackets, represented in milliseconds (2000ms

= 2s). After the time has passed, the program will continue to the

next line of code.

COMMENTS:

//This is a comment

/* So is this */

Comments are a great way to leave notes in your code explaining

why you wrote it the way you did. Single line comments use two

forward slashes //, while multi-line comments start with a /* and

end with a */.

NEW IDEAS
CODING CHALLENGES: The Coding Challenges section is where you will find suggestions for changes

to the circuit or code that will make the circuit more challenging. If you feel underwhelmed by the tasks in each

circuit, visit the Coding Challenges section to push yourself to the next level.

CODING CHALLENGES
PERSISTENCE OF VISION: Computer screens, movies and the lights in your house all flicker so

quickly that they appear to be on all of the time but are actually blinking faster than the human eye can detect.

See how much you can decrease the delay time in your program before the light appears to be on all the time

but is still blinking.

MORSE CODE: Try adding and changing the delay() values and adding more

digitalWrite() commands to make your program blink a message in Morse code.

TROUBLESHOOTING

I get an error when

uploading my code

The most likely cause is that you have the wrong board selected in the Arduino

IDE. Make sure you have selected Tools > Board > Arduino/Genuino Uno.

1 9 : c i r cu i t 1 a

TROUBLESHOOTING

I still get an error when

uploading my code

If you’re sure you have the correct Board selected but you still can’t

upload, check that you have selected the correct serial port. You can

change this in Tools > Serial Port > your_serial_port.

Which serial port is

the right one?

Depending on how many devices you have plugged into your computer,

you may have several active serial ports. Make sure you are selecting the

correct one. A simple way to determine this is to look at your list of serial

ports. Unplug your RedBoard from your computer. Look at the list again.

Whichever serial port has disappeared from the list is the one you want

to select once you plug your board back into your computer.

My code uploads, but my

LED won’t turn on

LEDs will only work in one direction. Try taking it out of your

breadboard, turning it 180 degrees and reinserting it.

Still not working?

Jumper wires unfortunately can go “bad” from getting bent too much.

The copper wire inside can break, leaving an open connection in your

circuit. If you are certain that your circuit is wired correctly and that

your code is error-free and uploaded, but you are still encountering

issues, try replacing one or more of the jumper wires for the component

that is not working.

A B C D

You’ve completed
Circuit 1A!
Continue to circuit 1B to learn about analog signals and potentiometers.

B L I N K I N G
A N L E D

R E A D I N G A
P OT E N T I O M E T E R

R E A D I N G A
P H OTO R E S I S TO R

R G B N I G H T - L I G H T

2 0 : c i r cu i t 1 b

NEW COMPONENTS
POTENTIOMETER: A potentiometer is

a 3-pin variable resistor. When powered

with 5V, the middle pin outputs a voltage

between 0V and 5V, depending

on the position of the knob on

the potentiometer. Internal to the

trimpot is a single resistor and a

wiper, which cuts the resistor in two and

moves to adjust the ratio between

both halves.

NEW CONCEPTS
ANALOG VS. DIGITAL: We live in an

analog world. There are an infinite number

of colors to paint an object, an infinite

number of tones we can hear, and an

infinite number of smells we can smell.

The common theme among these analog

signals is their infinite possibilities.

Digital signals deal in the realm of the

discrete or finite, meaning there is a

limited set of values they can be. The LED

from the previous circuit had only two

states it could exist in, ON or OFF, when

connected to a digital output.

ANALOG INPUTS: So far, we’ve only

dealt with outputs. The RedBoard also has

inputs. Both inputs and outputs can be

analog or digital. Based on our previous

definition of analog and digital, that means

an analog input can sense a wide range of

values versus a digital

input, which can only

sense two values, or

states.

You may have noticed

some pins labeled

Digital and some

labeled Analog In on

your RedBoard. There are only six pins

that function as analog inputs; they are

labeled A0–A5.

VOLTAGE DIVIDER
VOLTAGE DIVIDERS are simple

circuits that turn some voltage into a

smaller voltage using two resistors. A

potentiometer is a variable resistor that

can be used to create an adjustable voltage

divider. A wiper in the middle position

means the output voltage will be half of the

input. Voltage dividers will be covered in

more detail in the next circuit.

Circuit 1B:
Potentiometer
Potentiometers (also known as “trimpots”

or “knobs”) are one of the basic inputs for

electronic devices. By tracking the position

of the knob with your RedBoard, you can

make volume controls, speed controls,

angle sensors and a ton of other useful

inputs for your projects. In this circuit,

you’ll use a potentiometer as an input

device to control the speed at which your

LED blinks.

IOREF

RESET

SCL
SDA

AREF
GND

13
12

~11
~10

~9
8

7
~6
~5

4
~3

2
1

RX

TX

0

TXRX

13

3.3V

5V

GND

GND

VIN

A0

A1

A2

A3

A4

A5

PO
W

ER
AN

ALO
G IN

D
IG

ITA
L (P

W
M

 ~
)O

N

ISP

S
T

A
R

T
 S

O
M

E
T

H
IN

G

I/O

3.3V

5V

C
106

C
10

6C
106

YOU
NEED

10
k

10
0k

33
0

LED POTENTIOMETER 330Ω RESISTOR 7 JUMPER WIRES

IOREF

RESET

SCL
SDA

AREF
GND

13
12

~11
~10

~9
8

7
~6
~5

4
~3

2
1

RX

TX

0

TXRX

13

3.3V

5V

GND

GND

VIN

A0

A1

A2

A3

A4

A5

PO
W

ER
AN

ALO
G IN

D
IG

ITA
L (P

W
M

 ~
)O

N

ISP

S
T

A
R

T
 S

O
M

E
T

H
IN

G

I/O

3.3V

5V

C
106

C
10

6C
106

+ –

+ –

+ –

+ –

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

a b c d e f g h i j

a b c d e f g h i j+ - + -

+ - + -

10k

100k

330

HOOKUP GUIDE
READY TO START HOOKING EVERYTHING UP? Check out the

circuit diagram and hookup table below to see how everything is connected.

2 1 : c i r cu i t 1 b

CO N N E C T I O N T Y P E S

 REDBOARD CONNECTION BREADBOARD CONNECTION

J U M P E R W I R E S
 5V to 5V

 GND to GND (-)

 A0 to E26

E25 to 5V (+)

E27 to GND (-)

E1 to GND (-)

 D13 to J2

L E D A1(-) to A2(+)

3 3 0 Ω R E S I S TO R
(O R A N G E , O R A N G E ,

B R OW N)
E2 to G2

P OT E N T I O M E T E R C25 + C26 + C27

NEW IDEAS
POTENTIOMETERS are not polarized

and can be installed in either direction.

Note that swapping the 5V and GND pins

will reverse its behavior.

FL AT EDGE

2 2 : c i r cu i t 1 b

W H AT Y O U
S H O U L D S E E
You should see the LED blink faster

or slower in accordance with your

potentiometer. The delay between each

flash will change based on the position

of the knob. If it isn’t working, make

sure you have assembled the circuit

correctly and verified and uploaded

the code to your board. If that doesn’t

work, see the Troubleshooting section.

PROGRAM OVERVIEW

1 Read the position of the potentiometer (from 0 to 1023) and store it in the variable potPosition.

2 Turn the LED on.

3 Wait from 0 to 1023 milliseconds, based on the position of the knob and the value of potPosition.

4 Turn the LED off.

5 Wait from 0 to 1023 milliseconds, based on the position of the knob and the value of potPosition.

6 Repeat.

Open the Arduino IDE

Connect the RedBoard to a USB port on your computer.

 Open the Sketch:

 File > Examples >SIK-Guide-Code-master > CIRCUIT_1B-POTENTIOMETER

 Select UPLOAD to program the sketch on the RedBoard.

2 3 : c i r cu i t 1 b

ARDUINO PRO TIP

ARDUINO SERIAL MONITOR: The

Serial Monitor is one of the Arduino IDE’s

many great included features. When

working with embedded systems, it helps

to see and understand the values that your

program is trying to work with, and it can

be a powerful debugging tool when you

run into issues where your code is not

behaving the way you expected it to. This

circuit introduces you to the Serial Monitor

by showing you how to print the values

from your potentiometer to it. To see these

values, click the Serial Monitor button,

found in the upper-right corner of the IDE in most recent versions. You can also select

Tools > Serial Monitor from the menu.

You should see numeric

values print out in the

monitor. Turning the

potentiometer changes the

value as well as the delay

between each print.

If you are having trouble

seeing the values, ensure

that you have selected 9600

baud and have auto scroll

checked.

Blink

Serial Monitor

Blink | Arduino 1.8.9

Arduino/Genuino Uno on/dev/cu.usbserialDNO18JWS

Serial Monitor button
in the upper-right of

the Arduino IDE.

Serial Monitor printout
and baud-rate menu.

CODE TO NOTE

INTEGER VARIABLES:

int potPosition;

A variable is a placeholder for values that may change

in your code. You must introduce, or “declare,”

variables before you use them. Here we’re declaring a

variable called potPosition of type int (integer). We

will cover more types of variables in later circuits. Don’t

forget that variable names are case-sensitive!

2 4 : c i r cu i t 1 b

CODE TO NOTE

SERIAL BEGIN:

Serial.begin(9600);

Serial commands can be used to send and receive data from

your computer. This line of code tells the RedBoard that we

want to “begin” that communication with the computer, the

same way we would say “Hi” to initiate a conversation. Notice

that the baud rate, 9600, is the same as the one we selected

in the monitor. This is the speed at which the two devices

communicate, and it must match on both sides.

ANALOG INPUT:

potPosition =

analogRead(A0);

We use the analogRead() function to read the value on an

analog pin. analogRead() takes one parameter, the analog

pin you want to use, A0 in this case, and returns a number

between 0 (0 volts) and 1023 (5 volts), which is then assigned to

the variable potPosition.

SERIAL PRINT:

Serial.

println(potPosition);

This is the line that actually prints the trimpot value to

the monitor. It takes the variable potPosition and prints

whatever value it equals at that moment in the loop(). The

ln at the end of println tells the monitor to print a new

line at the end of each value; otherwise the values would all

run together on one line. Try removing the ln to see what

happens.

CODING CHALLENGES
CHANGING THE RANGE: Try multiplying, dividing or adding to your sensor reading so

that you can change the range of the delay in your code. For example, can you multiply the

sensor reading so that the delay goes from 0–2046 instead of 0–1023?

ADD MORE LEDS: Add more LEDs to your circuit. Don’t forget the current-limiting

resistors. You will need to declare the new pins in your code and set them all to OUTPUT .

Try making individual LEDs blink at different rates by changing the range of each

using multipilcation or division.

2 5 : c i r cu i t 1 b

TROUBLESHOOTING

The potentiometer always

reads as 0 or 1023

Make sure that your 5V, A0 and GND pins are properly

connected to the three pins on your potentiometer. It is

easy to misalign a wire with the actual pot pin.

No values or random

characters in

Serial Monitor

Make sure that you have selected the correct baud rate,

9600. Also ensure that you are on the correct serial

port. The same serial port you use when uploading

code to your board is the same serial port you use to

print values to the Serial Monitor.

A B C D

You’ve completed
Circuit 1B!
Continue to circuit 1C to learn about photoresistors and analog to digital conversion.

B L I N K I N G
A N L E D

R E A D I N G A
P OT E N T I O M E T E R

R E A D I N G A
P H OTO R E S I S TO R R G B N I G H T - L I G H T

2 6 : c i r cu i t 1 c

NEW
COMPONENTS
PHOTORESISTORS are light-

sensitive, variable resistors. As

more light shines on the sensor’s

head, the resistance between its

two terminals decreases. They’re

an easy-to-use component in

projects that require ambient-

light sensing.

NEW CONCEPTS
ANALOG TO DIGITAL CONVERSION:
In order to have the RedBoard sense analog

signals, we must first pass them through

an Analog to Digital Converter (or ADC).

The six analog inputs (A0–A5) covered

in the last circuit all use an ADC. These

pins sample the analog signal and create

a digital signal for the microcontroller to

interpret. The resolution of this signal is

based on the resolution of the ADC. In the

case of the RedBoard, that resolution is 10-

bit. With a 10-bit ADC, we get 2 ^ 10 = 1024

possible values, which is why the analog

signal can vary between 0 and 1023.

VOLTAGE DIVIDERS CONTINUED:
Since the RedBoard can’t directly interpret

resistance (rather, it reads voltage), we

need to use a voltage divider to use our

photoresistor, a part that doesn’t output

voltage. The resistance of the photoresistor

changes as it gets darker or lighter. That

changes or “divides” the voltage going

through the divider circuit. That divided

voltage is then read in on the analog to

digital converter of the analog input.

The voltage divider equation:

assumes that you know three values of

the above circuit: the input voltage (Vin),

and both resistor values (R1 and R2). If R1

is a constant value (the resistor) and R2

fluctuates (the photoresistor), the amount

of voltage measured on the Vout pin will

also fluctuate.

Circuit 1C:
Photoresistor
In circuit 1B, you got to use a

potentiometer, which varies resistance

based on the twisting of a knob. In this

circuit, you’ll be using a photoresistor,

which changes resistance based on how

much light the sensor receives. Using this

sensor you can make a simple night-light

that turns on when the room gets dark

and turns off when it is bright.

YOU
NEED

10
k

10
0k

33
0

10
k

10
0k

33
0

 LED PHOTORESISTOR 330Ω RESISTOR 10KΩ RESISTOR 7 JUMPER WIRES

Vout=Vin •
R2

R1+R2

IOREF

RESET

SCL
SDA

AREF
GND

13
12

~11
~10

~9
8

7
~6
~5

4
~3

2
1

RX

TX

0

TXRX

13

3.3V

5V

GND

GND

VIN

A0

A1

A2

A3

A4

A5

PO
W

ER
AN

ALO
G IN

D
IG

ITA
L (P

W
M

 ~
)O

N

ISP

S
T

A
R

T
 S

O
M

E
T

H
IN

G

I/O

3.3V

5V

C
106

C
10

6C
106

+ –

+ –

+ –

+ –

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

a b c d e f g h i j

a b c d e f g h i j+ - + -

+ - + -

10k

100k

330

HOOKUP GUIDE
READY TO START HOOKING EVERYTHING UP? Check out the circuit diagram and

hookup table below to see how everything is connected.

10k

100k

330

FL AT EDGE

2 7 : c i r cu i t 1 c

CO N N E C T I O N T Y P E S

 REDBOARD CONNECTION BREADBOARD CONNECTION

J U M P E R W I R E S

 5V to 5V(+)

 GND to GND (-)

 D13 to J2

 A0 to E26

E1 to GND(-)

E25 to 5V(+)

E27 to GND(-)

L E D A1(-) to A2(+)

3 3 0 Ω R E S I S TO R
(O R A N G E , O R A N G E ,

B R OW N)
E2 to G2

1 0 K Ω R E S I S TO R
(B R OW N , B L AC K ,

O R A N G E)
B26 to C27

P H OTO R E S I S TO R A26 to B25

NEW IDEAS
PHOTORESISTORS: The

photoresistors, like regular resistors,

are not polarized and can be installed in

either direction.

2 8 : c i r cu i t 1 c

W H AT Y O U
S H O U L D S E E
The program stores the light level in

a variable. Using an if/else statement,

the variable value is compared to the

threshold. If the variable is above the

threshold (it’s bright), turn the LED off.

If the variable is below the threshold (it’s

dark), turn the LED on. Open the Serial

Monitor in Arduino. The value of the

photoresistor should be printed every so

often. When the photoresistor value drops

below the threshold, the LED should turn

on (you can cover the photoresistor with

your finger for testing).

NEW IDEAS
LIGHT LEVELS: If the room you are in is very bright or dark, you may have to change

the value of the threshold variable in the code to make your night-light turn on and

off. See the Troubleshooting section for instructions.

PROGRAM OVERVIEW

1 Store the light level in the variable photoresistor.

2 If the value of the photoresistor is above the threshold (it’s bright), turn the LED off.

3 Otherwise, the value of the photoresistor is below the threshold (it’s dark), turn the LED on.

Open the Arduino IDE

Connect the RedBoard to a USB port on your computer.

 Open the Sketch:

 File > Examples > SIK-Guide-Code-master > CIRCUIT_1C-PHOTORESISTOR

 Select UPLOAD to program the sketch on the RedBoard.

2 9 : c i r cu i t 1 c

CODE TO NOTE

IF ELSE STATEMENTS:

if(logic statement){

//run if true

}

else{

//run if false

}

The if else statement lets your code react to the world by

running one set of code when the logic statement in the

round brackets is true and another set of code when the

logic statement is false. For example, this sketch uses an

if statement to turn the LED on when it is dark, and else

statement to turn the LED off when it is light.

