

Grove-2.5A-DC-Current-Sensor-ACS70331

The Grove - 2.5A DC Current Sensor(ACS70331) is a high precision DC current sensor
based on ACS70331. The ACS70331 is a chip series, this module uses
ACS70331EESATR-2P5U3, which is Allegro’s high sensitivity,current sensor IC for <2.5
A current sensing applications. It incorporates giant magneto-resistive (GMR)
technology that is 25 times more sensitive than traditional Hall-effect sensors to sense
the magnetic field generated by the current flowing through the low resistance,
integrated primary conductor.

The Grove - 2.5A DC Current Sensor(ACS70331) can measure the DC current up to
2.5A and has a base sensitivity of 800mV/A. This sensor do not support AC current, if
you want to measure the AC load please check the:

Feature

• 1 MHz bandwidth with response time <550 ns

• Low noise: 8 mA(rms) at 1 MHz

• 1.1 mΩ primary conductor resistance results in low power loss

• High DC PSRR enables use with low accuracy power supplies or batteries (3 to 4.5 V
operation)

• Analog output

Specification

Parameter Value

Supply voltage 3.3V / 5V

Operating ambient temperature -40 – 85℃

Storage temperature - 65°C – 125°C

Working Voltage <100V

Current sensing range 0 – 2.5A

Sensitivity 800mV/A(Typ.)

Output interface Analog

Input interface Screw terminal

Working Principle

There are two types of current sensing: direct and indirect. Classification is mainly
based on the technology used to measure current.

Direct sensing:

• Ohm's Law

Indirect seneing:

• Faraday's Law of Induction

• Magnetic field sensors

• Faraday Effect

The Grove - 2.5A DC Current Sensor(ACS70331) uses magnetic field sensors
technology. And there are three kinds of Magnetic field sensors technology:

• Hall effect

• Flux gate sensors

• Magneto-resistive current sensor

The Grove - 2.5A DC Current Sensor(ACS70331) is based on the Magneto-resistive
current sensor priciple, which is also known as GMR. A magneto-resistor (MR) is a two

terminal device which changes its resistance parabolically with applied magnetic field.
This variation of the resistance of MR due to the magnetic field is known as the
Magnetoresistive Effect.

The internal construction of the ACS70331 QFN package is shown in Figure 2. The die
sits above the primary current path such that magnetic field is produced in plane with
the GMR elements on the die. GMR elements 1 and 2 sense field in the +X direction for
positive IP current flow, and GMR elements 3 and 4 sense field in the –X direction for
positive IP current flow. This enables differential measurement of the current and
rejection of external stray fields.

Figure 1. ACS70331 Internal Construction

The four GMR elements are arranged in a Wheatstone bridge configuration as shown in
Figure 2 such that the output of the bridge is proportional to the differential field sensed
by the four elements, rejecting common fields.

Figure 2. Wheatstone Bridge Configuration

https://github.com/SeeedDocument/Grove-2.5A_DC_Current_Sensor-ACS70331/raw/master/img/principle1.jpg
https://github.com/SeeedDocument/Grove-2.5A_DC_Current_Sensor-ACS70331/raw/master/img/principle2.jpg

Hardware Overview

Figure 3. Pinout

Platforms Supported

Arduino Raspberry Pi BeagleBone Wio LinkIt ONE

Getting Started

Danger
The human body is forbidden to touch the module during the test, otherwise there is
danger of electric shock.

Play With Arduino

https://github.com/SeeedDocument/Grove-2.5A_DC_Current_Sensor-ACS70331/raw/master/img/pinout.jpg

Materials required

Seeeduino V4.2 Base Shield 2.5A DC Current Sensor(ACS70331)

In addition, you can consider our new Seeeduino Lotus M0+, which is equivalent to the
combination of Seeeduino V4.2 and Baseshield.

Note
1 Please plug the USB cable gently, otherwise you may damage the port. Please use
the USB cable with 4 wires inside, the 2 wires cable can't transfer data. If you are not
sure about the wire you have, you can click here to buy
2 Each Grove module comes with a Grove cable when you buy. In case you lose the
Grove cable, you can click here to buy.