LOGICAL OPERATORS:

(photoResistor <

threshold)

Programmers use logic statements to translate things

that happen in the real world into code. Logic statements

use logical operators like ‘equal to’ ==, ‘greater than’

> and ‘less than’ <, to make comparisons. When the

comparison is true (e.g., 4 < 5), then the logic statement

is true. When the comparison is false (e.g., 5 < 4) then the

logic statement is false. This example is asking whether

the variable photoresistor is less than the variable

threshold.

CODING CHALLENGE
RESPONSE PATTERN: Right now your if statement turns the LED on when it

gets dark, but you can also use the light sensor like a no-touch button. Try using

digitalWrite() and delay() to make the LED blink a pattern when the light level

drops, then calibrate the threshold variable in the code so that the blink pattern triggers

when you wave your hand over the sensor.

REPLACE 10KΩ RESISTOR WITH AN LED: Alter the circuit by replacing the

10KΩ resistor with an LED (the negative leg should connect to GND). Now what happens

when you place your finger over the photoresistor? This is a great way to see Ohm’s

law in action by visualizing the effect of the change in resistance on the current flowing

through the LED.

3 0 : c i r cu i t 1 c

You’ve completed
Circuit 1C!
Continue to circuit 1D to learn about RGB LEDs, functions and pulse-width modulation.

A B C D

B L I N K I N G
A N L E D

R E A D I N G A
P OT E N T I O M E T E R

R E A D I N G A
P H OTO R E S I S TO R

R G B N I G H T - L I G H T

TROUBLESHOOTING

Nothing is printing in

the Serial Monitor

Try unplugging your USB cable and plugging it back in. In the

Arduino IDE, go to Tools > Port, and make sure that you select

the right port.

The light never turns

on or always stays on

Start the Serial Monitor in Arduino. Look at the value that the

photoresistor is reading in a bright room (e.g., 915). Cover the

photoresistor, or turn the lights off. Then look at the new value

that the photoresistor is reading (e.g., 550). Set the threshold

in between these two numbers (e.g., 700) so that the reading

is above the threshold when the lights are on and below the

threshold when the lights are off.

3 1 : c i r cu i t 1 d

NEW COMPONENTS
RGB LED: An RGB LED is actually three

small LEDs — one red, one green and one

blue — inside a normal LED housing. This

RGB LED has all the internal LEDs share

the same ground wire, so there are four

legs in total. To turn on one color, ensure

ground is connected, then power one of the

legs just as you would a regular LED. Don’t

forget the current-limiting resistors. If you

turn on more than one color at a time, you

will see the colors start to blend together to

form a new color.

NEW CONCEPTS
ANALOG OUTPUT (PULSE-WIDTH
MODULATION): The digitalWrite()
command can turn pins on (5V) or off (0V),

but what if you want to output 2.5V? The

analogWrite() command can output 2.5

volts by quickly switching a pin on and

off so that it is only on 50 percent of the

time (50% of 5V is 2.5V). By doing this, any

voltage between 0 and 5V can be produced.

This is what is known as Pulse-Width

Modulation (PWM). It can create many

different colors on the RGB LED.

Circuit 1D: RGB
Night-Light

In this circuit, you’ll take the night-light

concept to the next level by adding an

RGB LED, which is three differently

colored Light-Emitting Diodes (LEDs)

built into one component. RGB stands

for Red, Green and Blue, and these three

colors can be combined to create any

color of the rainbow!

R E D
CO MMO N (GND)

GR E E N
BLUE

NEW IDEAS
PWM PINS: Only a few of the pins

on the RedBoard have the circuitry

needed to turn on and off fast enough

for PWM. These are pins 3, 5, 6, 9, 10

and 11. Each PWM pin is marked with

a ~ on the board. Remember, you can

only use analogWrite() on these

pins.

IO
R

EF

R
ES

ET

S
C

L
S

D
A

A
R

EF
G

N
D 13 12

~
11

~
10 ~

9 8 7
~

6
~

5 4
~

3 2 1
R

X

TX

0

TX
RX

13

3.
3V

5V G
N

D

G
N

D

VI
N

A
0

A
1

A
2

A
3

A
4

A
5

POWER ANALOG IN

DIGITAL (PWM ~)

ON

ISP

S T A R T S O M E T H I N G

I/O

3.3
V 5V

C106

C106

C106

YOU
NEED

10
k

10
0k

33
0

10
k

10
0k

33
0

RGB LED PHOTORESISTOR 3 330Ω RESISTORS 10KΩ RESISTOR

12 JUMPER WIRES POTENTIOMETER

HOOKUP GUIDE
READY TO START HOOKING EVERYTHING UP? Check out the circuit diagram and

hookup table below to see how everything is connected.

3 2 : c i r cu i t 1 d

IOREF

RESET

SCL
SDA

AREF
GND

13
12

~11
~10

~9
8

7
~6
~5

4
~3

2
1

RX

TX

0

TXRX

13

3.3V

5V

GND

GND

VIN

A0

A1

A2

A3

A4

A5

PO
W

ER
AN

ALO
G IN

D
IG

ITA
L (P

W
M

 ~
)O

N

ISP

S
T

A
R

T
 S

O
M

E
T

H
IN

G

I/O

3.3V

5V

C
106

C
10

6C
106

+ –

+ –

+ –

+ –

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

a b c d e f g h i j

a b c d e f g h i j+ - + -

+ - + -

10k

100k

330

10k

100k

330

10k

100k

330

10k

100k

330

CO N N E C T I O N T Y P E S

 REDBOARD CONNECTION BREADBOARD CONNECTION

J U M P E R W I R E S

 5V to 5V(+)

 GND to GND (-)

 D9 to J5

 D10 to J3

 D11 to J2

 A0 to E26

 A1 to E16

E15 to 5V(+)

E17 to GND(-)

E4 to GND(-)

E25 to 5V(+)

E27 to GND (-)

R G B L E D A5(RED) + A4(GND) + A3(GREEN) + A2(BLUE)

3 3 0 Ω R E S I S TO R S
(O R A N G E , O R A N G E ,

B R OW N)
E2 to G2

E3 to G3

E5 to G5

1 0 K Ω R E S I S TO R
(B R OW N , B L AC K ,

O R A N G E)
B26 to C27

P H OTO R E S I S TO R A26 to B25

P OT E N T I O M E T E R B15 + B16 + B17

REMINDER
LIGHT LEVELS: If the room you are in is

very bright or dark, you may have to change

the value of the threshold variable.

FL AT EDGE

3 3 : c i r cu i t 1 d

W H AT Y O U
S H O U L D S E E
This sketch is not dissimilar from

the last. It reads the value from

the photoresistor, compares it to

a threshold value, and turns the

RGB LED on or off accordingly.

This time, however, we’ve added a

potentiometer back into the circuit.

When you twist the trimpot, you

should see the color of the RGB LED

change based on the trimpot’s value.

Open the Arduino IDE

Connect the RedBoard to a USB port on your computer.

 Open the Sketch:

 File > Examples > SIK-Guide-Code-master > SIK_CIRCUIT_1D-RGB NIGHT LIGHT

 Select UPLOAD to program the sketch on the RedBoard.

PROGRAM OVERVIEW

1 Store the light level from pin A0 in the variable photoresistor.

2 Store the potentiometer value from pin A1 in the variable potentiometer.

3 If the light level variable is above the threshold, call the function that turns the RGB LED off.

4
If the light level variable is below the threshold, call one of the color functions to turn the RGB

LED on.

5 If potentiometer is between 0 and 150, turn the RGB LED on red.

6 If potentiometer is between 151 and 300, turn the RGB LED on orange.

7 If potentiometter is between 301 and 450, turn the RGB LED on yellow.

8 If potentiometer is between 451 and 600, turn the RGB LED on green.

9 If potentiometer is between 601 and 750, turn the RGB LED on cyan.

10 If potentiometer is between 751 and 900, turn the RGB LED on blue.

11 If potentiometer is greater than 900, turn the RGB LED on magenta.

3 4 : c i r cu i t 1 d

CODE TO NOTE

ANALOG OUTPUT (PWM):

analogWrite(RedPin, 100);

The analogWrite() function outputs a voltage between

0 and 5V on a pin. The function breaks the range

between 0 and 5V into 255 little steps. Note that we are

not turning the LED on to full brightness (255) in this

code so that the night-light is not too bright. Feel free to

change these values and see what happens.

NESTED IF STATEMENTS:

if(logic statement){
 if(logic statement){

 }
}

A nested if statement is one or more if statements

“nested” inside of another if statement. If the parent

if statement is true, then the code looks at each of the

nested if statements and executes any that are true. If

the parent if statement is false, then none of the nested

statements will execute.

MORE LOGICAL
OPERATORS:

(potentiometer > 0 &&

 potentiometer <= 150)

These if statements are checking for two conditions

by using the AND && operator. In this line, the if

statement will only be true if the value of the variable

potentiometer is greater than 0 AND if the value is less

than or equal to 150. By using &&, the program allows the

LED to have many color states.

DEFINING A FUNCTION:

void function_name(){

}

This is a definition of a simple function. When

programmers want to use many lines of code over and

over again, they write a function. The code inside the

curly brackets “executes” whenever the function is

“called” in the main program. Each of the colors for the

RGB LED is defined in a function.

CALLING A FUNCTION:

function_name();

This line “calls” a function that you have created.

In a later circuit, you will learn how to make more

complicated functions that take data from the main

program (these pieces of data are called parameters).

3 5 : c i r cu i t 1 d

A B C D

B L I N K I N G
A N L E D

R E A D I N G A
P OT E N T I O M E T E R

R E A D I N G A
P H OTO R E S I S TO R

R G B N I G H T - L I G H T

CODING CHALLENGES
ADD MORE COLORS: You can create many more colors with the RGB LED. Use the

analogWrite() function to blend different values of red, green and blue together to

make even more colors. You can divide the potentiometer value and make more nested

if statements so that you can have more colors as you twist the knob.

MULTI-COLOR BLINK: Try using delays and multiple color functions to have your

RGB LED change between multiple colors when it is dark.

CHANGE THE THRESHOLD: Try setting your threshold variable by reading the

value of a potentiometer. By turning the potentiometer, you can then change the

threshold level and adjust your night-light for different rooms.

FADING THE LED: Use analogWrite() to get your LED to pulse gently or

smoothly transition between colors.

TROUBLESHOOTING

The LED never

turns on or off

Open the Serial Monitor and make sure that your photoresistor is

returning values between 0 and 1023. Cover the photoresistor; the

values should change. If they do not change, check your circuit.

Make sure that your threshold variable sits in between the value that

the photoresistor reads when it is bright and the value when it is

dark (e.g., bright = 850, dark = 600, threshold = 700).

My LED doesn’t

show the colors

that I expect

Make sure that all three of the pins driving your RGB LED are set to

OUTPUT, using the pinMode() command in the setup section of the

code. Then make sure that each leg of the LED is wired properly.

Nothing is

printing in the

Serial Monitor

Try unplugging your USB cable and plugging it back in. In the

Arduino IDE, go to Tools > Port, and select the right port.

You’ve completed
Circuit 1D!
Continue to Project 2 to explore using buzzers to make sound.

3 6 : c i r cu i t 2 a

PROJECT 2
In Project 2, you will venture into the

world of buttons and buzzers while

building your own “Simon Says” game!

“Simon Says” is a game in which the LEDs

flash a pattern of red, green, yellow and

blue blinks, and the user must recreate the

pattern using color-coded buttons before

the timer runs out.

N E W CO M P O N E N T S I N T R O D U C E D
I N T H I S P R OJ E C T
•   B U Z Z E R
•   B U T TO N S

N E W CO N C E P T S I N T R O D U C E D
I N T H I S P R OJ E C T
•   A R R AY S
•   B I N A R Y
•   D I G I TA L I N P U T S
•   P U L L - U P R E S I S TO R S
•   F O R L OO P S
•   M E A S U R I N G E L A P S E D T I M E

Y O U W I L L L E A R N
•   H OW TO M A K E TO N E S
 W I T H A B U Z Z E R
•   H OW TO R E A D A B U T TO N U S I N G
 D I G I TA L I N P U T S
•   H OW TO P R OG R A M A G A M E

A B C

B U Z Z E R D I G I TA L T R U M P E T ‘ S I M O N S AY S ’ G A M E

3 7 : c i r cu i t 2 a

NEW COMPONENTS
BUZZER: The buzzer uses a small

magnetic coil to vibrate a metal disc inside

a plastic housing. By pulsing electricity

through the coil at different rates, different

frequencies (pitches) of sound can be

produced. Attaching a potentiometer to

the output allows you to limit

the amount of current moving

through the buzzer and lower

its volume.

NEW CONCEPTS
RESET BUTTON: The RedBoard has a

built-in reset button. This button will reset

the board and start the code over from the

beginning, running setup()then loop().

TONE FUNCTION: To control the

buzzer, you will use the tone() function.

This function is similar to PWM in that

it generates a wave that is of a certain

frequency on the specified pin. The

frequency and duration can both be passed

to the tone() function when calling it.

To turn the tone off, you need to call

noTone() or pass a duration of time for it

to play and then stop. Unlike PWM, tone()

can be used on any digital pin.

ARRAYS are used like variables, but they

can store multiple values. The simplest

array is just a list. Imagine that you want

to store the frequency for each note of

the C major scale. We could make seven

variables and assign a frequency to

each one, or we could use an array and

store all seven in the same list. To refer

to a specific value in the array, an index

number is used. Arrays are indexed from

0. For example, to call the first element in

the array, use array_name[0]; to call the

second element, use array_name[1]; and

so on.

M
U

S
IC

A
L

N
O

T
E

F
R

E
Q

U
E

N
C

Y

(H
Z

) US ING
VAR IABLES

US ING AN
ARRAY

A 220 A_FREQUENCY FREQUENCY[0]

B 247 B_FREQUENCY FREQUENCY[1]

C 26 1 C_FREQUENCY FREQUENCY[2]

D 294 D_FREQUENCY FREQUENCY[3]

E 330 E_FREQUENCY FREQUENCY[4]

F 349 F_FREQUENCY FREQUENCY[5]

G 392 G_FREQUENCY FREQUENCY[6]

Circuit 2A: Buzzer In this circuit, you’ll use the RedBoard and

a small buzzer to make music, and you’ll

learn how to program your own songs

using arrays.

YOU
NEED

IO
R

EF

R
ES

ET

S
C

L
S

D
A

A
R

EF
G

N
D 13 12

~
11

~
10 ~

9 8 7
~

6
~

5 4
~

3 2 1
R

X

TX

0

TX
RX

13

3.
3V

5V G
N

D

G
N

D

VI
N

A
0

A
1

A
2

A
3

A
4

A
5

POWER ANALOG IN

DIGITAL (PWM ~)

ON

ISP

S T A R T S O M E T H I N G

I/O

3.3
V 5V

C106

C106

C106

IO
R

EF

R
ES

ET

S
C

L
S

D
A

A
R

EF
G

N
D 13 12

~
11

~
10 ~

9 8 7
~

6
~

5 4
~

3 2 1
R

X

TX

0

TX
RX

13

3.
3V

5V G
N

D

G
N

D

VI
N

A
0

A
1

A
2

A
3

A
4

A
5

POWER ANALOG IN

DIGITAL (PWM ~)

ON

ISP

S T A R T S O M E T H I N G

I/O

3.3
V 5V

C106

C106

C106

 POTENTIOMETER PIEZO BUZZER 4 JUMPER WIRES

IOREF

RESET

SCL
SDA

AREF
GND

13
12

~11
~10

~9
8

7
~6
~5

4
~3

2
1

RX

TX

0

TXRX

13

3.3V

5V

GND

GND

VIN

A0

A1

A2

A3

A4

A5

PO
W

ER
AN

ALO
G IN

D
IG

ITA
L (P

W
M

 ~
)O

N

ISP

S
T

A
R

T
 S

O
M

E
T

H
IN

G

I/O

3.3V

5V

C
106

C
10

6C
106

+ –

+ –

+ –

+ –

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

a b c d e f g h i j

a b c d e f g h i j+ - + -

+ - + -

HOOKUP GUIDE
READY TO START HOOKING EVERYTHING UP? Check out the circuit diagram and

hookup table below to see how everything is connected.

VOLUME KNOB: Notice

that only two of the

potentiometer’s legs are

used in these circuits. The

potentiometer is acting as

a variable resistor, limiting

the amount of current

flowing to the speaker and

thus affecting the volume as

you turn the knob.

3 8 : c i r cu i t 2 a

CO N N E C T I O N T Y P E S

 REDBOARD CONNECTION BREADBOARD CONNECTION

J U M P E R W I R E S GND to GND(-)

 D10 to F1

E2 to GND (-)

E1 to F3

B U Z Z E R H1(+) to H3(-)

P OT E N T I O M E T E R B1 + B2 + B3

REMEMBER!
POLARITY: The buzzer is polarized. To see which leg is positive and which is negative,

flip the buzzer over and look at the markings underneath. Keep track of which pin is

where, as they will be hard to see once inserted into the breadboard. There is also text

on the positive side of the buzzer, along with a tiny (+) symbol.

3 9 : c i r cu i t 2 a

PROGRAM OVERVIEW

1

Play the first note for x number of beats using the play() function.

A: (Inside the play() function): Take the note passed to the play function and compare it to

 each letter in the notes array. When you find a note that matches, remember the index

 position of that note (e.g., sixth entry in the notes array).

B: Get a frequency from the frequency array that has the same index as the note that matched

 (e.g., the sixth frequency).

C: Play that frequency for the number of beats passed to the play() function.

2
Play the second note using the play() function

...and so on.

W H AT Y O U
S H O U L D S E E
When the program begins, a song will

play from the buzzer once. To replay

the song, press the reset button on the

RedBoard. Use the potentiometer to

adjust the volume.

Open the Arduino IDE

Connect the RedBoard to a USB port on your computer.

 Open the Sketch:

 File > Examples > SIK-Guide-Code-master > SIK_CIRCUIT_2A-BUZZER

 Select UPLOAD to program the sketch on the RedBoard.

4 0 : c i r cu i t 2 a

CODE TO NOTE

CHARACTER VARIABLES:

void play(char note, int
beats)

The char, or character, variable stores character

values. In this sketch, the play() function gets

passed two variables: a character variable that

represents the musical note we want to play and

an integer variable that represents how long to

play that note. A second array takes the character

variable and associates a frequency value to it.

This makes programming a song easier as you can

just reference the character and not the

exact frequency.

TONE FUNCTION:

tone(pin, frequency,
duration);

The tone() function will pulse power to a pin at

a specific frequency. The duration controls how

long the sound will play. tone() can be used on

any digital pin.

DECLARING AN ARRAY:

array_name[array_size];

To declare an array, you must give it a name,

then either tell Arduino how many positions the

array will have or assign a list of values to the

array. An array must contain all the same type of

variables and be declared as such.

CALLING AN ARRAY:

array_name[index_#];

To call one of the values in an array, simply type

the name of the array and the index of the value.

Don’t forget the index starts at 0, not 1, so to call

the first element, use array_name[0];.

CODING CHALLENGES
CHANGE THE TEMPO OF THE SONG: Experiment with the beatLength;
variable to change the tempo of the song.

MAKE YOUR OWN SONG: Try changing the notes to make a different song. Spaces

“ ” can be used for rests in the song.

4 1 : c i r cu i t 2 a

TROUBLESHOOTING

The song is too

quiet or too loud
Turn the potentiometer to adjust the volume.

No sound is playing

Try pressing the reset button on the RedBoard. If that

doesn’t work, check your wiring of the buzzer. It’s easy to

misalign a pin with a jumper wire or reverse the buzzer.

D I G I TA L
T R U M P E T

A B C

B U Z Z E R “ S I M O N S AY S ” G A M E

You’ve completed
Circuit 2A!
Continue to circuit 2B to explore digital inputs and buttons.

4 2 : c i r cu i t 2 b

NEW COMPONENTS
BUTTONS: Also known as momentary

switches, buttons only remain in their ON

state as long as they’re being actuated,

or pressed. Most often

momentary switches are

best used for intermittent

user-input cases: reset

button and keypad buttons.

These switches have a nice, tactile, “clicky”

feedback when you press them.

Note that the different colors are just

aesthetic. All of the buttons included

behave the same, no matter their color.

NEW CONCEPTS
BINARY NUMBER SYSTEM: Number

systems are the methods we use to

represent numbers. We’re most used to

operating within the comfy confines of

a base-10 number system, but there are

many others. The base-2 system, otherwise

known as binary, is common when

dealing with computers and electronics.

Computers, at their lowest level, really only

have two ways to represent the state of

anything: 1 or 0, which can also be thought

of as ON or OFF, TRUE or FALSE, HIGH or

LOW. Almost all electronics rely on a base-2

number system to store and manipulate

numbers. The heavy reliance electronics

places on binary numbers means it’s

important to know how the base-2 number

system works.

DIGITAL INPUT: In circuit 1A, you

worked with digital outputs. Each of the

14 digital pins can also be digital inputs.

Digital inputs only care if something is in

one of two states, 0 or 1. Digital inputs are

great for determining if a button has been

pressed or if a switch has been flipped.

PULL-UP RESISTORS: A pull-up

resistor is a small circuit that holds the

voltage HIGH (5V) on a pin until a button is

pressed, pulling the voltage LOW (0V). The

most common place you will see a pull-up

resistor is when working with buttons. A

pull-up resistor keeps the button in one

state until it is pressed. The RedBoard has

built-in pull-up resistors, but they can also

be added to a circuit externally. This circuit

uses the internal pull-up resistors, covered

in more detail in the Code to Note section.

Circuit 2B: Digital
Trumpet

Learn about digital inputs and buttons

as you build your own digital trumpet!

Buttons are all around us, from the keys

on your keyboard to the buttons on your

remote control.

YOU
NEED POTENTIOMETER PIEZO BUZZER 10 JUMPER WIRES 3 PUSH BUTTONS

HOOKUP GUIDE
READY TO START HOOKING EVERYTHING UP? Check out the circuit diagram and

hookup table below to see how everything is connected.

4 3 : c i r cu i t 2 b

IOREF

RESET

SCL
SDA

AREF
GND

13
12

~11
~10

~9
8

7
~6
~5

4
~3

2
1

RX

TX

0

TXRX

13

3.3V

5V

GND

GND

VIN

A0

A1

A2

A3

A4

A5

PO
W

ER
AN

ALO
G IN

D
IG

ITA
L (P

W
M

 ~
)O

N

ISP

S
T

A
R

T
 S

O
M

E
T

H
IN

G

I/O

3.3V

5V

C
106

C
10

6C
106

+ –

+ –

+ –

+ –

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

a b c d e f g h i j

a b c d e f g h i j+ - + -

+ - + -

J U M P E R W I R E S

 GND to GND(-)

 D10 to F1

 D4 to J18

 D3 to J24

 D2 to J30

E2 to GND (-)

J16 to GND (-)

J22 to GND (-)

J28 to GND (-)

E1 to F3

B U Z Z E R H1(+) to H3(-)

P U S H B U T TO N S D16/18 to G16/18

D22/24 to G22/24

D28/30 to G28/30

P OT E N T I O M E T E R B1 + B2 + B3

CONNECTED

CONNECTED

BUTTONS ARE NOT POLARIZED , but

they do merit a closer look. Each row of legs is

connected internally. When the button is pressed,

one row connects to the other, connecting all four

pins. If the button’s legs don’t line up with the

rows on the breadboard, rotate it 90 degrees.

4 4 : c i r cu i t 2 b

PROGRAM OVERVIEW

1
Check to see if the first button is pressed.

A: If it is, play the frequency for c.

B: If it isn’t, skip to the next else if statement.

2
Check to see if the second button is pressed.

A: If it is, play the frequency for e.

B: If it isn’t, skip to the next else if statement.

3
Check to see if the third button is pressed.

A: If it is, play the frequency for g.

B: If it isn’t, skip to the else statement.

4 If none of the if statements are true, turn the buzzer off.

W H AT Y O U
S H O U L D S E E
Different tones will play when

you press different keys.

Turning the potentiometer will

adjust the volume.

Open the Arduino IDE

Connect the RedBoard to a USB port on your computer.

 Open the Sketch:

 File > Examples > SIK-Guide-Code-master > SIK_CIRCUIT_2B-DIGITAL TRUMPET

 Select UPLOAD to program the sketch on the RedBoard.

4 5 : c i r cu i t 2 b

CODE TO NOTE

INTERNAL PULL-UP
RESISTOR:

pinMode(pin, INPUT_
PULLUP);

To declare a standard input, use the line

pinMode(pin, INPUT);. If you would like to use

one of the RedBoard’s built-in pull-up 20kΩ resistors,

it would look like this:

pinMode(pin, INPUT_PULLUP);. The advantage

of external pull-ups is being able to choose a more

exact value for the resistor.

DIGITAL INPUT:

digitalRead(pin);

Check to see if an input pin is reading HIGH

(5V) or LOW (0V). Returns TRUE (1) or FALSE (0)

depending on the reading.

IS EQUAL TO:

if(digitalRead(pin) ==
LOW)

This is another logical operator. The “is equal to”

symbol == can be confusing. Two equals signs are the

same as asking, “Are these two values equal to one

another?” Contrarily, one equals sign means assigning

a particular value to a variable. Don’t forget to add the

second equals sign if you are comparing two values.

CODING CHALLENGES
CHANGE THE KEY OF EACH BUTTON: Use the frequency table in the comment

section at the end of the code to change the notes that each button plays.

PLAY MORE THAN THREE NOTES WITH IF STATEMENTS: By using

combinations of buttons, you can play up to seven notes of the scale. You can do this in

a few ways. To get more practice with if statements, try adding seven if statements and

using the Boolean AND && operator to represent all of the combinations of keys.

PLAY MORE THAN THREE NOTES WITH BINARY MATH: You can use a clever

math equation to play more than three notes with your three keys. By multiplying each

key by a different number, then adding up all of these numbers, you can make a math

equation that produces a different number for each combination of keys.

4 6 : c i r cu i t 2 b

TROUBLESHOOTING

The buzzer is too loud

or too quiet
Turn the potentiometer to adjust the volume.

The RedBoard thinks

one key is always

pressed

Check your wiring. You may have GND and 5V backward if one

or more buttons behave as though they’re pressed all the time.

The buttons are

not working

First, make sure that the wiring is correct. It is easy to misalign

a wire with a button leg. Second, make sure that you have

declared your buttons as inputs and have enabled the internal

pull-up resistors with INPUT_PULLUP.

A B

B U Z Z E R
D I G I TA L

T R U M P E T “ S I M O N S AY S ” G A M E

You’ve completed
Circuit 2B!
Continue to circuit 2C and learn how to build your own game using buttons and LEDs.

C

4 7 : c i r cu i t 2 c

NEW CONCEPTS
FOR LOOPS: A for loop repeats a

section of code a set number of times. The

loop works by using a counter (usually

programmers use the letter “i” for this

variable) that increases each loop until it

reaches a stop value. Here’s an example of

a simple for loop:

for (int i = 0; i < 5; i++){
Serial.print(i);
}

The for loop takes three parameters in

the brackets, separated by semicolons. The

first parameter is the start value. In this

case, integer i starts at 0. The second value

is the stop condition. In this case, we stop

the loop when i is no longer less than 5 (i

< 5 is no longer true). The final parameter

is an increment value. i++ is shorthand

for increase i by 1 each time, but you could

also increase i by different amounts. This

loop would repeat five times. Each time

it would run the code in between the

brackets, which prints the value of i to the

Serial Monitor.

MEASURING DURATIONS OF TIME

WITH MILLIS(): The RedBoard has a

built-in clock that keeps accurate time.

You can use the millis() command to

see how many milliseconds have passed

since the RedBoard was last powered. By

storing the time when an event happens

and then subtracting the current time, you

can measure the number of milliseconds

(and thus seconds) that have passed. This

sketch uses this function to set a time limit

for repeating the pattern.

CUSTOM FUNCTIONS: This sketch

uses several user-defined functions. These

functions perform operations that are

needed many times in the program (for

example, reading which button is currently

pressed or turning all of the LEDs off).

Functions are essential to make more

complex programs readable and compact.

Circuit 2C: “Simon
Says” Game

The “Simon Says” game uses LEDs to flash a

pattern, which the player must remember

and repeat using four buttons. This simple

electronic game has been a classic since the

late 1970s. Now you can build your own!

YOU
NEED

10k

100k

330

 4 LEDS POTENTIOMETER PIEZO BUZZER 16 JUMPER WIRES 4 PUSH BUTTONS

4 330Ω RESISTORS

HOOKUP GUIDE
READY TO START HOOKING EVERYTHING UP? Check out the circuit diagram and

hookup table below to see how everything is connected.

4 8 : c i r cu i t 2 c

J U M P E R W I R E S

 GND to GND(-)

 D10 to F1

 D9 to J7

 D8 to J12

 D7 to J13

 D6 to J18

 D5 to J19

 D4 to J24

 D3 to J25

 D2 to J30

E2 to GND(-)

E1 to F3

J16 to GND(-)

J22 to GND(-)

J28 to GND(-)

J10 to GND(-)

B U Z Z E R H1(+) to H3(-)

L E D S H7+ to H8–

H13+ to H14–

H19+ to H20–

H25+ to H26–

P OT E N T I O M E T E R B1 + B2 + B3

P U S H B U T TO N S
D10/12 to G10/12

D16/18 to G16/18

D22/24 to G22/24

D28/30 to G28/30

3 3 0 Ω R E S I S TO R

J8 to GND(-)

J14 to GND(-)

J20 to GND(-)

J26 to GND(-)

IOREF

RESET

SCL
SDA

AREF
GND

13
12

~11
~10

~9
8

7
~6
~5

4
~3

2
1

RX

TX

0

TXRX

13

3.3V

5V

GND

GND

VIN

A0

A1

A2

A3

A4

A5

PO
W

ER
AN

ALO
G IN

D
IG

ITA
L (P

W
M

 ~
)O

N

ISP

S
T

A
R

T
 S

O
M

E
T

H
IN

G

I/O

3.3V

5V

C
106

C
10

6C
106

+ –

+ –

+ –

+ –

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

a b c d e f g h i j

a b c d e f g h i j+ - + -

+ - + -

10k

100k

330

10k

100k

330

10k

100k

330

10k

100k

330

FL AT EDGE

4 9 : c i r cu i t 2 c

PROGRAM OVERVIEW

1
Check if a new game is starting. If it is, play the start sequence. Reset the counter that keeps track of

rounds, and randomly generate a sequence of numbers from 0 to 3 that controls which LEDs the user will

have to remember.

2

The game works in rounds that progress from 0 to 10. Each round the game will flash LEDs in a pattern,

and then the player has to recreate the pattern by pressing the button(s) that match the LED(s). In the first

round, one LED will flash, and the player will have to press one button. In the eighth round, eight LEDs will

flash, and the player will have to press eight buttons.

3
A loop is used to flash LEDs from the sequence until you have flashed the number of LEDs that matches the

round number (1 for round 1, 2 for round 2, etc.).

W H AT Y O U
S H O U L D S E E
The circuit will flash all of the LEDs

and play a melody. After a few seconds,

it will flash the first light in the pattern.

If you repeat the pattern correctly by

pressing the corresponding colored

button, then the game will move to

the next round and add another color

to the pattern sequence. If you make

a mistake, the “Game Over” melody

will play. If you get to round 10, the

“You Win” melody will play. Press any

button to start a new game.

Open the Arduino IDE

Connect the RedBoard to a USB port on your computer.

 Open the Sketch:

 File > Examples > SIK-Guide-Code-master > SIK_CIRCUIT_2C-SIMON SAYS

 Select UPLOAD to program the sketch on the RedBoard.

5 0 : c i r cu i t 2 c

CODE TO NOTE

ELAPSED TIME:

millis();

The millis() function returns the number of milliseconds

that have passed since the RedBoard was last turned on.

BOOLEAN
VARIABLES:

boolean variable_

name;

The name for these variables comes from Boolean logic.

The boolean variable type only has two values: 1 or 0

(also known as HIGH or LOW, ON or OFF, TRUE or FALSE).

Using Boolean variables helps save memory on your

microcontroller if you only need to know if something is true

or false. Space in your microcontroller’s memory is reserved

when a variable is declared. How much memory is reserved

depends on the type of variable.

STORING PIN
NUMBERS
IN ARRAYS:

int led[] =

{3,5,7,9};

Sometimes you will want to cycle through all of the LEDs or

buttons connected to a project. You can do this by storing a

sequence of pin numbers in an array. The advantage of having

pins in an array instead of a sequence of variables is that you

can use a loop to easily cycle through each pin.

FUNCTIONS TO NOTE

flashLED(#LED

to flash);

This turns one of the four LEDs on and plays the tone associated

with it.

0 = Red, 1 = Yellow, 2 = Green, 3 = Blue.

4

Start a timer, and wait for the player to press a button.

The player has 1.5 seconds to press the correct button.

 A: If the time limit runs out before a button is pressed, the player loses.

 B: If the player presses the wrong button, the player loses.

 C: If the player presses the right button, move on to the next number in the sequence.

 D: Repeat this process until the player has lost or correctly repeated the sequence for this round.

5
If the player repeats the entire sequence for that round, increase the round number by one (this will add

one extra item to the end of the pattern). Then go back to step 3.

6
Keep incrementing the round until the player loses or finishes 10 rounds. If the player finishes 10 rounds,

play the winning sequence.