Hardware Connection

• Step 1. Connect the Grove - 2.5A DC Current Sensor(ACS70331) to the A0 port of
the Base Shield.

• Step 2. Connect the positive and negative poles of the circuit to be tested to the
corresponding positive and negative poles of the screw terminal.

Tip
If you reverse the positive and negative poles, the reading will be reversed. This sensor
need calibration before use, so please do not power on the circuit first.

• Step 3. Plug Grove - Base Shield into Seeeduino.

• Step 4. Connect Seeeduino to PC via a USB cable.

https://www.seeedstudio.com/Seeeduino-Lotus-Cortex-M0-p-2896.html
https://www.seeedstudio.com/Micro-USB-Cable-48cm-p-1475.html
https://www.seeedstudio.com/Grove-Universal-4-Pin-Buckled-20cm-Cable-%285-PCs-pack%29-p-936.html

Figure 4. We use the DC Power Supply in this demo, please set the current to 0A or do not

power on it at first

Software

Attention
If this is the first time you work with Arduino, we strongly recommend you to see Getting
Started with Arduinobefore the start.

• Step 1. Download the Grove Current Sensor Library from Github.

• Step 2. In the /example/ folder, you can find the demo code. Here we take
the Grove_2_5A_Current_Sensor.ino for instance. Just click the
Grove_2_5A_Current_Sensor.ino to open the demo. Or you can copy the following
code:

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

#ifdef ARDUINO_SAMD_VARIANT_COMPLIANCE

 #define RefVal 3.3

 #define SERIAL SerialUSB

#else

 #define RefVal 5.0

 #define SERIAL Serial

#endif

//An OLED Display is required here

//use pin A0

#define Pin A0

// Take the average of 10 times

const int averageValue = 10;

int sensorValue = 0;

float sensitivity = 1000.0 / 800.0; //1000mA per 800mV

http://wiki.seeedstudio.com/Getting_Started_with_Arduino/
http://wiki.seeedstudio.com/Getting_Started_with_Arduino/
https://github.com/Seeed-Studio/Grove_Current_Sensor
https://github.com/SeeedDocument/Grove-2.5A_DC_Current_Sensor-ACS70331/raw/master/img/103020193-connect.png

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

float Vref = 265; //Firstly,change this!!!

void setup()

{

 SERIAL.begin(9600);

}

void loop()

{

 // Read the value 10 times:

 for (int i = 0; i < averageValue; i++)

 {

 sensorValue += analogRead(Pin);

 // wait 2 milliseconds before the next loop

 delay(2);

 }

 sensorValue = sensorValue / averageValue;

 // The on-board ADC is 10-bits

 // Different power supply will lead to different reference sources

 // example: 2^10 = 1024 -> 5V / 1024 ~= 4.88mV

 // unitValue= 5.0 / 1024.0*1000 ;

 float unitValue= RefVal / 1024.0*1000 ;

 float voltage = unitValue * sensorValue;

 //When no load,Vref=initialValue

 SERIAL.print("initialValue: ");

 SERIAL.print(voltage);

 SERIAL.println("mV");

 // Calculate the corresponding current

 float current = (voltage - Vref) * sensitivity;

 // Print display voltage (mV)

 // This voltage is the pin voltage corresponding to the current

 /*

 voltage = unitValue * sensorValue-Vref;

 SERIAL.print(voltage);

 SERIAL.println("mV");

 */

 // Print display current (mA)

 SERIAL.print(current);

 SERIAL.println("mA");

 SERIAL.print("\n");

 // Reset the sensorValue for the next reading

 sensorValue = 0;

 // Read it once per second

 delay(1000);

}

• Step 3. Upload the demo. If you do not know how to upload the code, please
check How to upload code.

• Step 4. Open the Serial Monitor of Arduino IDE by click Tool-> Serial Monitor. Or
tap the Ctrl + Shift + M key at the same time. Set the baud rate to 9600.

• Step 5. Calibration
When there is no current flowing, the sensor will still have a small output value. We
call this value zero offset.