5 1 : c i r cu i t 2 c

allLEDoff(); Turns all four LEDs off.

buttonCheck();
Uses digitalRead() to check which button is pressed. Returns 0, 1, 2

or 3 if one of the buttons is pressed. Returns 4 if no button is pressed.

startSequence();

Flashes the LEDs and plays tones in a sequence. Resets the round

counter and generates a new random sequence for the user to

remember.

winSequence();
Plays a sequence of tones, turns all of the LEDs on, and then waits for

the player to press a button. If a button is pressed, restarts the game.

loseSequence();
Plays a sequence of tones, turns all of the LEDs on, and then waits for

the player to press a button. If a button is pressed, restarts the game.

CODING CHALLENGES

CHANGE THE DIFFICULTY OF THE GAME: Change the difficulty of the game by

changing how fast the player has to press each button or by increasing or decreasing

the number of rounds needed to win. Note that if you increase the number of rounds to

be larger than 16, you will need to change the size of the array (it is set at the top of the

code in a line that looks like this: int buttonSequence[16];).

CHANGE THE SOUND EFFECTS: Try changing the sequence of notes that plays

when you start, win or lose the game.

2-PLAYER MODE: Try changing the code so that two players can play head-to-head.

FUNCTIONS TO NOTE

5 2 : c i r cu i t 2 c

TROUBLESHOOTING

One of the LEDs isn’t

lighting up

Make sure your LED is oriented in the right direction. If the LED

still doesn’t work, try wiggling the resistor and the wires that

connect to the LED.

The buzzer is too loud

or too quiet
Turn the potentiometer to adjust the volume.

One of the buttons isn’t

working

Carefully check your wiring for each button. One leg of the

button should connect to a pin on the RedBoard; the other leg

should connect to the ground rail on the breadboard. Make sure

they are declared correctly.

None of the buttons or

LEDs are working

Make sure you don’t have 5V and GND mixed up. Double check

that you have a GND connection from the RedBoard to the GND

rail on the breadboard.

Still not working?

Jumper wires unfortunately can go “bad” from getting bent

too much. The copper wire inside can break, leaving an open

connection in your circuit. If you are certain that your circuit is

wired correctly and that your code is error-free and uploaded,

but you are still encountering issues, try replacing one or more

of the jumper wires for the component that is not working.

A B C

B U Z Z E R
D I G I TA L
T R U M P E T “ S I M O N S AY S ” G A M E

You’ve completed
Project 2!
Continue to Project 3 to explore using servos and sensors.

5 3 : c i r cu i t 3 a

PROJECT 3
Tired of your cat walking all over the

kitchen counter? How about the dog

getting into the garbage? Need a way to

stop your younger sibling from sneaking

into your bedroom? Learn how to protect

against all of these annoyances as you

build a multipurpose motion alarm. The

alarm detects distance and motion using

an ultrasonic distance sensor , and

creates motion using a servo motor.

N E W CO M P O N E N T S I N T R O D U C E D
I N T H I S P R OJ E C T
•   S E R V O M OTO R
•   U L T R A S O N I C D I S TA N C E S E N S O R

N E W CO N C E P T S I N T R O D U C E D
I N T H I S P R OJ E C T
•   P W M D U T Y C YC L E
•   A R D U I N O L I B R A R I E S
•   O B J E C T S A N D M E T H O D S
•   D I G I TA L S E N S O R S
•   DATA S H E E T S
•   S E R V O M E C H A N I S M S

Y O U W I L L L E A R N
•   H OW TO CO N T R O L A S E R V O M OTO R
•   H OW TO U S E A N U L T R A S O N I C
 D I S TA N C E S E N S O R
•   H OW TO M OV E O B J E C T S U S I N G
 S E R V O M E C H A N I S M S

A B C

S E R V O M OTO R S D I S TA N C E S E N S O R M OT I O N A L A R M

5 4 : c i r cu i t 3 a

NEW COMPONENTS
SERVO MOTORS: Regular DC motors

have two wires. When you hook the wires

up to power, the motor spins around and

around. Servo motors, on the other hand,

have three wires: one

for power, one for

ground and one for

signal. When you send

the right signal through

the signal wire, the

servo will move to a

specific angle and stay

there. Common servos rotate over a range

of about 0° to 180°. The signal that is sent is

a PWM signal, the same used to control the

RGB LED in Project 1.

Included with

your servo motor

you will find a

variety of motor

mounts that

connect to the

shaft of your servo. You may choose to

attach any mount you wish for this circuit.

It will serve as a visual aid, making it easier

to see the servo spin. The mounts will also

be used at the end of this project.

NEW CONCEPTS
DUTY CYCLE: Pulse-Width Modulation

(PWM) is a great way to generate servo

control signals. The length of time a PWM

signal is on is

referred to as

the duty cycle.

Duty cycle is

measured in

percentage.

Thus a duty cycle of 50 percent means the

signal is on 50 percent of the time. The

variation in the duty cycle is what tells the

servo which position to go to in its rotation.

Circuit 3A: Servo
Motors

In this circuit, you will learn how to wire

a servo and control it with code. Servo

motors can be told to move to a specific

position and stay there. Low-cost servo

motors were originally used to steer RC

airplanes and cars, but they have become

popular for any project where precise

movement is needed.

ATTACHING YOUR SERVO:
A strip of adhesive Dual LockTM

fastening tape is included in your kit.

Cut two pieces of it to temporarily

affix your servo to your baseplate.

YOU
NEED POTENTIOMETER SERVO 8 JUMPER WIRES SCISSORS

(NOT INCLUDED)

5 5 : c i r cu i t 3 a

ARDUINO LIBRARIES: Writing code

that sends precise PWM signals to the

servo would be time consuming and

would require a lot more knowledge about

the servo. Luckily, the Arduino IDE has

hundreds of built-in and user-submitted

containers of code called libraries. One of

the built-in libraries, the Servo Library,

allows us to control a servo with just a few

lines of code!

To use one of the built-in Arduino libraries,

all you have to do is “include” a link to its

header file. A header file is a smaller code

file that contains definitions for all the

functions used in that library. By adding

a link to the header file in your code, you

are enabling your code to use all of those

library functions. To use the Servo Library,

you would add the following line to the top

of your sketch.

#include <Servo.h>

OBJECTS AND METHODS: To use the

Servo Library, you will have to start by

creating a servo object, like this:

Servo myServo;

Objects look a lot like variables, but they

can do much more. Objects can store

values, and they can have their own

functions, which are called methods.

The most used method that a servo object

has is .write():

myServo.write(90);

The write method takes one parameter, a

number from 0 to 180, and moves the servo

arm to the specified position (in this case,

degree 90).

Why would we want to go to the trouble of

making an object and a method instead of

just sending a servo control signal directly

over a pin? First, the servo object does the

work of translating our desired position

into a signal the servo can read. Second,

using objects makes it easy for us to add

and control more than one servo.

SERVO BASICS: Servo motor

connectors are polarized, but there

is no place to attach them directly.

Instead, connect three jumper

wires to the female 3-pin header

on the servo. This will make it so

you can connect the servo to the

breadboard. The servo wires are

color coded to make hookup simple.

CONTROL

+5V

GND

IOREF

RESET

SCL
SDA

AREF
GND

13
12

~11
~10

~9
8

7
~6
~5

4
~3

2
1

RX

TX

0

TXRX

13

3.3V

5V

GND

GND

VIN

A0

A1

A2

A3

A4

A5

PO
W

ER
AN

ALO
G IN

D
IG

ITA
L (P

W
M

 ~
)O

N

ISP

S
T

A
R

T
 S

O
M

E
T

H
IN

G

I/O

3.3V

5V

C
106

C
10

6C
106

+ –

+ –

+ –

+ –

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

a b c d e f g h i j

a b c d e f g h i j+ - + -

+ - + -

HOOKUP GUIDE
READY TO START HOOKING EVERYTHING UP? Check out the circuit diagram and

hookup table below to see how everything is connected.

5 6 : c i r cu i t 3 a

CO N N E C T I O N T Y P E S

 REDBOARD CONNECTION BREADBOARD CONNECTION

J U M P E R W I R E S
 A0 to E2

 5V to 5V(+)

 GND to GND(–)

E1 to 5V (+)

E3 to GND (-)

P OT E N T I O M E T E R B1 + B2+ B3

S E R V O L E A D S WHITE WIRE to D9

RED WIRE to 5V(+)

BLACK WIRE to GND(–)

5 7 : c i r cu i t 3 a

PROGRAM OVERVIEW

1 Read the value of the potentiometer.

2 Convert the potentiometer value (0–1023) to an angle (20–160).

3 Tell the servo to go to this angle.

W H AT Y O U
S H O U L D S E E
Turning the potentiometer will

cause the servo arm to turn. The

servo will mimic the movement

of the potentiometer, twisting in

the same clockwise or counter-

clockwise direction. If you’ve

attached a servo mount to the arm

as shown, this movement will be

easier to see.

Open the Arduino IDE

Connect the RedBoard to a USB port on your computer.

 Open the Sketch:

 File > Examples > SIK-Guide-Code-master > SIK_CIRCUIT_3A-SERVO

 Select UPLOAD to program the sketch on the RedBoard.

CODE TO NOTE

INCLUDING LIBRARIES:

#include <Servo.h>

The #include command adds a library to your

Arduino program. After you include a library,

you can use the commands in the library in your

program. This line adds the built-in Servo Library.

CREATING SERVO OBJECTS:

Servo myServo;

The Servo command creates a new servo object

and assigns a name to it, myServo in this case. If

you make more than one servo object, you will

need to give them different names.

5 8 : c i r cu i t 3 a

SERVO ATTACH:

myServo.attach(9);

The .attach(); method tells the servo

object to which pin the signal wire is

attached. It will send position signals

to this pin. In this sketch, pin 9 is used.

Remember to only use digital pins that are

capable of PWM.

RANGE MAPPING:

map(potPosition,0,1023,20,160);

As shown in previous circuits, the analog

pin values on your microcontroller vary

from 0 to 1023. But what if we want those

values to control a servo motor that only

accepts a value from 0 to 180? The map()

function takes a range of values and

outputs a different range that can contain

more or fewer values than the original. In

this case, we are taking the range 0–1023

and mapping it to the range 20–160.

SERVO WRITE:

myServo.write(90);

The .write(); method moves the servo

to a specified angle. In this example, the

servo is being told to go to angle 90.

CODING CHALLENGES
REVERSE THE SERVO DIRECTION: Try making the servo move in the opposite

direction of the potentiometer.

CHANGE THE RANGE: Try altering the map function so that moving the potentiometer

a lot only moves the servo a little or vice versa.

SWAP IN A DIFFERENT SENSOR: Try swapping a light sensor in for the

potentiometer. Then you can make a dial that reads how much light is present!

CODE TO NOTE

5 9 : c i r cu i t 3 a

 TROUBLESHOOTING

The servo doesn’t

move

Check the wiring on your servo. Make sure the red wire on the

servo cord is connected to 5V, the black wire is connected to

GND and the white signal wire is connected to digital pin 9.

The servo is

twitching

Although these servos are supposed to move from 0 to 180

degrees, sometimes sending them to the extremes of their

range causes them to twitch (the servo is trying to move

farther than it can). Make sure you aren’t telling the servo to

move outside of the 20–160 degree range.

A

S E R V O M OTO R S D I S TA N C E S E N S O R M OT I O N A L A R M

You’ve completed
Circuit 3A!
Continue to circuit 3B to learn about using distance sensors.

CB

6 0 : c i r cu i t 3 b

NEW COMPONENTS
ULTRASONIC DISTANCE SENSOR:
Distance sensors work by sending pulses of

light or sound out from a transmitter, then

timing how long it takes for the signals to

bounce off an object and return to a receiver

(just like sonar). Some sensors use infrared

light, some use lasers, and some, like the

HC-SR04 included in your kit, use ultrasonic

sound (sound so high-pitched that you can’t

hear it).

NEW CONCEPTS
DATASHEETS: When working with

electronics, datasheets are your best

friend. Datasheets contain all the relevant

information needed for a part. In this

circuit, we are calculating distance based

on the time it takes sound waves to be

transmitted, bounce off an object and then

be received. But, how can we tell distance

from that information? The answer lies in

the datasheet for the distance sensor. In

it, you can find the equation the program

needs to interpret the distance. View the

datasheet at http://sfe.io/HCSR04.

ELSE IF STATEMENTS: In the night-

light circuit, you used an if/else statement

to run one set of code when a logic

statement was true, and another when

it was false. What if you wanted to have

more than two options? Else if statements

let you run as many logical tests as you

want in one statement. For example, in the

code for this circuit, there is an if statement

that flows like this:

1. If the distance is less than 10, make

the RGB LED red.

2. Else if the distance is more than

10 but less than 20, make the RGB LED

yellow.

3. Else make the RGB LED green.

To have four or five colors for different

distances, add more else if statements.

Else if statements are different from

nested if statements in that only one of

the statements above can be true, whereas

multiple nested if statements could be true.

Circuit 3B:
Distance
Sensor

Distance sensors are amazing tools with

all kinds of uses. They can sense the

presence of an object, they can be used

in experiments to calculate speed and

acceleration, and they can be used in

robotics to avoid obstacles. This circuit will

walk you through the basics of using an

ultrasonic distance sensor, which measures

distance using sound waves!

T R

V
C
C

T
r
i
g

E
c
h
o

G
N
D

HC-SR04

YOU
NEED T

R

V
C
C

T
r
i
g

E
c
h
o

G
N
D

HC-SR04

10k

100k

330

RGB LED 3 330Ω RESISTORS DISTANCE SENSOR 10 JUMPER WIRES

IOREF

RESET

SCL
SDA

AREF
GND

13
12

~11
~10

~9
8

7
~6
~5

4
~3

2
1

RX

TX

0

TXRX

13

3.3V

5V

GND

GND

VIN

A0

A1

A2

A3

A4

A5

PO
W

ER
AN

ALO
G IN

D
IG

ITA
L (P

W
M

 ~
)O

N

ISP

S
T

A
R

T
 S

O
M

E
T

H
IN

G

I/O

3.3V

5V

C
106

C
10

6C
106

+ –

+ –

+ –

+ –

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

a b c d e f g h i j

a b c d e f g h i j+ - + -

+ - + -

10k

100k

330

10k

100k

330

10k

100k

330

HOOKUP GUIDE
READY TO START HOOKING EVERYTHING UP? Check out the circuit diagram and

hookup table below to see how everything is connected.

6 1 : c i r cu i t 3 b

CO N N E C T I O N T Y P E S

 REDBOARD CONNECTION BREADBOARD CONNECTION

J U M P E R W I R E S

 5V to 5V

 GND to GND (-)

 D3 to J25

 D5 to J23

 D6 to J22

 D11 to E4

 D12 to E5

E3 to 5V (+)

E6 to GND(–)

E24 to GND(–)

R G B L E D A25(RED) + A24(GND) + A23(GREEN) + A22(BLUE)

3 3 0 Ω R E S I S TO R S
(O R A N G E , O R A N G E ,

B R OW N)
E22 to G22

E23 to G23

E25 to G25

D I S TA N C E S E N S O R

A3(VCC) + A4(TRIG) + A5(ECHO) + A6(GND)

POLARITY: The distance sensor is

polarized. Take note of the pin labels

when connecting your circuit.

T
R

VCC

Trig

Echo

GND

H
C
-
S
R
0
4

POWER (5V)
TR I GGER PULSE INPUT :

ECHO PULSE OUTPUT :
GROUND (0V)

T

VCC

Trig

Echo

GND

R

FL AT S IDE

TROUBLESHOOTING WARNING: HVAC systems in offices and schools have

been known to interfere with the performance of the ultrasonic distance sensor. If

you are experiencing sporadic behavior from your circuit, check your surroundings.

If there are numerous air ducts in the room you are using, try moving to a different

room that does not have ducts. The airflow from these ducts can interfere with the

waves sent from the sensor, creating noise and resulting in bad readings.

6 2 : c i r cu i t 3 b

PROGRAM OVERVIEW

Check what distance the sensor is reading.

1: If the distance is less than 10 inches, make the RGB LED red.

2: If the distance is between 10 and 20 inches, make the RGB LED yellow.

3: If the distance value is not equal to the fist two conditions, make the RGB LED green.

W H AT Y O U
S H O U L D S E E
Move your hand or a large, flat

object closer and farther away

from the distance sensor. As the

object approaches, the light will

change from green to yellow to

red. Open the Arduino Serial

Monitor to see the distance

being read from the sensor.

Open the Arduino IDE

Connect the RedBoard to a USB port on your computer.

 Open the Sketch:

 File > Examples > SIK-Guide-Code-master > CIRCUIT_3B-DISTANCE SENSOR

 Select UPLOAD to program the sketch on the RedBoard.

6 3 : c i r cu i t 3 b

CODE TO NOTE

FLOAT VARIABLES:

float echoTime;

The float variable, short for floating-point

number, is similar to an integer except it can

represent numbers that contain a decimal point.

Floats are good for representing values that need

to be more precise than an integer. Floats allow us

to measure precise distances such as 9.33 inches

instead of just 9 inches.

ELSE IF STATEMENT:

if(logic statement){
//run if first is true
}

else if(second logic
statement){
//run if second is true
}

else{
//run if neither is true
}

Else if statements let you combine more than

one logic statement. Arduino will test each logic

statement in order; if one is true it will run the code

in that section and then skip all of the other sections

of code in the remaining statements.

USER-DEFINED FUNCTION:

getDistance();

This function tells the distance sensor to send out

an ultrasonic wave form, measures the time it takes

to bounce back to the sensor, and then calculates

the distance based on the speed of sound. This

calculation is based off information found in the

distance sensor’s datasheet.

CODING CHALLENGES
CHANGE THE LIMITS OF THE DISTANCE SENSOR: Try editing the values in the

logic statements so that the RGB LED changes color at different distances.

CHANGE THE UNITS OF THE DISTANCE SENSOR: Try editing the code so that the

distance sensor outputs a different unit of length, such as centimeters or feet.

ADD A FOURTH COLOR: Try adding another else if statement so that there are four

different colors instead of three.

6 4 : c i r cu i t 3 b

S E R V O M OTO R S

TROUBLESHOOTING

The RGB LED colors aren’t

working or a color is missing

Check the connection for the wire and resistor

connected to each leg of the LED. Ensure the RGB LED is

inserted in the correct orientation.

The distance sensor doesn’t

seem to work

Open up the Serial Monitor on your computer. You

should see a stream of distances being printed in the

monitor. If they are all reading 0 or jumping around,

then check the wiring on your sensor.

The distance sensor still

doesn’t work

Ultrasonic noise pollution will interfere with your

distance sensor readings. If you aim two distance

sensors at each other, they will confuse each other.

Some air-conditioning systems may also emit noises

in the ultrasonic range. Try pointing your sensor

away from the other distance sensors or changing to a

different location.

A B

D I S TA N C E S E N S O R M OT I O N A L A R M

You’ve completed
Circuit 3B!
Continue to circuit 3C to explore building mechanisms that interact with your circuits.

C

6 5 : c i r cu i t 3 c

Circuit 3C:
Motion Alarm

Time to take your distance sensor project

to the next level. Let’s imagine you want to

stop your cat from prowling around your

countertop. This circuit uses light, sound

and motion to scare away your cat when it

is detected by the distance sensor. Using a

servo motor, you can add a moving pop-up

to animate your alarm.

NEW CONCEPTS
MECHANISMS: This circuit gets really

fun when you start to use your servo to

animate the world around you. To do

this, you’ll need to connect your servo to

some physical mechanisms. Tape and hot

glue are easy ways to connect things to

your servo. You can also loop a paper clip

through the small holes in the servo arm to

serve as a linkage.

ASSEMBLY
If you have opted for the extra materials,

use the following instructions to create the

moving pop-up for your motion alarm.

1. Attach the servo mount of your choice.

The motor mounts also come with screws

to secure the mount to the motor. Once

you are finished with this circuit, you may

choose to add a screw to make for a more

robust mechanism. It is recommended you

upload your code and test the mechanism

before screwing it down.

2. Use needle-nose pliers to bend the

paper clip straight. Bend about 1 inch

of the paper clip 90 degrees. Then bend

the other end so it’s about 1/8 inch long.

Repeat this bend once more, making

a hook shape. You should now have a

linkage rod that looks something like this:

YOU
NEED

10
k

10
0k

33
0

T

R

V
C
C

T
r
i
g

E
c
h
o

G
N
D

HC-SR04

 RGB LED 3 330Ω RESISTORS PIEZO BUZZER 15 JUMPER WIRES SERVO

 TAPE PAPER CLIP NEEDLE-NOSE PLIERS MARKERS/PEN PAPER SCISSORS
(NOT INCLUDED)

 DISTANCE SENSOR

Linkage rods are found on many RC
airplanes, which use servo motors to

control the ailerons, elevators and
rudder.

6 6 : c i r cu i t 3 c

3. Attach the hook end of the

linkage rod to the end hole on your

servo mount. The motor should be

reattached to the baseplate with

Dual Lock.

4. Cut out the pop-up image of

your choice. We chose this public

domain menacing cat image

(http://sfe.io/cat). The image you

choose should be about 2.5 inches

x 2.5 inches and can be drawn or

printed. Leave a rectangular strip of paper under the image that is about 2 inches long.

5. Fold along the bottom of the image. Tape the bottom of the

pop-up to the underside of the breadboard baseplate on the

same side to which the servo is connected.

6. Tape the free end of the rod to the back

of your pop-up image, near the center.

7. Once you have the rest of the circuit built and the code

uploaded, you can fine-tune your moving pop-up and make

any necessary adjustments. Remember to wait until these

adjustments have been made before you screw the servo

mount onto the motor.

HOOKUP GUIDE
READY TO START HOOKING EVERYTHING UP? Check out the circuit diagram and

hookup table below to see how everything is connected.

6 7 : c i r cu i t 3 c

IOREF

RESET

SCL
SDA

AREF
GND

13
12

~11
~10

~9
8

7
~6
~5

4
~3

2
1

RX

TX

0

TXRX

13

3.3V

5V

GND

GND

VIN

A0

A1

A2

A3

A4

A5

PO
W

ER
AN

ALO
G IN

D
IG

ITA
L (P

W
M

 ~
)O

N

ISP

S
T

A
R

T
 S

O
M

E
T

H
IN

G

I/O

3.3V

5V

C
106

C
10

6C
106

+ –

+ –

+ –

+ –

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

a b c d e f g h i j

a b c d e f g h i j+ - + -

+ - + -
10k

100k

330

10k

100k

330

10k

100k

330

J U M P E R W I R E S

 5V to 5V

 GND to GND (-)

 D3 to J25

 D5 to J23

 D6 to J22

 D11 to E4

 D12 to E5

 D10 to J14

E3 to 5V (+)

E6 to GND(–)

E24 to GND(–)

J16 to GND(–)

R G B L E D A25(RED) + A24(GND)+ A23(GREEN)+ A22(BLUE)

3 3 0 Ω R E S I S TO R S
(O R A N G E , O R A N G E ,

B R OW N)
E22 to F22

E23 to F23

E25 to F25

D I S TA N C E S E N S O R

A3(VCC)+ A4(TRIG)+ A5(ECHO)+ A6(GND)

P I E Z O B U Z Z E R F14 (+)+ F16(-)

S E R V O L E A D S WHITE WIRE to D9

RED WIRE to 5V(+)

BLACK WIRE to GND(–)

T

VCC

Trig

Echo

GND

R

FL AT S IDE

6 8 : c i r cu i t 3 c

Open the Arduino IDE

Connect the RedBoard to a USB port on your computer.

 Open the Sketch:

 File > Examples > SIK-Guide-Code-master > SIK_CIRCUIT_3C-MOTION ALARM

 Select Upload to program the sketch on the RedBoard.

W H AT Y O U
S H O U L D S E E
The RGB LED will behave as in

your last circuit. It will be green

when objects are far, yellow

when they are midrange and

red when they are close. When

an object is close, the buzzer

will also beep, and the servo

will rotate back and forth. If you

decided to attach a pop-up, it

will move back and forth.

CODE TO NOTE

CONSTANTS:

const int trigPin
= 11;

Constants are variables that have been marked as “read-only”

and cannot have their value changed as the program progresses.

Constants are great for declaring pin number variables that will

not change throughout the program.

PROGRAM OVERVIEW

Check what distance the sensor is reading.

1: If the distance is less than 10 inches, make the RGB LED red. Then make the servo rotate back and

 forth and make the buzzer beep.

2: If the distance is between 10 and 20 inches, make the RGB LED yellow.

3: If the distance value is not equal to the fist two conditions, make the RGB LED green.

6 9 : c i r cu i t 3 c

NO TONE
FUNCTION:

noTone(pin_number);

In circuit 2A, you made songs using a buzzer and the tone()

function, but you gave the function three parameters: a pin

number, a frequency and a duration. You can leave out the third

parameter, and the tone will play until you change it or turn it

off. noTone() turns off a pin that has been activated with the

tone() command.

CODING CHALLENGES
CHANGE THE SERVO BEHAVIOR: Try changing the way your servo behaves

when the distance sensor is triggered.

CHANGE THE ALARM SETTINGS: Try altering the code so the alarm goes off

from much farther or closer distances.

ADD A SECOND MECHANISM: Time to use your imagination! Try your hand

at making different objects move with your servo motor. Don’t have a cat? Make an

interactive pop-up story, room alarm, treat dispenser or automatic fish feeder.

TROUBLESHOOTING

The RGB LED colors aren’t

working or a color is

missing

Check the connection for the wire and resistor connected to

each leg of the LED. Ensure the RGB LED is inserted in the

correct orientation.

The distance sensor

doesn’t seem to work

Open up the Serial Monitor on your computer. You should

see a stream of distances being printed in the monitor. If

they are all reading 0 or jumping around, check the wiring

on your sensor.

The distance sensor still

doesn’t work

Ultrasonic noise pollution will interfere with your

distance sensor readings. If you aim two distance

sensors at each other, they will confuse each other.

Some air-conditioning systems may also emit noises

in the ultrasonic range. Try pointing your sensor

away from the other distance sensors or moving to a

different location.

CODE TO NOTE

7 0 : c i r cu i t 3 c

A B C

S E R V O M OTO R S
D I S TA N C E
S E N S O R M OT I O N A L A R M

The servo doesn’t work

Make sure all of your servo wires are connected. Be

sure that the black wire is connected to the negative

rail and the red wire is connected to the positive rail.

Make sure you are using a digital pin that is capable

of PWM.

The pop-up is moving too much

or not enough

The two lines of code that pass angles to the servo

motor are myservo.write(45); and myservo.

write(135);. Try changing these angle values to

fine-tune your mechanism.

You’ve completed
Circuit 3C!
Continue to Project 4 to learn how to use an LCD in your circuits.

TROUBLESHOOTING

7 1 : c i r cu i t 4 a

PROJECT 4
Printing data to the Arduino Serial

Monitor is a great way to see data from the

RedBoard. But, what if you want to make

your project mobile and see sensor values

away from your computer? This project

will show you how to do exactly that. You’ll

learn about Liquid Crystal Displays

(LCDs) and how to print things like sensor

data and strings of words to the display.

N E W CO M P O N E N T S I N T R O D U C E D
I N T H I S P R OJ E C T
•   L I Q U I D C R Y S TA L D I S P L AY (L C D)
•   T M P 3 6 D I G I TA L T E M P E R AT U R E
 S E N S O R
•   4 X A A B AT T E R Y H O L D E R

N E W CO N C E P T S I N T R O D U C E D
I N T H I S P R OJ E C T
•   CO N T R A S T
•   P I X E L S
•   A L G O R I T H M S
•   B U T TO N D E B O U N C E
•   S T R I N G S
•   P O I N T E R S

Y O U W I L L L E A R N
•   H OW TO P R I N T S I M P L E M E S S AG E S
 TO A N L C D
•   H OW TO U S E A T E M P E R AT U R E
 S E N S O R
•   H OW TO P R I N T S E N S O R DATA TO
 A N L C D
•   H OW TO M A K E A N I N T E R AC T I V E
 G A M E T H AT I N CO R P O R AT E S T H E
 L C D

A B C

L C D “ H E L L O , W O R L D ! ” T E M P E R AT U R E S E N S O R “ D I Y W H O A M I ? ”
G A M E

7 2 : c i r cu i t 4 a

NEW COMPONENTS
CHARACTER LIQUID CRYSTAL
DISPLAY (LCD): Designed to show a

grid of letters, numbers and other special

characters, LCDs are great for printing

data and showing values. When current

is applied to this special kind of crystal,

it turns opaque. This is used in a lot of

calculators, watches and simple displays.

Adding an LCD to your project will make it

super portable and allow you to integrate

up to 32 characters (16x2) of information.

NEW CONCEPTS
CONTRAST: Pin 3 on the LCD controls

the contrast and brightness of the LCD.

Using a simple voltage divider with

a potentiometer, the contrast can be

adjusted. As you rotate the knob on the

potentiometer, you should notice that the

screen will get brighter or darker and that

the characters become more visible or

less visible. The contrast of LCDs is highly

dependent on factors such as temperature

and the voltage used to power them. Thus,

external contrast knobs are needed for

displays that cannot automatically account

for temperature and voltage changes.

PIXELS: If you look closely at the

characters on the LCD, you will notice

that they are actually made up of lots of

little squares. These little squares are

called pixels. The size of displays is often

represented in pixels. Pixels make up

character space, which is the number of

pixels in which a character can exist.

Here is a capital letter B as

created in pixels. The

character space in this

example is 6 pixels x 8 pixels.

Circuit 4A: LCD
“Hello, World!”

Printing “Hello, world!” is usually the first

thing that programming tutorials will have

you do in a new language. This guide starts

by blinking an LED, but now we’re going

to print out real text using a Liquid Crystal

Display (LCD).

YOU
NEED LCD DISPLAY POTENTIOMETER 16 JUMPER WIRES

IOREF

RESET

SCL
SDA

AREF
GND

13
12

~11
~10

~9
8

7
~6
~5

4
~3

2
1

RX

TX

0

TXRX

13

3.3V

5V

GND

GND

VIN

A0

A1

A2

A3

A4

A5

PO
W

ER
AN

ALO
G IN

D
IG

ITA
L (P

W
M

 ~
)O

N

ISP

S
T

A
R

T
 S

O
M

E
T

H
IN

G

I/O

3.3V

5V

C
106

C
10

6C
106

+ –

+ –

+ –

+ –

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

a b c d e f g h i j

a b c d e f g h i j+ - + -

+ - + -

HOOKUP GUIDE
READY TO START HOOKING EVERYTHING UP? Check out the circuit diagram and

hookup table below to see how everything is connected.

7 3 : c i r cu i t 4 a

J U M P E R W I R E S

 5V to 5V

 GND to GND (-)

 D8 to E28

 D9 to E27

 D10 to E26

 D11 to E25

 D12 to E20

 D13 to E18

E30 to GND (-)

E29 to 5V(+)

E19 to GND (-) E16 to 5V(+)

E15 to GND (-)

E9 to E17

E8 to GND (-)

E10 to 5V(+)

L C D D I S P L AY A15-A30 (pin 1 on A15)

P OT E N T I O M E T E R A8 + A9 + A10

KNOW YOUR
LCD PINS
1 Ground
2 VDD(5V)
3 Pin3 Contrast adjust (0–5V)
4 Register Select
5 Read/Write Select
6 Enable
7 Data lines d0 (not used)
8 Data lines d1 (not used)
9 Data lines d2 (not used)
10 Data lines d3 (not used)
11 Data lines d4 (4-bit data transfer)
12 Data lines d5 (4-bit data transfer)
13 Data lines d6 (4-bit data transfer)
14 Data lines d7 (4-bit data transfer)
15 Backlight power (5V)
16 Backlight Ground (GND)

7 4 : c i r cu i t 4 a

PROGRAM OVERVIEW

1 Import the LCD library.

2 Make an LCD object called “lcd” that will be controlled using pins 8, 9, 10, 11, 12 and 13.

3
“Begin” the LCD. This sets the dimensions of the LCD that you are working with (16 x 2). It needs to be

called before any other commands from the LCD library are used.

4 Clear the display.

5 Set the cursor to the top left corner lcd.setCursor(0,0); then print “Hello, world!"

6
Move the cursor to the first space of the lower line lcd.setCursor(0,1); then print the number of

seconds that have passed since the RedBoard was last reset.

W H AT Y O U
S H O U L D S E E
The LCD screen will show

“Hello, world!” and on the row

below a counter will count

every second that passes.

Adjusting the potentiometer

will change the contrast on the

LCD screen.

Open the Arduino IDE

Connect the RedBoard to a USB port on your computer.

 Open the Sketch:

 File > Examples > SIK-Guide-Code-master > CIRCUIT_4A-LCD HELLO WORLD

 Select UPLOAD to program the sketch on the RedBoard.

7 5 : c i r cu i t 4 a

CODE TO NOTE

LCD LIBRARY:

#include <LiquidCrystal.h>

Includes the LiquidCrystal library in your

program.

LCD LIBRARY INSTANCE:

LiquidCrystal LCD_name(RS_pin,
enable_pin, d4, d5, d6, d7);

As with servos, you need to create an LCD

object and give it a name (you can make

more than one). The numbers in the brackets

are pins on the RedBoard that connect to

specific pins on the LCD.

LCD BEGIN:

lcd.begin(16, 2);

This line initializes the LCD object and tells

the program the LCD’s dimensions. In this

case it is 2 rows of 16 characters each.

LCD CLEAR:

lcd.clear();

This method clears all the pixels on the

display.

LCD CURSOR:

lcd.setCursor(0,0);

Moves the cursor to a point on the 16x2 grid

of characters. Text that you write to the LCD

will start from the cursor. This line is starting

back at position (0,0).

LCD PRINT:

lcd.print(“Hello, world!”);

Prints a string of characters to the LCD

starting at the cursor position.