Figure 5. The zero offset of this board is 283.20mV，Converted into current is 22.75mA

Due to the presence of zero offset, the sensor will also have a reading when there is no
current. So we set a parameter Vref to fix it, you can find it in the code block above.

Line 21:

1

2

float Vref = 265;

//Vref is zero drift value, you need to change this value to the value you

actually measured before using it.

In the demo code, we set the Vref to 265, however, the zero offset value varies from
board to board. As you know, the board we use in this demo is 288.09. So let's modify
the Line 21:

1 float Vref = 283.20;

http://wiki.seeedstudio.com/Upload_Code/
https://github.com/SeeedDocument/Grove-2.5A_DC_Current_Sensor-ACS70331/raw/master/img/ca.jpg

Then save the code and upload the code again, follow the Step 2. and Step 3. Now let's

see：

Figure 6. Now the current zero offset turns to 0mA

When the current output becomes to 0mA or a small value, you have completed the
calibration.

• Step 5. Now it's all yours, you can power up the current. Please feel free to use it,
remember this is a 2.5A DC Current Sensor, current cannot exceed 2.5A!

If you want to know the calculation formula of the result, please refer to the FAQ Q1

Play with Raspberry

http://wiki.seeedstudio.com/Grove-2.5A-DC-Current-Sensor-ACS70331/#faq
https://github.com/SeeedDocument/Grove-2.5A_DC_Current_Sensor-ACS70331/raw/master/img/afca.jpg

Materials required

Raspberry pi Grove Base Hat for RasPi 2.5A DC Current Sensor

Hardware Connection

• Step 1. Plug the Grove Base Hat into Raspberry Pi.

• Step 2. Connect the Grove - 2.5A DC Current Sensor(ACS70331) to port A0 of the
Base Hat.

• Step 3. Connect the positive and negative poles of the circuit to be tested to the
corresponding positive and negative poles of the screw terminal.

Figure 7. We use the DC Power Supply in this demo, please set the current to 0A or do not

power on it at first

Tip
If you reverse the positive and negative poles, the reading will be reversed. This sensor
need calibration before use, so please do not power on the circuit first.

• Step 4. Power the Raspberry Pi via the Micro-USB cable.

https://github.com/SeeedDocument/Grove-2.5A_DC_Current_Sensor-ACS70331/raw/master/img/103020193-connect_pi.png

Attenton
You can power the Raspberry Pi by computer USB port or DC adapter, however, if you
are using the Raspberry pi 3B+, we strongly recommend you to power it by DC adapter,
if you use the USB port of the PC, you may damage the Raspberry Pi 3B+.

Software

• Step 1. Follow Setting Software to configure the development environment.

• Step 2. Download the source file by cloning the grove.py library.

1

2

cd ~

git clone https://github.com/Seeed-Studio/grove.py

• Step 3. Excute following commands to run the code.
1

2

cd grove.py/grove # to enter the demo file folder

python grove_current_sensor.py 0 2.5A # to run the demo program

Then the terminal will output as following:

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

pi@raspberrypi:~/grove.py/grove $ python grove_current_sensor.py 0 2.5A

pin_voltage(mV):

270

current(mA):

13.0

()

pin_voltage(mV):

270

current(mA):

13.0

()

pin_voltage(mV):

270

current(mA):

13.0

()

pin_voltage(mV):

269

current(mA):

11.0

()

pin_voltage(mV):

270

current(mA):

13.0

()

^CTraceback (most recent call last):

 File "grove_current_sensor.py", line 200, in <module>

 main()

 File "grove_current_sensor.py", line 185, in main

 time.sleep(1)

http://wiki.seeedstudio.com/Grove_Base_Hat_for_Raspberry_Pi/#installation
https://github.com/Seeed-Studio/grove.py

32 KeyboardInterrupt

Tap Ctrl + C to quit.

Note
Please note the second command, There are two parameters after the file name:

• 0 means the sensor is connected to port A0. If you connect the sensor to port A2,
then you need to change this parameter to 2. This parameter has a range of 0-7,
but if you use the Grove base hat, you can only use 0/2/4/6 because of the physical
limitations of the interface.