CODING CHALLENGES
CHANGE THE MESSAGE: Try changing the code to display another message.

SHOW HOURS, MINUTES AND SECONDS: Try adding some code so that the

display shows the hours, minutes and seconds that have passed since the RedBoard

was last reset.

COUNT BUTTON PRESSES: By adding a button to the circuit, you can count the

number of times the button was pressed or have the button change what displays.

7 6 : c i r cu i t 4 a

TROUBLESHOOTING

The screen is blank or

flickering

Adjust the contrast by twisting the potentiometer. Try both

directions until you see characters display. Do not twist

the potentiometer past its stopping points. Also, check the

potentiometer, and make sure it's wired correctly.

Not working at all
Double check the circuit’s wiring. There are a lot of wires in

this circuit, and it’s easy to mix up one or two.

Rectangles in first row

If you see 16 rectangles (like “ ”) on the first row, it may be

due to the jumper wires being loose on the breadboard. This is

normal and can happen with other LCDs wired in parallel with

a microcontroller. Make sure that the wires are fully inserted

into the breadboard, then try pressing the reset button and

adjusting the contrast using the potentiometer.

Still not working?

Jumper wires unfortunately can go “bad” from getting bent

too much. The copper wire inside can break, leaving an open

connection in your circuit. If you’re certain that your circuit is

wired correctly and that your code is error-free and uploaded

but you are still encountering issues, try replacing one or more

of the jumper wires for the component that is not working.

A

L C D “ H E L L O , W O R L D ” T E M P E R AT U R E S E N S O R “ D I Y W H O A M I ” G A M E

You’ve completed
Circuit 4A!
Continue to circuit 4B to learn about using temperature sensors.

B C

7 7 : c i r cu i t 4 b

NEW COMPONENTS
TMP36 TEMPERATURE SENSOR:
This temperature sensor has three legs.

One connects to 5V, one to ground, and the

voltage output from the third leg varies

proportionally to changes in temperature.

By doing some simple math with this

voltage, we can measure temperature in

degrees Celsius or Fahrenheit.

TM
P

NEW CONCEPTS
ALGORITHMS: An algorithm is a process

used in order to achieve a desired result.

Often, the information needed to create

an algorithm lives in the part’s datasheet.

This sketch uses a few formulas to turn

a voltage value into a temperature

value, making them all part of the larger

temperature-retrieving algorithm. The first

formula takes the voltage read on analog

pin 0 and multiplies it to get a voltage value

from 0V–5V:

voltage = analogRead(A0) * 0.004882813;

The number we are multiplying by comes

from dividing 5V by the number of samples

the analog pin can read (1024), so we get:

5 / 1024 = 0.004882813.

The second formula takes that 0–5V value

and calculates degrees Celsius:

degreesC = (voltage - 0.5) * 100.0;

The reason 0.5V is subtracted from the

calculated voltage is because there is a 0.5V

offset, mentioned on page 8 of the TMP36

datasheet found here: http://sfe.io/TMP36.

It’s then multiplied by 100 to get a value

that matches temperature.

The last formula takes the Celsius

temperature and converts it to a

Fahrenheit temperature using the standard

conversion formula:

degreesF = degreesC * (9.0/5.0) + 32.0;

Together, these three formulas make up the

algorithm that converts voltage to degrees

Fahrenheit.

Circuit 4B:
Temperature
Sensor

Want to create a DIY environmental

monitor or weather station? You can use

a small, low-cost sensor like the TMP36

to make devices that track and respond

to temperature. In this activity you will

also use the LCD screen to display sensor

readings, a common use for LCDs in

electronics projects.

YOU
NEED

TMP

 LCD DISPLAY POTENTIOMETER TEMPERATURE SENSOR 19 JUMPER WIRES

IOREF

RESET

SCL
SDA

AREF
GND

13
12

~11
~10

~9
8

7
~6
~5

4
~3

2
1

RX

TX

0

TXRX

13

3.3V

5V

GND

GND

VIN

A0

A1

A2

A3

A4

A5

PO
W

ER
AN

ALO
G IN

D
IG

ITA
L (P

W
M

 ~
)O

N

ISP

S
T

A
R

T
 S

O
M

E
T

H
IN

G

I/O

3.3V

5V

C
106

C
10

6C
106

+ –

+ –

+ –

+ –

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

a b c d e f g h i j

a b c d e f g h i j+ - + -

+ - + -

HOOKUP GUIDE
READY TO START HOOKING EVERYTHING UP? Check out the circuit diagram and

hookup table below to see how everything is connected.

TM
P

7 8 : c i r cu i t 4 b

HEADS UP! Double check the polarity

of the TMP36 temperature sensor before

powering the RedBoard. It can become

very hot if it is inserted backward!

J U M P E R W I R E S

 5V to 5V

 GND to GND(-)

 D8 to E28

 D9 to E27

 D10 to E26

 D11 to E25

 D12 to E20

 D13 to E18

 A0 to E2

 E30 to GND(-)

 E29 to 5V(+)

 E19 to GND(-)

 E16 to 5V(+)

 E15 to GND(-)

 E9 to E17

 E8 to GND(-)

 E10 to 5V(+)

 E1 to GND(-)

 E3 to 5V(+)

L C D S C R E E N A15-A30 (pin 1 on A15)

T M P 3 6 S E N S O R A1 (GND) + A2 (SIG) + A3(5V)

P OT E N T I O M E T E R A8 + A9 + A10

GND

S IGNAL

V+

TM
P

7 9 : c i r cu i t 4 b

PROGRAM OVERVIEW

1 Get the analog value from the TMP36 and convert it back to a voltage between 0 and 5V.

2 Calculate the degrees Celsius from this voltage.

3 Calculate the degrees Fahrenheit from this voltage.

4 Clear the LCD.

5 Print the degrees C with a label on the first row.

6 Print the degrees F with a label on the second row.

7 Wait for a second before taking the next reading.

W H AT Y O U
S H O U L D S E E
The LCD will show the temperature

in Celsius and Fahrenheit. The

temperature readings will update

every second. An easy way to see the

temperature change is to press your

finger to the sensor.

Open the Arduino IDE

Connect the RedBoard to a USB port on your computer.

 Open the Sketch:

 File > Examples > SIK-Guide-Code-master > SIK_CIRCUIT_4B-TEMPERATURE SENSOR

 Select UPLOAD to program the sketch on the RedBoard.

8 0 : c i r cu i t 4 b

CODE TO NOTE

VOLTAGE
CONVERSION
ALGORITHMS

Many of the sensors that you will use with your microcontroller

work by changing a voltage in some predictable way in response to

a property of the world (like temperature, light or magnetic fields).

Often, you will need to build an algorithm that converts these

voltages to the desired value and units. The temperature sensor is

a great example of this code. We use three equations to convert a

voltage value into degrees in C and F.

voltage = analogRead(A0) * 0.004882813;
degreesC = (voltage - 0.5) * 100.0;
degreesF = degreesC * (9.0/5.0) + 32.0;

CODING CHALLENGES
DISPLAY THE TEMPERATURE IN DEGREES KELVIN: Try adding an equation so

that the temperature is displayed in degrees Kelvin. (You will have to look up the formula

for converting from degrees Celsius or Fahrenheit to Kelvin.)

DISPLAY A BAR GRAPH: By changing the code you can display the temperature as a

bar graph instead of a number.

DISPLAY VALUES FROM ANOTHER SENSOR: You can swap out the TMP36 for a

potentiometer, photoresistor or other sensor and display the new set of values.

ADD AN RGB LED: Add an RGB LED that changes color based on the temperature.

8 1 : c i r cu i t 4 b

TROUBLESHOOTING

Sensor is

heating up

Make sure that you wired the temperature sensor correctly.

The temperature sensor can get warm to the touch if it is wired

incorrectly. Disconnect power from your microcontroller, rewire

the circuit, and connect it back to your computer.

Temperature

value is

unchanging

Try pinching the sensor with your fingers to heat it up or pressing

a bag of ice against it to cool it down. Also, make sure that the

wires are connected properly to the temperature sensor.

Values not

printing to

screen

If you see text but no temperature values, there could be an error

in your code. If you see no text at all, adjust the LCD contrast.

A B

L C D “ H E L L O , W O R L D ” T E M P E R AT U R E S E N S O R “ D I Y W H O A M I ? ” G A M E

C

You’ve completed
Circuit 4B!
Continue to circuit 4C to learn how to make a “DIY Who Am I?” game.

8 2 : c i r cu i t 4 c

NEW COMPONENTS
4XAA BATTERY HOLDER: Included in

your kit is a 4-cell AA battery holder. The

5-inch cable is

terminated with

a standard barrel

jack connector.

The connector

mates with the

barrel jack on

the RedBoard, allowing you to easily make

your project battery powered.

NEW CONCEPTS
BUTTON DEBOUNCE: When working

with momentary buttons, it is usually

necessary to add button debouncing to

your code. This is because the code that

is meant to execute when the button

is pressed may execute faster than

you can press and release the button

(microcontrollers are fast!). The simplest

way to debounce a button is to add a

small delay to the end of your code. This

sketch adds a 500 millisecond delay at

the end of loop() to account for this.

This simple addition will prevent a word

from getting skipped when you press the

button for the game.

For a more complex example of button

debouncing, in the Arduino IDE open File >

Examples > 02.Digital > Debounce.

STRINGS: Strings are used to print words

and even sentences to an LCD or the Serial

Monitor. Strings are actually just an array

of characters with a null character at the

end to let the program know where the end

of the string is.

ARRAY OF STRINGS: In circuit

2A you used an array of characters to

represent musical notes. In this program,

you’ll want to make an array of strings.

Strings use multiple characters to make

words, so you’ll need to use a little trick

to put them in an array. The trick is to use

a pointer. When you declare your array,

you’ll use an asterisk (*) after the char

data type, as follows:

const char* arrayOfStrings =
{“Feynman” “Sagan”, “Tyson”,
“Nye”};

Circuit 4C: “DIY
Who Am I?”
Game

“DIY Who Am I?” is based on the popular

Hedbanz game or HeadsUp! app. It’s a fun

party game in which a player holds an

LCD screen to his/her forehead, and other

players give hints to help the player with

the LCD guess the word on the screen.

YOU
NEED LCD DISPLAY POTENTIOMETER PUSH BUTTON PIEZO BUZZER 20 JUMPER WIRES

AA BATTERY HOLDER DUAL LOCK TAPE 4 AA BATTERIES SCISSORS
(NOT INCLUDED)

8 3 : c i r cu i t 4 c

POINTERS: As an advanced

programming topic, pointers can be

difficult to understand at first. For now,

think of pointers as a variable that

“points” to the value contained in a certain

address in memory. In this sketch, the

char* variable points to arrayOfStrings

address and returns the character values to

create a list of strings.

BATTERY HOLDER
ASSEMBLY
Batteries are polarized. They have a

positive end and a negative end. The

battery holder has images indicating which

end goes in which orientation for each cell.

To attach the battery holder to the

breadboard baseplate, first cut two strips of

Dual Lock that are roughly 1 inch x 1 inch

each, or 2.5cm x 2.5cm.

Remove the adhesive backing, and attach

one piece to the back of the battery holder.

Adhere the second piece to the bottom of

the breadboard baseplate (directly in the

middle is recommended, as this will come

into play in Project 5).

Last, press the battery holder to the

baseplate so that the two pieces of Dual

Lock snap together. Insert the batteries into

the holder. Remember that batteries are

polarized. Remove the pack before building

the circuit, so it doesn’t slide around.

S T O P !
Disconnect the battery pack from

power while building your circuit.

Working on your circuit while

connected to a power source risks

damaging your components.

HOOKUP GUIDE
READY TO START HOOKING EVERYTHING UP? Check out the circuit diagram and

hookup table below to see how everything is connected.

IOREF

RESET

SCL
SDA

AREF
GND

13
12

~11
~10

~9
8

7
~6
~5

4
~3

2
1

RX

TX

0

TXRX

13

3.3V

5V

GND

GND

VIN

A0

A1

A2

A3

A4

A5

PO
W

ER
AN

ALO
G IN

D
IG

ITA
L (P

W
M

 ~
)O

N

ISP

S
T

A
R

T
 S

O
M

E
T

H
IN

G

I/O

3.3V

5V

C
106

C
10

6C
106

+ –

+ –

+ –

+ –

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

a b c d e f g h i j

a b c d e f g h i j+ - + -

+ - + -

8 4 : c i r cu i t 4 c

J U M P E R W I R E S

 5V to 5V

 GND to GND(-)

 D8 to E28

 D9 to E27

 D10 to E26

 D11 to E25

 D12 to E20

 D13 to E18

 D6 to J6

 D2 to J1

 E30 to GND(-)

 E29 to 5V(+)

 E19 to GND(-)

 E16 to 5V(+)

 E15 to GND(-)

 E9 to E17

 E8 to GND(-)

 E10 to 5V(+)

 J8 to GND(-)

 J3 to GND(-)

L C D S C R E E N A15-A30 (pin 1 on A15)

P U S H B U T TO N D1/D3 to G1/G3

P OT E N T I O M E T E R A8 to A9 to A10

B U Z Z E R G6(+) to G8(–)

8 5 : c i r cu i t 4 c

PROGRAM OVERVIEW

1 Generate a random order for the words to be displayed.

2 Show the starting countdown on the LCD.

3

Start a loop that will run 25 times (there are 25 words total). For each round:

A: Print the round number and the word to be guessed.

B: Display a countdown timer in the lower right-hand corner

of the screen that counts down the time limit for each round.

C: If the time limit runs out, play the losing song, print

“Game Over” and show the player’s final score.

D: If the player presses the button before the

time limit is up, advance to the next word.

4 If the player gets through all 25 words, play the winning song and print “YOU WIN!”

W H AT Y O U
S H O U L D S E E
The game begins with the category

of words, then runs through a short

countdown. When the first round starts,

the word to be guessed is displayed at

top left, and a countdown starts in the

bottom right. Each time the button is

pressed (before the timer expires) a new

word is displayed. If you win or lose, a

short song will play.

Open the Arduino IDE

Connect the RedBoard to a USB port on your computer.

 Open the Sketch:

 File > Examples > SIK-Guide-Code-master > SIK_CIRCUIT_4C-DIY WHO AM I

 Select UPLOAD to program the sketch on the RedBoard.

8 6 : c i r cu i t 4 c

CODE TO NOTE

ARRAY OF STRINGS:

const char* array_name [array_
length] =

{“string1”, “string2”...};

Makes an array of strings. The strings are stored

as constants, so they can’t be changed once the

program starts.

ROUNDING FUNCTION:

round(value_to_round);

This math function rounds a number up or down to

the nearest whole number.

RANDOM FUNCTION:

random(min, max);

This function takes a set of numbers and generates

a pseudo-random number from that set.

BUTTON DEBOUNCE:

delay(500);

This 500 millisecond delay at the end of the loop

adds button debounce so that erroneous button

presses are not detected by the RedBoard.

USER FUN FUNCTIONS TO NOTE CTIONS

generateRandomOrder();

Makes an array that is a random ordering of the

numbers from 1–25. This is used to display words

for the game in a random order.

showStartSequence();
Shows the category of words on the LCD, then

displays a countdown before the game starts.

gameOver();
Plays a sound and shows the text “Game Over”

along with the player’s final score.

winner();
Shows the text “YOU WIN!” and

plays a winning sound.

8 7 : c i r cu i t 4 c

CODING CHALLENGES
CHANGE THE TIME LIMIT: Changing the time limit variable will change the

difficulty of the game.

CHANGE THE WORDS IN THE WORD LIST: Try changing the categories and

words. The number of words in your words array must match the value of the variable

arraySize .

CHANGE THE WINNING AND LOSING SONGS: By changing the tones in the

winner() and gameover() functions you can change which song plays at the

end of the game.

TROUBLESHOOTING

The screen is blank or

flickering

Adjust the contrast by twisting the potentiometer. If it’s

incorrectly adjusted, you won’t be able to read the text.

Also, check the potentiometer to make sure it’s connected

correctly.

No sound is coming from

the buzzer

Check the wiring to the buzzer and the polarity. Make sure

you are using the correct pin as defined in your code. You

may add a potentiometer volume knob if you desire.

The button doesn't work

or words are getting

skipped before they are

guessed

If the button isn’t working, check your wiring. If words

are being skipped when the button is pressed, increase the

debounce delay found at the end of the loop. It should be

500 milliseconds by default. Increasing this number by tiny

increments will help with this problem.

You’ve completed
Circuit 4C!
Continue to Project 5 to learn how to build your first robot!

A B C

L C D “ H E L L O , W O R L D ” T E M P E R AT U R E S E N S O R “ D I Y W H O A M I ? ” G A M E

8 8 : c i r cu i t 5 a

PROJECT 5

Ah, robots. One of the most iconic and

exciting electronics applications. In

this project, you will learn all about DC

motors and motor drivers by building

your own robot! You’ll first learn motor

control basics. Then you’ll control a

tethered robot by sending it commands

over serial. Last, you will unleash your

robot by removing the tether and making it

autonomous! By adding a distance sensor,

the robot can learn how to avoid obstacles.

N E W CO M P O N E N T S I N T R O D U C E D
I N T H I S P R OJ E C T
•   T B 6 6 1 2 F N G M OTO R D R I V E R
•   S W I TC H
•   DC G E A R M OTO R
•   W H E E L

N E W CO N C E P T S I N T R O D U C E D
I N T H I S P R OJ E C T
•   I N P U T V O L TAG E
•   I N T E G R AT E D C I R C U I T S
•   H - B R I DG E M OTO R D R I V E R
•   A S C I I C H A R AC T E R S
•   CO N V E R T I N G S T R I N G S
•   AU TO N O M O U S V E H I C L E S

Y O U W I L L L E A R N
•   H OW TO CO N T R O L A M OTO R
 U S I N G A M OTO R D R I V E R
•   H OW TO S E N D S E R I A L CO M M A N D S
 TO C R E AT E A R E M OT E - CO N T R O L L E D
 R O B OT
•   H OW TO B U I L D A R O B OT T H AT
 U S E S S E N S O R S TO R E AC T TO I T S
 E N V I R O N M E N T

A B C

M OTO R B A S I C S R E M OT E- CO N T R O L L E D R O B OT AU TO N O M O U S R O B OT

8 9 : c i r cu i t 5 a

Circuit 5A:
Motor Basics

In this circuit, you will learn the basic

concepts behind motor control. Motors

require a lot of current, so you can’t

drive them directly from a digital pin on

the RedBoard. Instead, you’ll use what

is known as a motor controller or motor

driver board to power and spin the motor

accordingly.

NEW COMPONENTS
SWITCHES are components that control

the open-ness or closed-ness of an electric

circuit. Just like the momentary

buttons used in earlier circuits,

this type of switch can only

exist in one of two states: open

or closed. However, a switch is different in

that it will stay in the position it was last in

until it is switched again.

THE MOTORS in your Inventor’s Kit

have two main parts: a small DC motor

that spins quickly and a plastic gearbox

that gears down the output from the hobby

motor so that it is slower but stronger,

allowing it to move your robot. The motors

have a clever design allowing you to attach

things that you want to spin fast (like a

small fan or flag) to the hobby motor, and

things that you want to be strong (like a

wheel) to the plastic axle sticking out the

side of the motor. The included wheels just

so happen to fit on the plastic axles.

TB6612FNG MOTOR DRIVER: If you

switch the direction of current through

a motor by swapping the positive and

negative leads, the motor will spin in

the opposite direction. Motor controllers

contain a set of

switches (called

an H-bridge)

that lets you

easily control the

direction of one or

more motors. The

TB6612FNG Motor Driver takes commands

for each motor over three wires (two wires

control direction, and one controls speed),

and then uses these signals to control the

current through two wires attached to your

motor.

NEW CONCEPTS
VOLTAGE IN (VIN): This circuit utilizes

the VIN pin found with the other RedBoard

power pins. The VIN pin outputs a voltage

that varies based on whatever voltage the

RedBoard is powered with. If the RedBoard

is powered through the USB port, then the

YOU
NEEDV

M

V
C
C

G
N
D

A
0
1

A
0
2

B
0
2

B
0
1

G
N
D

P
W
M
A

A
I
2

A
I
1

S
T

B
Y

B
I
1

B
I
2

P
W
M
B

G
N
D

M
OT
O
R

D
R
I
V
E
RMOTOR DRIVER GEAR MOTOR SWITCH 16 HOOKUP WIRES

VM

VCC

GND

A01

A02

B02

B01

GND

PWMA

AI2

AI1

ST
BY

BI1

BI2

PWMB

GND

MOTOR
DRIVER

IOREF

RESET

SCL
SDA

AREF
GND

13
12

~11
~10

~9
8

7
~6
~5

4
~3

2
1

RX

TX

0

TXRX

13

3.3V

5V

GND

GND

VIN

A0

A1

A2

A3

A4

A5

PO
W

ER
AN

ALO
G IN

D
IG

ITA
L (P

W
M

 ~
)O

N

ISP

S
T

A
R

T
 S

O
M

E
T

H
IN

G

I/O

3.3V

5V
C

106

C
10

6C
106

9 0 : c i r cu i t 5 a

The guts of an integrated circuit,
visible after removing the top.

IO
R

EF

R
ES

ET

S
C

L
S

D
A

A
R

EF
G

N
D 13 12

~
11

~
10 ~

9 8 7
~

6
~

5 4
~

3 2 1
R

X

TX

0

TX
RX

13

3.
3V

5V G
N

D

G
N

D

VI
N

A
0

A
1

A
2

A
3

A
4

A
5

POWER ANALOG IN

DIGITAL (PWM ~)

ON

ISP

S T A R T S O M E T H I N G

I/O

3.3
V 5V

C106

C106

C106

voltage on VIN will be about 4.6–5V.

However, if you power the RedBoard

through the barrel jack (highlighted

in the picture), the VIN pin will reflect

that voltage. For example, if you were

to power the barrel jack with 9V, the

voltage out on VIN would also be 9V.

Notice that the voltage range listed on the

RedBoard near the barrel jack is 7–15V.

This means that the recommended input

voltage should always be at or above

7V or should be at or below 15V. Never

exceed this range.

INTEGRATED CIRCUITS (ICS) AND
BREAKOUT BOARDS: An Integrated

Circuit (IC) is a collection of electronic

components — resistors, transistors,

capacitors, etc. — all stuffed into a tiny

chip and connected together to achieve

a common goal. They come in all sorts of

flavors, shapes and sizes. The chip that

powers the RedBoard, the ATmega328, is

an IC. The chip on the motor driver, the

TB6612FNG, is another IC.

Integrated circuits are often too

small to work with by hand. To make

working with ICs easier and to make

them breadboard-compatible, they

are often added to a breakout board,

which is a printed circuit board that

connects all the IC’s tiny legs to larger

ones that fit in a breadboard. The

motor driver board in your kit is an

example of a breakout board.

9 1 : c i r cu i t 5 a

Once you’re finished with

this project, removing

the motor driver from

the breadboard can

be difficult due to its

numerous legs. To make

this easier, use the

included screwdriver as a

lever to gently pry it out.

Be careful not to bend the

legs as you remove it.

The motors are polarized.

However, motors are unique

in that they will still work

when the two connections are

reversed. They will just spin

in the opposite direction when

hooked up backward. To keep

things simple, always think of

the red wire as positive (+) and

the black wire as negative (-).

MEET YOUR MOTOR CONTROLLER.
The TB6612FNG Motor Driver may look complicated,

but it’s easy to use. Three pins on the right (PWMA,

A12 and A11) control the two pins on the left (A01

and A02). The same is true for channel

B. Motors require more current,

which is why the VIN voltage is

needed.

Most ICs have polarity and usually

have a polarity marking in one

of the corners. The motor driver is

no exception. Be sure to insert the

motor driver as indicated in the circuit

diagrams. The motor driver pins are

explained in the table on the next page.

9 2 : c i r cu i t 5 a

PIN
LABEL FUNCTION POWER/INPUT/

OUTPUT NOTES

VM Motor Voltage Power
This is where you provide power

for the motors (2.2V to 13.5V)

VCC Logic Voltage Power

This is the voltage to power

the chip and talk to the

microcontroller (2.7V to 5.5V)

GND Ground Power

Common Ground for both motor

voltage and logic voltage (all

GND pins are connected)

STBY Standby Input

Allows the H-bridges to work

when high (has a pull-down

resistor, so it must actively be

pulled high)

AIN1/BIN1
Input 1 for

channels A/B
Input

One of the two inputs that

determine the direction

AIN2/BIN2
Input 2 for

channels A/B
Input

One of the two inputs that

determine the direction

PWMA/
PWMB

PWM input for

channels A/B
Input

PWM input that

controls the speed

A01/B01
Output 1 for

channels A/B
Output

One of the two outputs

to connect the motor

A02/B02
Output 2 for

channels A/B
Output

One of the two outputs to

connect the motor

VM

VCC

GND

A01

A02

B02

B01

GND

PWMA

AI2

AI1

ST
BY

BI1

BI2

PWMB

GND

MOTOR
DRIVER

VM
VCC
GND
A01
A02
B02
B01

GND

PWMA
AIN2
AIN1
STBY
BIN1
BIN2
PWMB
GND

IOREF

RESET

SCL
SDA

AREF
GND

13
12

~11
~10

~9
8

7
~6
~5

4
~3

2
1

RX

TX

0

TXRX

13

3.3V

5V

GND

GND

VIN

A0

A1

A2

A3

A4

A5

PO
W

ER
AN

ALO
G IN

D
IG

ITA
L (P

W
M

 ~
)O

N

ISP

S
T

A
R

T
 S

O
M

E
T

H
IN

G

I/O

3.3V

5V

C
106

C
10

6C
106

+ –

+ –

+ –

+ –

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

a b c d e f g h i j

a b c d e f g h i j+ - + -

+ - + -

VM

VCC

GND

A01

A02

B02

B01

GND

PWMA

AI2

AI1

ST
BY

BI1

BI2

PWMB

GND

MOTOR
DRIVER

9 3 : c i r cu i t 5 a

CO N N E C T I O N T Y P E S

 REDBOARD CONNECTION BREADBOARD CONNECTION

J U M P E R W I R E S

 5V to 5V

 GND to GND (-)

 VIN to A1

 D8 to J5

 D9 to J6

 D10 to J7

 D11 to J1

 D12 to J2

 D13 to J3

 D7 to I27

5V (+) to 5V (+)

GND (-) to GND (-)

A2 to 5V (+)

A3 to GND (-)

J4 to 5V (+)

I26 to GND (-)

M OTO R A4(RED +)

A5(BLACK -)

M OTO R D R I V E R C1-C8 to G1-G8 (VM on C1, PWMA on G1)

S W I TC H F25 + F26 + F27

HOOKUP GUIDE
READY TO START HOOKING EVERYTHING UP? Check out the circuit diagram and

hookup table below to see how everything is connected.

PROGRAM OVERVIEW

1
Check to see if a command has been sent through the Serial Monitor. If a command has been sent, then set

the motor speed to the number that was sent over the Serial Monitor.

2

Check to see if the switch is ON or OFF.

A: If the switch is ON, drive the motor at the motor speed.

B: If the switch is OFF, stop the motor.

9 4 : c i r cu i t 5 a

W H AT Y O U
S H O U L D S E E
Flip the switch. The motor will spin

at the speed set by the motor speed

variable (default is 0). Open the Serial

Monitor, type any number from 30

to 255 or -30 to -255 , and then press

Enter. Changes in speed will be hard

to notice. Send 0 to stop the motor.

CODE TO NOTE

PARSING INTEGERS:

Serial.parseInt();

.parseInt() receives integer numbers from the Serial

Monitor. It returns the value of the number that it receives,

so you can use it like a variable.

SERIAL AVAILABLE:

Serial.available();

This command checks how many bytes of data are being

sent to the RedBoard. If it is greater than 0, then a message

has been sent. It can be used in an if statement to run code

only when a command has been received.

Open the Arduino IDE

Connect the RedBoard to a USB port on your computer.

 Open the Sketch:

 File > Examples > SIK-Guide-Code-master > CIRCUIT_5A-MOTOR BASICS

 Select UPLOAD to program the sketch on the RedBoard.

9 5 : c i r cu i t 5 a

YOU
NEED

CODING CHALLENGES
MAKE THE SWITCH CHANGE DIRECTIONS: Change the code so

that the position of the switch changes the direction of the motor instead

of turning it on and off.

REPLACE THE SWITCH WITH A BUTTON: Try wiring a button into the circuit

instead of the sliding switch. Now the motor only turns on when you push the button.

REPLACE THE SWITCH WITH A SENSOR: Try changing the code so that the

motor is activated by another sensor, like the photoresistor.

TROUBLESHOOTING

Motor not

spinning

Check the wiring to the motor driver. There are a lot of connections,

and it’s easy to mix one of them up with another. Double check

the polarity of the motor driver. All the text should face the same

direction as everything else.

Switch not

working

Make sure that you are hooked up to the middle pin and one side pin

on the switch, and not both side pins.

Still not

working?

Jumper wires unfortunately can go “bad” from getting bent too

much. The copper wire inside can break, leaving an open connection

in your circuit. If you are certain that your circuit is wired correctly

and that your code is error-free and uploaded but you are still

encountering issues, try replacing one or more of the jumper wires

for the component that is not working.

A

M OTO R B A S I C S R E M OT E - CO N T R O L L E D R O B OT AU TO N O M O U S R O B OT

B C

You’ve completed
Circuit 5A!
Continue to circuit 5B to construct a remote-controlled robot.

9 6 : c i r cu i t 5 b

NEW CONCEPTS
ASCII CHARACTERS: ASCII is

a standard for character encoding,

formalized in the 1960s, that assigns

numbers to characters. When typing on

a computer keyboard, each character

you type has a number associated with

it. This is what allows computers to know

whether you are typing a lowercase “a,”

an uppercase “A” or a random character

such as ampersand (&). In this experiment,

you will be sending characters to the Serial

Monitor to move your remote-controlled

robot. When you send a character, the

microcontroller is interpreting that as a

specific number. ASCII tables available

online (http://sfe.io/ASCII) make it easier

to know which character is represented by

which number.

CONVERTING STRINGS TO
INTEGERS: String variables hold words

like “dog” or “Robert Smith” that are made

up of multiple characters. Arduino has a

set of special built-in methods for string

variables that you can call by putting a

period after the variable name, as follows:

string_variable_name.toInt();

The .toInt() method converts the string

to a number, and there are a dozen other

methods that can do things like tell you

the length of a word or change all of the

characters in a string to uppercase or

lowercase.

ASSEMBLY
Before you build this circuit, you’ll

need to make a few modifications to the

breadboard baseplate to make it more

robot-like!

1. Cut and attach

two short pieces

of Dual Lock

tape to the very

corners of the

baseplate on the

side located under

the breadboard.

Circuit 5B:
Remote-
Controlled
Robot

In this circuit, you’ll control two motors

and build your own remote-controlled

roving robot! You will also learn how to

read information from a serial command

so that you can use the Serial Monitor to

tell the robot in what direction to move

and how far to move.

2 WHEELS DUAL LOCK TAPE BINDER CLIP SCISSORS

YOU
NEED V

M

V
C
C

G
N
D

A
0
1

A
0
2

B
0
2

B
0
1

G
N
D

P
W
M
A

A
I
2

A
I
1

S
T

B
Y

B
I
1

B
I
2

P
W
M
B

G
N
D

M
OT
O
R

D
R
I
V
E
RMOTOR DRIVER 2 GEAR MOTORS SWITCH 16 JUMPER WIRES

(NOT INCLUDED)

9 7 : c i r cu i t 5 b

2. CUT TWO MORE STRIPS that

are 1.25 inches (3.175cm) long and ¾

inch (1.9cm) wide. Remove the adhesive

backing, and attach the strips to the two

motors. Be sure that your motors are

mirror images of each other when you

attach the Dual Lock.

3. PRESS THE MOTORS TO THE
BASEPLATE, connecting the two Dual

Lock surfaces. Try to get the motors as

straight as possible so your robot will

drive straight.

4. THE BOTTOM OF YOUR
BASEPLATE should look like the

image. Remember that the two motors

should be mirror images of

each other.

5. ATTACH THE WHEELS by sliding

them onto the plastic shafts on the

gearmotor. The shaft is flat on one side, as

is the wheel coupler. Align the two, and

then press to fit the wheel onto the shaft.

6. LAST, CLIP THE BINDER CLIP

onto the back end of the robot. This

will act as a caster as the robot drives

around. Once you’re finished, it’s time

to build the circuit.

NOTE: You will likely have a piece of Dual

Lock in the center of your baseplate from

Project 4. It will be used in the next circuit.

IOREF

RESET

SCL
SDA

AREF
GND

13
12

~11
~10

~9
8

7
~6
~5

4
~3

2
1

RX

TX

0

TXRX

13

3.3V

5V

GND

GND

VIN

A0

A1

A2

A3

A4

A5

PO
W

ER
AN

ALO
G IN

D
IG

ITA
L (P

W
M

 ~
)O

N

ISP

S
T

A
R

T
 S

O
M

E
T

H
IN

G

I/O

3.3V

5V

C
106

C
10

6C
106

+ –

+ –

+ –

+ –

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

a b c d e f g h i j

a b c d e f g h i j+ - + -

+ - + -

HOOKUP GUIDE
READY TO START HOOKING EVERYTHING UP? Check out the circuit diagram and

hookup table below to see how everything is connected.