• 2.5A means the current sensor type is 2.5A DC

Sensor Current type Parameter Value

Grove - 2.5A DC Current Sensor(ACS70331) DC 2.5A

Grove - ±5A DC/AC Current Sensor (ACS70331) DC 5A_DC

AC 5A_AC

Grove - 10A DC Current Sensor (ACS725) DC 10A

This series has three current sensors, the parameter list is as above

• Step 4 Calibration.

When there is no current flowing, the sensor will still have a small output value. We
call this value zero offset. As you can see, in the step 3, the zero offset of this board
is 270mV, converted into current is 13mA.

Due to the presence of zero offset, the sensor will also have a reading when there
is no current. So we set a parameter Vref to fix it, you can find it in the python
grove_current_sensor.py. For the Grove - 2.5A DC Current Sensor(ACS70331),
we set the Vref to 260 by default, however the zero offset varies from board to
board. That's why we need to do the calibration first.

Check the python code below：

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

#!/usr/bin/env python

-*- coding: utf-8 -*-

The MIT License (MIT)

Copyright (C) 2018 Seeed Technology Co.,Ltd.

This is the library for Grove Base Hat

which used to connect grove sensors for Raspberry Pi.

'''

This is the code for

 11

 12

 13

 14

 15

 16

 17

 18

 19

 20

 21

 22

 23

 24

 25

 26

 27

 28

 29

 30

 31

 32

 33

 34

 35

 36

 37

 38

 39

 40

 41

 42

 43

 44

 45

 46

 47

 48

 49

 50

 51

 52

 53

 54

 55

 56

 57

 58

 59

 60

 61

 62

 63

 64

 65

 66

 67

 - `Grove - 2.5A DC current sensor <https://www.seeedstudio.com/Grove-

2-5A-DC-Current-Sensor-ACS70331-p-2929.html>`_

 - `Grove - 5A AC/DC current sensor <https://www.seeedstudio.com/Grove-

5A-DC-AC-Current-Sensor-ACS70331-p-2928.html>`_

 - `Grove - 10A current sensor <https://www.seeedstudio.com/Grove-

10A-DC-Current-Sensor-ACS725-p-2927.html>`_

Examples:

 .. code-block:: python

 import time

 from grove_current_sensor import Current

 pin = 0

 sensor_type = "2.5A"

 #if use 10A current sensor input: pin = 0 , sensor_type = "10A"

 if (sensor_type == "2.5A"):

 sensitivity = 1000.0 / 800.0

 Vref = 260

 if (sensor_type == "5A_DC"):

 sensitivity = 1000.0 / 200.0

 Vref = 1498

 if (sensor_type == "5A_AC"):

 sensitivity = 1000.0 / 200.0

 Vref = 1498

 if (sensor_type == "10A"):

 sensitivity = 1000.0 / 264.0

 Vref = 322

 averageValue = 500

 ADC = Current()

 while True:

 if(sensor_type == "5A_AC"):

 pin_voltage =

ADC.get_nchan_vol_milli_data(pin,averageValue)

 current =

ADC.get_nchan_AC_current_data(pin,sensitivity,Vref,averageValue)

 else:

 temp =

ADC.get_nchan_current_data(pin,sensitivity,Vref,averageValue)

 current = temp[0]

 pin_voltage = temp[1]

 current = round(current)

 print("pin_voltage(mV):")

 print(pin_voltage)

 print("current(mA):")

 print(current)

 print()

 time.sleep(1)

'''

import sys

import time

from grove.i2c import Bus

ADC_DEFAULT_IIC_ADDR = 0X04

ADC_CHAN_NUM = 8

 68

 69

 70

 71

 72

 73

 74

 75

 76

 77

 78

 79

 80

 81

 82

 83

 84

 85

 86

 87

 88

 89

 90

 91

 92

 93

 94

 95

 96

 97

 98

 99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

REG_RAW_DATA_START = 0X10

REG_VOL_START = 0X20

REG_RTO_START = 0X30

REG_SET_ADDR = 0XC0

__all__ = ['Current','Bus']

class Current():

 '''

 Grove Current Sensor class

 '''

 def __init__(self,bus_num=1,addr=ADC_DEFAULT_IIC_ADDR):

 '''

 Init iic.

 Args:

 bus_num(int): the bus number;

 addr(int): iic address;

 '''

 self.bus = Bus(bus_num)

 self.addr = addr

 def get_nchan_vol_milli_data(self,n,averageValue):

 '''

 Get n chanel data with unit mV.

 :param int n: the adc pin.

 :param int averageValue: Average acquisition frequency.

 Returns:

 int: voltage value

 '''

 val = 0

 for i in range(averageValue):

 data =

self.bus.read_i2c_block_data(self.addr,REG_VOL_START+n,2)

 val += data[1]<<8|data[0]

 val = val / averageValue

 return val

 def get_nchan_current_data(self,n,sensitivity,Vref,averageValue):

 '''

 2.5A/5A DC/10A cunrrent sensor get n chanel data with unit mA.

 :param int n: the adc pin.

 :param float sensitivity: The coefficient by which voltage is

converted into current.

 :param int Vref: Initial voltage at no load.

 :param int averageValue: Average acquisition frequency.

 Returns:

 int: current value

 '''

 val = 0

 for i in range(averageValue):

 data =

self.bus.read_i2c_block_data(self.addr,REG_VOL_START+n,2)

 val += data[1]<<8|data[0]

 val = val / averageValue

 currentVal = (val - Vref) * sensitivity

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

 return currentVal,val

 def get_nchan_AC_current_data(self,n,sensitivity,Vref,averageValue):

 '''

 5A current sensor AC output and get n chanel data with unit mA.

 :param int n: the adc pin.

 :param float sensitivity: The coefficient by which voltage is

converted into current.

 :param int Vref: Initial voltage at no load.

 :param int averageValue: Average acquisition frequency.

 Returns:

 int: current value

 '''

 sensorValue = 0

 for i in range(averageValue):

 data=self.bus.read_i2c_block_data(self.addr,REG_VOL_START+n,2)

 val=data[1]<<8|data[0]

 if(val > sensorValue):

 sensorValue=val

 time.sleep(0.00004)

 currentVal = ((sensorValue - Vref) * sensitivity)*0.707

 return currentVal

ADC = Current()

def main():

 if(len(sys.argv) == 3):

 pin = int(sys.argv[1])

 sensor_type = sys.argv[2]

 if (pin < 8 and (sensor_type == "2.5A" or sensor_type == "5A_DC"

or sensor_type == "5A_AC" or sensor_type == "10A")):

 if (sensor_type == "2.5A"):

 sensitivity = 1000.0 / 800.0

 Vref = 260

 if (sensor_type == "5A_DC"):

 sensitivity = 1000.0 / 200.0

 Vref = 1498

 if (sensor_type == "5A_AC"):

 sensitivity = 1000.0 / 200.0

 Vref = 1498

 if (sensor_type == "10A"):

 sensitivity = 1000.0 / 264.0

 Vref = 322

 averageValue = 500

 while True:

 if(sensor_type == "5A_AC"):

 pin_voltage =

ADC.get_nchan_vol_milli_data(pin,averageValue)

 current =

ADC.get_nchan_AC_current_data(pin,sensitivity,Vref,averageValue)

 else:

 temp =

ADC.get_nchan_current_data(pin,sensitivity,Vref,averageValue)

 current = temp[0]

 pin_voltage = temp[1]

182

183

184

185

186

187

188

189

190

 current = round(current)

 print("pin_voltage(mV):")

 print(pin_voltage)

 print("current(mA):")

 print(current)

 print()

 time.sleep(1)

 else:

 print("parameter input error!")

 print("Please enter parameters for example: python

grove_current_sensor 0 2.5A")

 print("parameter1: 0-7")

 print("parameter2: 2.5A/5A_DC/5A_AC/10A")

 else:

 print("Please enter parameters for example: python

grove_current_sensor 0 2.5A")

 print("parameter1: 0-7")

 print("parameter2: 2.5A/5A_DC/5A_AC/10A")

if __name__ == '__main__':

 main()

You can modify the Vref at line 147 of the code block above:

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

 if (pin < 8 and (sensor_type == "2.5A" or sensor_type == "5A_DC" or

sensor_type == "5A_AC" or sensor_type == "10A")):

 if (sensor_type == "2.5A"):

 sensitivity = 1000.0 / 800.0

 Vref = 260

 if (sensor_type == "5A_DC"):

 sensitivity = 1000.0 / 200.0

 Vref = 1498

 if (sensor_type == "5A_AC"):

 sensitivity = 1000.0 / 200.0

 Vref = 1498

 if (sensor_type == "10A"):

 sensitivity = 1000.0 / 264.0

 Vref = 322

 averageValue = 500

As you can see, for the 2.5A Current Sensor the default Vref is 260, and in the Step 3,
we can find it when there is no current the zero offset value is 270mV. So let's change it
into 270.

1

2

3

 if (sensor_type == "2.5A"):

 sensitivity = 1000.0 / 800.0

 Vref = 270

Now, let's run this demo again.

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

pi@raspberrypi:~/grove.py/grove $ python grove_current_sensor.py 0 2.5A

pin_voltage(mV):

269

current(mA):

-1.0

()

pin_voltage(mV):

270

current(mA):

0.0

()

pin_voltage(mV):

270

current(mA):

0.0

()

pin_voltage(mV):

270

current(mA):

0.0

()

pin_voltage(mV):

270

current(mA):

0.0

()

^CTraceback (most recent call last):

 File "grove_current_sensor.py", line 200, in <module>

 main()

 File "grove_current_sensor.py", line 185, in main

 time.sleep(1)

KeyboardInterrupt

Well, better than before, now you can measure the current more accurately 😄

FAQ

Q1# What's the current calculation formula?

A1: If you think the principle part is very complicated, let's put it in a easy way. The
current in the circuit to be tested excites the magnetic field, which causes the resistance
value of the GMR elements change. And the resistance change in the bridge causes a
change in the voltage at the output of the chip. We call the voltage output as VIOUT.

VIOUT=Sens×IP+VIOUT(Q)VIOUT=Sens×IP+VIOUT(Q)

http://wiki.seeedstudio.com/Grove-2.5A-DC-Current-Sensor-ACS70331/#working-principle

Sens: Sens is the coefficient that converts the current into an output voltage. For this
module it is 800mA/V.
Ip: Ip is the current value in the circuit to be tested, Unit mA.
VIOUT(Q): VIOUT(Q) is the voltage output when the Ip is 0mA(which means there is no current
in the circuit to be tested), Unit mV.

Here comes the current value:

IP=VIOUT−VIOUT(Q)SensIP=VIOUT−VIOUT(Q)Sens

Now, Let's review the figure 5, we will explain why the current value of the output is not
0 when the actual current value in the circuit to be tested is 0. As you can see in the
figure 5, the initialValue is 283.20mV, which is the VIOUT; the current is 22.75mA, which
is the Ip. As for the VIOUT(Q), it is the Vref we set in the code. In figure 5, it is 265. And
the Sens is 800mA/V, which is 800mA/1000mV. Now, just do some math:

283.20mV−265mV800mA/1000mV=22.75mA283.20mV−265mV800mA/100

0mV=22.75mA

So, in the figure 6, when we set the Vref to 283.20, the Ip turns to 0mA.

Resources

• [ZIP] Grove - 2.5A DC Current Sensor(ACS70331) Schematic file

• [PDF] ACS70331 Datasheet

Tech Support

Please submit any technical issue into our forum or drop mail to techsupport@seeed.cc

 http://wiki.seeedstudio.com/Grove-2.5A-DC-Current-Sensor-ACS70331//4-19-19

https://github.com/SeeedDocument/Grove-2.5A_DC_Current_Sensor-ACS70331/raw/master/res/Grove%20-%202.5A%20DC%20Current%20Sensor(ACS70331).zip
https://github.com/SeeedDocument/Grove-2.5A_DC_Current_Sensor-ACS70331/raw/master/res/Current_Sensor_ACS70331.pdf
http://forum.seeedstudio.com/
mailto:techsupport@seeed.cc
http://wiki.seeedstudio.com/Grove-2.5A-DC-Current-Sensor-ACS70331/