VM

VCC

GND

A01

A02

B02

B01

GND

PWMA

AI2

AI1

ST
BY

BI1

BI2

PWMB

GND

MOTOR
DRIVER

9 8 : c i r cu i t 5 b

J U M P E R W I R E S

 5V to 5V

 GND to GND (-)

 VIN to A1

 D8 to J5

 D9 to J6

 D10 to J7

 D11 to J1

 D12 to J2

D13 to J3

 D7 to I27

5V (+) to 5V (+)

GND (-) to GND (-)

A2 to 5V (+)

A3 to GND (-)

J4 to 5V (+)

I26 to GND (-)

M OTO R 1 (R I G H T) A4(RED +)

A5(BLACK -)

M OTO R 2 (L E F T) A7(RED +)

A6(BLACK -)

M OTO R D R I V E R C1-C8 to G1-G8 (VM on C1, PWMA on G1)

S W I TC H F25 + F26 + F27

1 2

9 9 : c i r cu i t 5 b

PROGRAM OVERVIEW

1 Prompt the user to enter a command and list the shortcuts for the directions.

2 Wait for a serial command.

3

Read the serial command and set that as the direction:

A: If the direction is “f”, drive both motors forward for the distance.

B: If the direction is “b”, drive both motors backward for the distance.

C: If the direction is “r”, drive the right motor backward and the left motor forward.

D: If the direction is “l”, drive the left motor backward and the right motor forward.

W H AT Y O U
S H O U L D S E E
Start by flipping the switch to

the ON position. Open the Serial

Monitor. It should prompt you to

enter a command. When you type

a direction into the Serial Monitor

the robot will move or turn.

Open the Arduino IDE

Connect the RedBoard to a USB port on your computer.

 Open the Sketch:

 File > Examples > SIK-Guide-Code-master > SIK_CIRCUIT_5B-REMOTE CONTROL ROBOT

 Select UPLOAD to program the sketch on the RedBoard.

1 0 0 : c i r cu i t 5 b

CODE TO NOTE

PARSING STRINGS:

Serial.readStringUntil(‘ ‘);

Reads a serial message until the first space and saves it

as a string.

STRING TO INT:

string_name.toInt();

If a number is stored in a string variable, this will

convert it to an integer, which can be used in math

equations.

FUNCTIONS TO NOTE

rightMotor(motor_distance); Drive the right motor long enough to travel the specified

distance.

leftMotor(motor_distance);
Drive the left motor long enough to travel the specified

distance.

CODING CHALLENGES
READ MORE COMMANDS: Add code to the sketch that takes not only direction but

also distance. The two should be separated by a character the code can parse out and

know where the next value begins.

ADD MORE COMMANDS: This sketch only uses four of the many ASCII characters. Use

different keys to move the robot in different ways or have commands turn on LEDs.

TROUBLESHOOTING

Motor not

spinning

Check the wiring to the motor driver. There are a lot of connections,

and it’s easy to mix one of them up with another. If only one motor is

working, check the wires coming from the nonworking motor. Make

sure they have not come loose from the motor.

Switch not

working

Make sure that you are hooked up to the middle pin and one side pin on

the switch.

1 0 1 : c i r cu i t 5 b

A B

M OTO R B A S I C S R E M OT E - CO N T R O L L E D R O B OT AU TO N O M O U S R O B OT

Still not

working?

Jumper wires unfortunately can go “bad” from getting bent too much. The

copper wire inside can break, leaving an open connection in your circuit.

If you are certain that your circuit is wired correctly and that your code is

error-free and uploaded but you are still encountering issues, try replacing

one or more of the jumper wires for the component that is not working.

You’ve completed
Circuit 5B!
Continue to circuit 5C to learn how to use sensors to program

your robot to navigate on its own.

C

TROUBLESHOOTING

1 0 2 : c i r cu i t 5 c

NEW CONCEPTS
AUTONOMOUS VEHICLES: The robot

that you will build uses a simple sensor

to avoid obstacles. This kind of system

is used in Mars rovers, autonomous cars

and the bots built for all kinds of robotics

competitions. Understanding this example

code will set you on the path to building

bigger and better autonomous vehicles!

Keep in mind that the ultrasonic distance

sensor needs a clear path to avoid

unwanted interruptions in your robot’s

movements. Keep the distance sensor clear

of any wires from your circuit.

ASSEMBLY
BATTERY HOLDER ATTACHMENT:
If you did not attach the battery pack in

Project 4, cut two pieces of Dual Lock,

about 1 inch x 1 inch (2.5cm x 2.5cm) each.

Remove the adhesive backing, and attach

one piece to the back of the battery holder.

Adhere the second piece to the bottom of

the baseplate, directly in the middle.

Press the battery holder to the baseplate

so that the two pieces of Dual Lock snap

together. Insert the batteries into the

holder if you have not done so already.

Remember that batteries are polarized and

can only go in one way.

Clip the binder clip back on, and you are

ready to roll!

Circuit 5C:
Autonomous
Robot

Free the robots! In this circuit, you’ll

unplug your robot and program it to

navigate the world on its own. When the

robot senses an object using the distance

sensor, it will back up and change course.

YOU
NEED V

M

V
C
C

G
N
D

A
0
1

A
0
2

B
0
2

B
0
1

G
N
D

P
W
M
A

A
I
2

A
I
1

S
T

B
Y

B
I
1

B
I
2

P
W
M
B

G
N
D

M
OT
O
R

D
R
I
V
E
R

T

R

VCC
Tri

g
Ech

o
GND

H
C
-
S
R
0
4

MOTOR DRIVER SWITCH 20 JUMPER WIRES 2 GEAR MOTORS

DISTANCE SENSOR DUAL LOCK TAPE BINDER CLIP 2 WHEELS SCISSORS

HEADS UP!
Make sure your switch is in the

OFF position. As soon as the code is

finished uploading, your robot will

begin driving. Make sure it cannot

drive off a table or other high surface

and injure itself.

(NOT INCLUDED)

HOOKUP GUIDE
READY TO START HOOKING EVERYTHING UP? Check out the circuit diagram and

hookup table below to see how everything is connected.

IOREF

RESET

SCL
SDA

AREF
GND

13
12

~11
~10

~9
8

7
~6
~5

4
~3

2
1

RX

TX

0

TXRX

13

3.3V

5V

GND

GND

VIN

A0

A1

A2

A3

A4

A5

PO
W

ER
AN

ALO
G IN

D
IG

ITA
L (P

W
M

 ~
)O

N

ISP

S
T

A
R

T
 S

O
M

E
T

H
IN

G

I/O

3.3V

5V

C
106

C
10

6C
106

+ –

+ –

+ –

+ –

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

a b c d e f g h i j

a b c d e f g h i j+ - + -

+ - + -

VM

VCC

GND

A01

A02

B02

B01

GND

PWMA

AI2

AI1

ST
BY

BI1

BI2

PWMB

GND

MOTOR
DRIVER

1 2

1 0 3 : c i r cu i t 5 c

T

VCC

Trig

Echo

GND

R

J U M P E R W I R E S

 5V to 5V

 GND to GND (-)

 VIN to A1

 D8 to J5

 D9 to J6

 D10 to J7

 D11 to J1

 D12 to J2

 D6 to E18

 D5 to E19

 D13 to J3

 D7 to I27

5V (+) to 5V (+)

GND (-) to GND (-)

A2 to 5V (+)

A3 to GND (-)

J4 to 5V (+)

I26 to GND (-)

E17 to 5V (+)

E20 to GND (-)

M OTO R 1 (R I G H T) A4(RED +)

A5(BLACK -)

M OTO R 2 (L E F T) A7(RED +)

A6(BLACK -)

M OTO R D R I V E R C1-C8 to G1-G8 (VM on C1, PWMA on G1)

S W I TC H F25 + F26 + F27

D I S TA N C E S E N S O R A17(VCC) + A18(TRIG) + A19(ECHO) + A20(GND)

1 0 4 : c i r cu i t 5 c

PROGRAM OVERVIEW

1 If the switch is turned on,

2

Then start sensing the distance.

 A: If no obstacle is detected, then drive forward.

 B: If an obstacle is detected, stop, back up, and turn right.

 C: If no obstacle is detected, start driving forward again.

TROUBLESHOOTING WARNING
HVAC systems in offices and schools have been known to interfere with the

performance of the ultrasonic distance sensor. If you are experiencing sporadic

behavior from your circuit, check your surroundings. If there are numerous air

ducts in the room you are using, try moving to a different room that does not have

ducts. The airflow from these ducts can interfere with the waves sent from the

sensor, creating noise and resulting in bad readings.

W H AT Y O U
S H O U L D S E E
When the switch is turned off,

the robot will sit still. When

the switch is turned on, the

robot will drive forward until

it senses an object. When it

senses an object in its path, it

will reverse and then turn to

avoid the obstacle.

Open the Arduino IDE

Connect the RedBoard to a USB port on your computer.

 Open the Sketch:

 File > Examples > SIK-Guide-Code-master > SIK_CIRCUIT_5C-AUTONOMOUS ROBOT

 Select UPLOAD to program the sketch on the RedBoard.

1 0 5 : c i r cu i t 5 c

CODING CHALLENGES
CHANGE THE DISTANCE AT WHICH YOUR ROBOT REACTS: Try

changing the distance at which your robot stops and turns away from an obstacle.

CHANGE THE BEHAVIOR OF THE ROBOT WHEN IT SENSES AN
OBSTACLE: Try changing the code so that your robot does something different

when it senses an obstacle.

TROUBLESHOOTING

The robot drives

backward and/or turns

in the wrong direction

Check the wiring of your motors and the way that they are

mounted to the baseplate. If one of your motors is flipped

around, reposition it, or switch its black and red wires on the

breadboard (this will reverse the direction that it turns).

The robot runs into

obstacles

You can try gently bending the pins of the distance sensor so

that it points straight ahead. The robot will get stuck if one

wheel hits an object that it is driving past (the distance sensor

won’t see the obstacle unless it’s in front of the robot).

The robot drives slow

or not at all, though the

RedBoard is powered

Try installing fresh batteries. These slow or sporadic behaviors

are symptoms that your robot may be running out of power.

Please note that the 4 AA batteries output about 6 or 7V,

which is just below the recommended input voltage for the

RedBoard. You can also use 9V batteries with a proper adapter,

though their battery life won’t last as long.

Still not working?

Jumper wires unfortunately can go “bad” from getting bent

too much. The copper wire inside can break, leaving an

open connection in your circuit. If you are certain that your

circuit is wired correctly and that your code is error-free and

uploaded but you are still encountering issues, try replacing

one or more of the jumper wires for the component that is

not working.

1 0 6 : go i ng further

You’ve Completed
All the Circuits in the
SparkFun Inventor’s Kit!
EXPLORE MORE WITH THE DIGITAL GUIDE

You can find a digital version of this guide online. In it are links that provide more

in-depth explanations of components and concepts.

www.sparkfun.com/SIKguide

RESOURCES AND GOING FURTHER

The No. 1 question asked when one finishes the SIK is, “What’s next?!” Now that you have

a taste of what you can build, the sky’s the limit! For additional circuits, projects and

expansion ideas for your Inventor’s Kit, please visit our SIK resource webpage.

www.sparkfun.com/SIKnext

VISIT US ONLINE

Our website has hundreds of tutorials to teach you more about embedded electronics and

programming. Search for new projects to inspire your creativity, learn about new concepts

and components, and discover the vast catalog of SparkFun product-specific guides to take

your skills to the next level.

www.learn.sparkfun.com

+ –

+ –

+ –

+ –

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

a b c d e f g h i j

a b c d e f g h i j+ - + -

+ - + -

TXRX

13

O
N

ISP

S
T

A
R

T
 S

O
M

E
T

H
IN

G

I/O

3.3V

5V

C
106

C
10

6C
106

IOREF

RESET

SCL
SDA

AREF
GND

13
12

~11
~10

~9
8

7
~6
~5

4
~3

2
1
0

3.3V

5V

GND

GND

VIN

A0

A1

A2

A3

A4

A5

PO
W

ER
AN

ALO
G IN

D
IGITAL (PW

M
~

)

TX

RX

1 0 7 : go i ng further

NOTES
PROJECT: DATE:

1 0 8 : go i ng further

B L A C K

B r o W n

r e D

o r A n g e

Y e L L o W

g r e e n

B L u e

V i o L e t

g r A Y

W h i t e

0

1

2

3

4

5

6

7

8

9

g r A Y

W h i t e

100M g r A Y ±0 . 0 5 %

1g

S i L V e r

g o L D

B L A C K

B r o W n

r e D

o r A n g e

Y e L L o W

g r e e n

B L u e

V i o L e t

0 . 0 1

0 . 1

1

1 0

1 0 0

1 K

1 0 K

1 0 0 K

1 M

1 0 MP
L
A
C

e
 V

A
L
u

e

S i L V e r

g o L D

B r o W n

r e D

g r e e n

B L u e

V i o L e t

±1 0 %

±5 %

±1 %

±2 %

±0 . 5 %

±0 . 2 5 %

±0 . 10 %

B r o W n

r e D

o r A n g e

Y e L L o W

1 0 0 P P M

5 0 P P M

1 5 P P M

2 5 P P M

M
u

L
t

iP
L
ie

r

t
o

L
e
r

A
n

C
e

t
e
M

P
e
r

A
t

u
r

e
C

o
e
f
f
iC

ie
n

t

4 - B A n D

5 - B A n D

6 - B A n D

1 0 K Ω ±5%

2 3 6 Ω ±1%

2 8 7 MΩ ±5% 1 0 0 P P M

Know Your Resistors
COMMON RESISTOR VALUES: Resistors are electronic components that have a

specific, never-changing electrical resistance. The resistor’s resistance limits the flow

of electrons through a circuit. Included in your kit are both 330Ω resistors and 10kΩ

resistors, two very common values that can be used in numerous circuits.

IDENTIFYING OTHER RESISTORS
MOST RESISTORS, not just the ones included with your SparkFun Inventor’s Kit, use

the same system of colored bands to identify how much resistance they can provide to a

circuit. FOR MOST BASIC RESISTORS, SIMPLY ADD TOGETHER VALUES OF
THE FIRST THREE COLOR BANDS TO GET THE TOTAL RESISTANCE VALUE.

10k

100k

330

10k

100k

330

YOUR KIT INCLUDES:

1 0KΩ RES ISTOR 330Ω RES I STOR

Want to take your kit to the next level?
The SparkFun Qwiic Connect System uses cables to easily connect boards,

sensors and much more to your Inventor’s Kit – no soldering required! Check

out some of our favorite Qwiic boards below, and learn how to easily expand

your kit and build customized circuits at sparkfun.com/qwiic.

PROXIMITY SENSOR
ADD OBJECT DETECTION TO YOUR PROJECT

The SparkFun Proximity Sensor Breakout is a simple IR presence

and ambient light sensor utilizing the VCNL4040.

TRIPLE AXIS ACCELEROMETER
DETECT MOTION AND ORIENTATION

This breakout board enables the tiny MMA8452Q accelerometer

to communicate over I2C in your project.

GPS CHIP, SAM-M8Q
EQUIP YOUR PROJECT WITH GPS TECHNOLOGY

The SparkFun SAM-M8Q GPS Breakout is a high quality GPS board

(antenna included), with equally impressive configuration options.

Even More Online
SIK RESOURCES: sparkfun.com/SIK
DIGITAL GUIDE: sparkfun.com/SIKguide
EDUCATION RESOURCES: sparkfun.com/SIKedu
TUTORIALS AND VIDEOS: learn.sparkfun.com
CUSTOMER SUPPORT: sparkfun.com/support
CALL US! 303-284-0979

Copyright © 2019 by SparkFun Electronics, Inc. All rights reserved. The SparkFun

Inventor’s Kit for the SparkFun RedBoard features, specifications, system requirements

and availability are subject to change without notice. All other trademarks contained

herein are the property of their respective owners.

The SIK Guide for the SparkFun Inventor's Kit for the SparkFun RedBoard is licensed

under the Creative Commons Attribution-ShareAlike 4.0 International License. To view a

copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/ or send a letter to

Creative Commons, P.O. Box 1866, Mountain View, CA 94042, USA.

CONTAINING MORE THAN A DOZEN COMPONENTS AND
SENSORS, THE SPARKFUN INVENTOR’S KIT TEACHES YOU
HOW TO ASSEMBLE AND USE FIVE INTERCONNECTED
PROJECTS TO UNLEASH YOUR INNER INNOVATOR WITH
ARDUINO! NO PREVIOUS PROGRAMMING, SOLDERING OR
ELECTRONICS EXPERIENCE IS NEEDED.

THE S IK TEACHES BAS IC PROGRAMMING , FOR WHICH YOU WILL
NEED A COMPUTER WITH AN INTERNET CONNECT ION .

EXPERIENCING A PROBLEM NOT COVERED
BY THE TROUBLESHOOTING GUIDE?
We are constantly working to improve your SparkFun Inventor’s Kit experience.

Visit our SIK errata page at sparkfun.com/SIKerrata to find a solution.

